
A short introduction to
for Epidemiology

Friday 5th August, 2011
Version 3

Compiled Friday 5th August, 2011, 14:11
from: C:/Bendix/undervis/SPE/Intro/R-intro.tex

Michael Hills Retired
Highgate, London

Martyn Plummer International Agency for Research on Cancer, Lyon
plummer@iarc.fr

Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark
& Department of Biostatistics, University of Copenhagen

bxc@steno.dk

www.pubhealth.ku.dk/~bxc

Edition 2011 by Bendix Carstensen

www.pubhealth.ku.dk/~bxc

Contents

1 Getting R running on your computer 1

1.1 What is R? . 1

1.2 Getting R . 1

1.2.1 Starting R . 1

1.2.2 Quitting R . 2

1.3 Working with the script editor . 2

1.3.1 Try! . 2

1.4 Changing the looks of R . 2

1.5 Further reading . 3

2 Some basic commands in R 4

2.1 Preliminaries . 4

2.2 Using R as a calculator . 4

2.3 Objects and functions . 5

2.4 Sequences . 5

2.5 The births data . 6

2.6 Referencing parts of the data frame . 7

2.7 Summaries . 7

2.8 Turning a variable into a factor . 8

2.9 Frequency tables . 8

2.10 Grouping the values of a metric variable . 9

2.11 Tables of means and other things . 9

2.12 Generating new variables . 10

2.13 Logical variables . 10

3 Working with R 12

3.1 Saving the work space . 12

3.2 Saving output in a file . 12

3.3 Saving R objects in a file . 12

3.4 Using a text editor with R . 13

3.5 The search path . 14

3.6 Attaching a data frame . 14

4 Graphs in R 16

4.1 Simple plot on the screen . 16

4.2 Colours . 17

4.3 Adding to a plot . 17

4.3.1 Using indexing for plot elements . 17

4.3.2 Generating colours . 18

4.4 Interacting with a plot . 18

2

4.5 Saving your graphs for use in other documents . 19

4.6 The par() command . 19

5 The effx function for effects estimation 20

5.1 The function effx . 20

5.2 Factors on more than two levels . 21

5.3 Stratified effects . 21

5.4 Controlling the effect of hyp for sex . 22

5.5 Numeric exposures . 22

5.6 Checking on linearity . 22

5.7 Frequency data . 23

6 Dates in R 24

7 Follow-up data in the Epi package 26

7.1 Timescales . 26

7.2 Splitting the follow-up time along a timescale . 27

7.3 Cutting time at a specific date . 30

7.4 Competing risks — multiple types of events . 33

7.5 Multiple events of the same type (recurrent events) 34

References . 37

8 R command sheet 38

Getting help . 38

Input and output . 38

Data creation . 39

Slicing and extracting data . 39

Variable conversion . 39

Variable information . 39

Data selection and manipulation . 40

Math . 40

Matrices . 40

Advanced data processing . 41

Strings . 41

Dates and Times . 41

Plotting . 41

Low-level plotting commands . 42

Graphical parameters . 43

Lattice (Trellis) graphics . 43

Optimization and model fitting . 44

Statistics . 44

Distributions . 44

Programming . 44

The Epi package . 44

9 The Epi package 46

apc.fit . 46

apc.frame . 49

apc.lines . 51

apc.plot . 53

bdendo . 54

bdendo11 . 54

births . 55

blcaIT . 55

brv . 56

cal.yr . 56

ccwc . 58

ci.cum . 59

ci.lin . 60

ci.pd . 63

clogistic . 64

contr.cum . 65

cutLexis . 66

detrend . 69

diet . 69

DMconv . 70

DMlate . 71

effx . 72

effx.match . 73

ewrates . 75

expand.data . 75

fit.add . 76

fit.baseline . 77

fit.mult . 78

float . 79

ftrend . 80

gmortDK . 81

hivDK . 82

Icens . 83

lep . 84

Lexis . 85

Lexis.diagram . 87

Lexis.lines . 89

Life.lines . 90

lls . 91

lungDK . 92

merge.data.frame . 93

merge.Lexis . 94

mh . 95

mortDK . 96

msdata.Lexis . 97

ncut . 98

nice . 99

nickel . 100

occup . 100

pctab . 101

plot.Lexis . 102

plotEst . 104

plotevent . 106

projection.ip . 107

rateplot . 107

Relevel . 111
ROC . 111
S.typh . 113
splitLexis . 114
stack.Lexis . 115
start.Lexis . 116
stat.table . 117
stattable.funs . 119
subset.Lexis . 120
summary.Lexis . 120
tbox . 121
thoro . 125
timeBand . 126
timeScales . 127
transform.Lexis . 128
twoby2 . 128

Chapter 1

Getting R running on your computer

1.1 What is R?

R is free program for data analysis and graphics. It contains all state of the art statistical
methods, and has become the preferred analysis tool for most professional statisticians in the
world. It can be used as simple calculator and as a very specialized statistical analysis and
reporting machinery.

The special thing about R is that you enter commands from the keyboard into a console
window, where you also see the results. This is an advantage because you end up with a script
that you can use to reproduce your analyses—a requirement in any scientific endeavour.

The disadvantage is that you somehow have to find out what to type. The practicals will
contain some hints, and you will mostly be using R as a calculator, as you just saw — type an
expression, hit the return key and you get the result.

1.2 Getting R

You can obtain R, which is free, from CRAN (the Comprehensive R Archive Network), at
http://cran.r-project.org/. Under “Download and Install R” click on “Windows” and
under “R for Windows” click on “base”. Then on “Download R 2.13.1 for Windows”, which is a
self-extracting installer. This means that if you save it to your computer somewhere and click on
it, it will install R for you.

Apart from what you have downloaded there are several thousand add-on packages to R dealing
with all sorts of problems from ecology to fiance and incidentally, epidemiology. You must
download these manually. In this course we shall only need the Epi package.

1.2.1 Starting R

You start R by clicking on the icon that the installer has put on your desktop. You should edit
the properties of this, so that R starts in the folder that you have created on your computer for
this course.

Once you have installed R, start it, and in the menu bar click on Packages → Install package(s)...,
chose a mirror (this is just a server where you can get the stuff), and the Epi package.

Once R (hopefully) has told you that it has been installed, you can type:

> library(Epi)

to get access to the Epi package. You can get an overview of the functions and datasets in the
package by typing:

> library(help=Epi)

1

http://cran.r-project.org/

2 1.3 Working with the script editor R for epidemiology

It should be apparent that you have version 1.1.24 of the Epi package.

1.2.2 Quitting R

Type q() in the console, and answer “No” when asked whether you want to save workspace image.

1.3 Working with the script editor

If you click on File → New script, R will open a window for you which is a text-editor very much
like Notepad.

If you write a command in it you can transfer it to the R console and have it executed by
pressing CTRL-r. If nothing is highlighted, the line where the cursor is will be transmitted to the
console and the cursor will move to the next line. If a part of the screen is highlighted the
highlighted part will be transmitted to the console. Highlighting can also be used to transmit
only a part of a line of code.

1.3.1 Try!

Now open a script by File → New script, and type (omit the “>” in the beginning of the line):

> 5+7
> pi
> 1:10
> N <- c(27,33,81)
> N

Run the lines one at a time by pressing CTRL-r, and see what happens.
You can also type the commands in the console directly. But then you will not have a record of

what you have done. Well, you can press File → Save History and save all you typed in the console
(including the 73.6% commands with errors).

1.4 Changing the looks of R

If you want R to start up with a different font, different colors etc., the go to the folder where R is
installed — most likely Program Files\R\R-2.13.1, then to the folder etc, and open the file
Rconsole with Notepad. In the file are specifications on how R will look when you start it, pretty
self-explanatory, except perhaps for MDI.
MDI means “Multiple Display Interface”, which means you get a single R-window, and within

that sub-windows with the console, the script editor, graphs etc. If this is set to “no”, you get SDI
which means “Single Display Interface”, which means that R will open the console, script editor
etc. in separate windows of their own.

A withe background can be trying to look at so on my (BxC) computer I use a bold font and
the following colors:

> background = gray5
> normaltext = yellow2
> usertext = green
> pagerbg = gray5
> pagertext = yellow2
> highlight = red
> dataeditbg = gray5
> dataedittext = red
> dataedituser = yellow2
> editorbg = gray5
> editortext = lightblue

Getting R running on your computer 1.5 Further reading 3

(If you want to know which colors are available in R, just give the command colors()).

1.5 Further reading

On the CRAN web-site the last menu-entry on the left is “Contributed” and will take you to a
very long list of various introductions to R, including manuals in esoteric languages such as
Danish, Finnish and Hungarian.

Chapter 2

Some basic commands in R

2.1 Preliminaries

The purpose of these notes is to describe a small subset of the Rlanguage, sufficient to allow
someone new to R to get started. The exercises are important because they reinforce basic aspects
of R. For further details about R we refer the reader to An Introduction to R by
W.N.Venables, D.M.Smith, and the R development team. This can be downloaded from the R
website at http://www.r-project.org.

To start R click on the R icon. To change your working directory click on File → Change dir...
and select the directory you want to work in. Alternatively you can write:

> setwd("c:/where/alll/my/files/are")

To get out of R click on the File menu and select Exit, or simpler just type “q()”. You will be
offered the chance to save the work space, but at this stage just exit without saving, then start R
again, and change the working directory, as before.
R is case sensitive, so that A is different from a. Commands in R are generally separated by a

newline, although a semi-colon can also be used. When using R it makes sense to avoid as much
typing as possible by recalling previous commands using the vertical arrow key and editing them.

2.2 Using R as a calculator

Typing 2+2 will return the answer 4, typing 2^3 will return the answer 8 (2 to the power of 3),
typing log(10) will return the natural logarithm of 10, which is 2.3026, and typing sqrt(25) will
return the square root of 25.

Instead of printing the result you can store it in an object, say

> a <- 2+2

which can be used in further calculations. The expression <-, pronounced ”gets”, is called the
assignment operator, and is obtained by typing < and then -. The assignment operator can also
be used in the opposite direction, as in

> 2+2 -> a

The contents of a can be printed by typing a.
Standard probability functions are readily available. For example, the probability below 1.96 in

a standard normal (i.e. Gaussian) distribution is obtained with

> pnorm(1.96)

while

4

http://www.r-project.org

Some basic commands in R 2.3 Objects and functions 5

> pchisq(3.84,1)

will return the probability below 3.84 in a χ2 distribution on 1 degree of freedom, and

> pchisq(3.84,1,lower.tail=FALSE)

will return the probability above 3.84.

Exercise 2.1.

1. Calculate
√

32 + 42.

2. Find the probability above 4.3 in a chi-squared distribution on 1 degree of
freedom.

2.3 Objects and functions

All commands in R are functions which act on objects. One important kind of object is a vector,
which is an ordered collections of numbers, or an ordered collection of character strings.
Examples of vectors are 4, 6, 1, 2.2, which is a numeric vector with 4 components, and “Charles
Darwin”, “Alfred Wallace” which is a vector of character strings with 2 components. The
components of a vector must be of the same type (numeric or character). The combine function
c(), together with the assignment operator, is used to create vectors. Thus

> v <- c(4, 6, 1, 2.2)

creates a vector v with components 4, 6, 1, 2.2 by first combining the 4 numbers 4, 6, 1, 2.2 in
order and then assigning the result to the vector v. Collections of components of different types
are called lists, and are created with the list() function. Thus

> m <- list(4, 6, "name of company")

creates a list with 3 components. The main differences between the numbers 4, 6, 1, 2.2 and the
vector v is that along with v is stored information about what sort of object it is and hence how it
is printed and how it is combined with other objects. Try

> v
> 3+v
> 3*v

and you will see that R understands what to do in each case. This may seem trivial, but
remember that unlike most statistical packages there are many different kinds of object in R.

You can get a description of the structure of any object using the function str(). For example,
str(v) shows that v is numeric with 4 components.

2.4 Sequences

It is not always necessary to type out all the components of a vector. For example, the vector (15,
20, 25, ... ,85) can be created with

> seq(15, 85, by=5)

and the vector (5, 20, 25, ... ,85) can be created with

> c(5,seq(20, 85, by=5))

You can learn more about functions by typing ? followed by the function name. For example
?seq gives information about the syntax and usage of the function seq().

6 2.5 The births data R for epidemiology

Exercise 2.2.

1. Create a vector w with components 1, -1, 2, -2

2. Print this vector (to the screen)

3. Obtain a description of w using str()

4. Create the vector w+1, and print it.

5. Create the vector (0, 1, 5, 10, 15, ... , 75) using c() and seq().

2.5 The births data

Table 2.1: Variables in the births dataset

Variable Units or Coding Type Name

Subject number – categorical id

Birth weight grams metric bweight

Birth weight < 2500 g 1=yes, 0=no categorical lowbw

Gestational age weeks metric gestwks

Gestational age < 37 weeks 1=yes, 0=no categorical preterm

Maternal age years metric matage

Maternal hypertension 1=hypertensive, 0=normal categorical hyp

Sex of baby 1=male, 2=female categorical sex

The most important example of a vector in epidemiology is the data on a variable recorded for
a group of subjects. To introduce R we use the births data which concern 500 mothers who had
singleton births in a large London hospital. These data are available as an R object called births

in the Epi package. You can get them into your workspace by:

> library(Epi)
> data(births)

Try

> objects()

to make sure that you have an object called births in your working directory. A more detailed
overview of the objects in your workspace is obtained by:

> lls()

The function

> str(births)

shows that the object births is a data frame with 500 observations of 8 variables. The names
and types of the variables are also shown together with the first 10 values of each variable.

Some of the variables which make up these data take integer values while others are numeric
taking measurements as values. For most variables the integer values are just codes for different
categories, such as "male" and "female" which are coded 1 and 2 for the variable sex.

Some basic commands in R 2.6 Referencing parts of the data frame 7

Exercise 2.3.

1. The dataframe "diet" in the Epi package contains data from a follow-up study
with coronary heart disease as the end-point. Load these data with

> data(diet)

and print the contents of the data frame to the screen..

2. Check that you now have two objects, births, and diet in your work space.

3. Obtain a description of the object diet.

4. Remove the object diet with the command

> rm(diet)

5. Check that you only have the object births left.

2.6 Referencing parts of the data frame

Typing births will list the entire data frame - not usually very helpful. Now try

> births[1,"bweight"]

This will list the value taken by the first subject for the bweight variable. Similarly

> births[2,"bweight"]

will list the value taken by the second subject for bweight, and so on. To list the data for the
first 10 subject for the bweight variable, try

> births[1:10, "bweight"]

and to list all the data for this variable, try

> births[, "bweight"]

Exercise 2.4.

1. Print the data on the variable gestwks for subject 7 in the births data frame.

2. Print all the data for subject 7.

3. Print all the data on the variable gestwks.

2.7 Summaries

A good way to start an analysis is to ask for a summary of the data by typing

> summary(births)

To see the names of the variables in the data frame try

> names(births)

Variables in a data frame can be referred to by name, but to do so it is necessary also to specify
the name of the data frame. Thus births$hyp refers to the variable hyp in the births data frame,
and typing births$hyp will print the data on this variable. To summarize the variable hyp try

> summary(births$hyp)

In most datasets there will be some missing values. These are usually coded using tab delimited
blanks to mark the values which are missing. R then codes the missing values using the NA (not
available) symbol. The summary shows the number of missing values for each variable.

8 2.8 Turning a variable into a factor R for epidemiology

2.8 Turning a variable into a factor

In R categorical variables are known as factors, and the different categories are called the levels of
the factor. Variables such as hyp and sex are originally coded using integer codes, and by default
R will interpret these codes as numeric values taken by the variables. For R to recognize that the
codes refer to categories it is necessary to convert the variables to be factors, and to label the
levels. To convert the variable hyp to be a factor, try

> hyp <- factor(births$hyp)
> str(births)
> objects()

which shows that hyp is both in your work space (as a factor), and in in the births data frame
(as a numeric variable). It is better to use the transform function on the data frame, as in

> births <- transform(births, hyp=factor(hyp))
> str(births)

which shows that hyp, in the births data frame, is now a factor with two levels, labeled "0" and
"1" which are the original values taken by the variable. It is possible to change the labels to (say)
"normal" and "hyper" with

> births <- transform(births, hyp=factor(hyp,labels=c("normal","hyper")))
> str(births)

Exercise 2.5.

1. Convert the variable sex into a factor

2. Label the levels of sex as "male" and "female".

2.9 Frequency tables

When starting to look at any new data frame the first step is to check that the values of the
variables make sense and correspond to the codes defined in the coding schedule. For categorical
variables (factors) this can be done by looking at one-way frequency tables and checking that only
the specified codes (levels) occur. The most useful function for making tables is stat.table. This
is currently part of the Epi package, so you will need to load this package first with

> library(Epi)

The distribution of the factors hyp and sex can be viewed by typing

> stat.table(hyp,data=births)
> stat.table(sex,data=births)

Their cross-tabulation is obtained by typing

> stat.table(list(hyp,sex),data=births)

Cross-tabulations are useful when checking for consistency, but because no distinction is drawn
between the response variable and any explanatory variables, they are not useful as a way of
presenting data.

Some basic commands in R 2.10 Grouping the values of a metric variable 9

2.10 Grouping the values of a metric variable

For a numeric variable like matage it is often useful to group the values and to create a new factor
which codes the groups. For example we might cut the values taken by matage into the groups
20–29, 30–34, 35–39, 40–44, and then create a factor called agegrp with 4 levels corresponding to
the four groups. The best way of doing this is with the function cut. Try

> births <- transform(births,agegrp=cut(matage, breaks=c(20,30,35,40,45),right=FALSE))
> stat.table(agegrp,data=births)

By default the factor levels are labeled [20-25), [25-30), etc., where [20-25) refers to the interval
which includes the left hand end (20) but not the right hand end (25). This is the reason for
right=FALSE. When right=TRUE (which is the default) the intervals include the right hand end
but not the left hand.

It is important to realize that observations which are not inside the range specified in the
breaks() part of the command result in missing values for the new factor. For example, try

> births <- transform(births,agegrp=cut(matage, breaks=c(20,30,35),right=FALSE))
> summary(births)

Only observations from 20 up to, but not including 35, are included. For the rest, agegrp is coded
missing. You can specify that you want to cut a variable into a given number of intervals of equal
length by specifying the number of intervals. For example

> births <- transform(births,agegrp=cut(matage,breaks=5,right=FALSE))
> stat.table(agegrp,data=births)

shows 5 intervals of width 4.

Exercise 2.6.

1. Summarize the numeric variable gestwks, which records the length of gestation
for the baby, and make a note of the range of values.

2. Create a new factor gest4 which cuts gestwks at 20, 35, 37, 39, and 45 weeks,
including the left hand end, but not the right hand. Make a table of the
frequencies for the four levels of gest4.

3. Create a new factor gest5 which cuts gestwks into 5 equal intervals, and make a
table of frequencies.

2.11 Tables of means and other things

To obtain the mean of bweight by sex, try

> stat.table(sex, mean(bweight), data=births)

The headings of the table can be improved with

> stat.table(sex,list("Mean birth weight"=mean(bweight)),data=births)

To make a two-way table of mean birth weight by sex and hypertension, try

> stat.table(list(sex,hyp),mean(bweight),data=births)

and to tabulate the count as well as the mean, try

> stat.table(list(sex,hyp),list(count(),mean(bweight)),data=births)

10 2.12 Generating new variables R for epidemiology

Available functions for the cells of the table are count, mean, weighted.mean, sum, min,

max, quantile,median, IQR, and ratio. The last of these is useful for rates and odds. For
example, to make a table of the odds of low birth weight by hypertension, try

> stat.table(hyp, list("odds"=ratio(lowbw,1-lowbw,100)),data=births)

The scale factor 100 makes the odds per 100. Margins can be added to the tables, as required.
For example,

> stat.table(sex, mean(bweight),data=births,margins=TRUE)

for a one-way table, and

> stat.table(list(sex,hyp),mean(bweight),data=births,margins=c(TRUE,FALSE))
> stat.table(list(sex,hyp), mean(bweight),data=births,margins=c(FALSE,TRUE))
> stat.table(list(sex,hyp), mean(bweight),data=births,margins=c(TRUE,TRUE))

for a two-way table.

Exercise 2.7.

1. Make a table of median birth weight by sex.

2. Do the same for gestation time, but include count as a function to be tabulated
along with median. Note that when there are missing values for the variable
being summarized the count refers to the number of non-missing observations for
the row variable, not the summarized variable.

3. Create a table showing the mean gestation time for the baby by hyp and lowbw,
together with margins for both.

4. Make a table showing the odds of hypertension by sex of the baby.

2.12 Generating new variables

New variables can be produced using assignment together with the usual mathematical operations
and functions:

+ - * log exp ^ sqrt

The sign ^ means “to the power of”, log means “natural logarithm”, and sqrt means “square
root”.

The transform() function allows you to transform or generate variables in a data frame. For
example, try

> births <- transform(births,
+ num1=1,
+ num2=2,
+ logbw=log(bweight))

The variable logbw is the natural logarithm of birth weight. Logs base 10 are obtained with
log10().

2.13 Logical variables

Logical variables take the values TRUE or FALSE, and behave like factors. New variables can be
created which are logical functions of existing variables. For example

Some basic commands in R 2.13 Logical variables 11

> births <- transform(births, low=bweight<2000)
> str(births)

creates a logical variable low with levels TRUE and FALSE, according to whether bweight is less
than 2000 or not. The logical expressions which R allows are

== < <= > >= !=

The first is logical equals and the last is not equals. One common use of logical variables is to
restrict a command to a subset of the data. For example, to list the values taken by bweight for
hypertensive women, try

> births$bweight[births$hyp=="hyper"]

If you want the entire dataframe restricted to hypertensive women try:

> births[births$hyp=="hyper",]

The subset() function also allows you to take a subset of a data frame. Try

> subset(births, hyp=="hyper")

Exercise 2.8.

1. Create a logical variable called early according to whether gestwks is less than
30 or not.Make a frequency table of early.

2. Print the id numbers of women with gestwks less than 30 weeks.

Chapter 3

Working with R

3.1 Saving the work space

When exiting from R you are offered the chance of saving all the objects in your current work
space. If you do so, the work space is re-instated next time you start R. It can be useful to do
this, but before doing so it is worth tidying things up, because the work space can fill up with
temporary objects, and it is easy to forget what these are when you resume the session.

3.2 Saving output in a file

To save the output from an R command in a file, for future use, the sink() command is used. For
example,

> sink("output.txt")
> summary(births)

first instructs R to re-direct output away from the R terminal to the file "output.txt" and then
summarizes the births data frame, the output from which goes to the sink. While a sink is open
all output will go to it, replacing what is already in the file. To append output to a file, use the
append=TRUE option with sink(). To close a sink, use

> sink()

Exercise 3.9.

1. Sink output to a file called "output1.txt".

2. Make frequency tables of hyp and sex

3. Make a table of mean birth weight by sex

4. Close the sink

5. From windows, have a look inside the file output1.txt and check that the
output you expected is in the file.

3.3 Saving R objects in a file

The command read.table() is relatively slow because it carries out quite a lot of processing as it
reads the data. To avoid doing this more than once you can save the data frame, which includes
the R information, and read from this saved file in future. For example,

> save(births, file="births.Rdata")

12

Working with R 3.4 Using a text editor with R 13

will save the births data frame in the file births.Rdata. By default the data frame is saved as a
binary file, but the option ascii=TRUE can be used to save it as a text file. To load the object
from the file use

> load("births.Rdata")

The commands save() and load() can be used with any R objects, but they are particularly
useful when dealing with large data frames.

Exercise 3.10.

1. Use read.table() to read the data in the file diet.txt into a data frame called
diet.

2. Save this data frame in the file "diet.Rdata"

3. Remove the data frame

4. Load the data frame from the file "diet.Rdata".

3.4 Using a text editor with R

When working with R it is best to use a text editor to prepare a batch file (or script) which
contains R commands and then to run them from the script. This means you can use the cut and
paste facilities of the editor to cut down on typing. For Windows we recommend using the text
editor Tinn-R, but you can use your favorite text editor instead if you prefer, and copy-paste
commands from it into the R-console.

Alternatively you can use the built-in script-editor: Click on File→New script, or File→Open

script, according to whether you are using an old script. You can move the current line from the
script-editor to the console by CTRL-R. If you have highlighted a section of the script the
highlighted part will be moved to the console.

Now start up the editor and enter the following lines:

> births <- transform(births,
+ lowbw = factor(lowbw, labels=c("normal","low")),
+ hyp = factor(hyp, labels=c("normal","hyper")),
+ sex = factor(sex, labels=c("male","female")))

Now save the script as mygetbirths.R and run it. One major advantage of running all your R
commands from a script is that you end up with a record of exactly what you did which can be
repeated at any time.

This will also help you redo the analysis in the (highly likely) event that your data changes
before you have finished all analyses.

Exercise 3.11.

1. Create a script called mytab.R which includes the lines

> stat.table(hyp,data=births)
> stat.table(sex,data=births)

and run just these two lines.

2. Edit the script to include the lines

> stat.table(sex,mean(bweight),data=births)
> stat.table(hyp,mean(bweight),data=births)

and run these two lines.

3. Edit the script to create a factor cutting matage at 20, 30, 35, 40, 45 years, and
run just this part of the script.

14 3.5 The search path R for epidemiology

4. Edit the script to create a factor cutting gestwks at 20, 35, 37, 39, 45 weeks, and
run just this part of the script.

5. Save and run the entire script.

3.5 The search path

R organizes objects in different positions on a search path. The command

> search()

shows these positions. The first is the work space, or global environment, the second is the Epi
package, the third is a package of commands called methods, the fourth is a package called stats,
and so on. To see what is in the work space try

> objects()

You should see just the objects births and diet. The command objects(1) does the same as
objects(). A shorther name for the same function is ls(). In the Epi package is a function that
gives a more detailed picture, lls(); try:

> lls()

To see what is in the Epi package, try

> ls(2)

When you type the name of an object R looks for it in the order of the search path and will
return the first object with this name that it finds. This is why it is best to start your session
with a clean workspace, otherwise you might have an object in your workspace that masks
another one later in the search path.

3.6 Attaching a data frame

The function objects(1) shows that the only objects in the workspace are births and diet. To
refer to variables in the births data frame by name it is necessary to specify the name of the
data frame, as in births$hyp. This is quite cumbersome, and provided you are working primarily
with one data frame, it can help to put a copy of the variables from a data frame in their own
position on the search path. This is done with the function

> attach(births)

which places a copy of the variables in the births data frame in position 2. You can verify this
with

> objects(2)

which shows the objects in this position are the variables from the births data frame. Note that
the methods package has now been moved up to position 3, as shown by the search() function.

When you type the command:

> hyp

R will look in the first position where it fails to find hyp, then the second position where it finds
hyp, which now gets printed.

Although convenient, attaching a data frame can give rise to confusion. For example, when you
create a new object from the variables in an attached data frame, as in

Working with R 3.6 Attaching a data frame 15

> subgrp <- bweight[hyp==1]

the object subgrp will be in your workspace (position 1 on the search path) not in position 2. To
demonstrate this, try

> objects(1)
> objects(2)

Similarly, if you modify the data frame in the workspace the changes will not carry through to the
attached version of the data frame. The best advice is to regard any operation on an attached
data frame as temporary, intended only to produce output such as summaries and tabulations.

Beware of attaching a data frame more than once - the second attached copy will be attached in
position 2 of the search path, while the first copy will be moved up to position 3. You can see this
with

> attach(births)
> search()

Having several copies of the same data set can lead to great confusion. To detach a data frame,
use the command

> detach(births)

which will detach the copy in position 2 and move everything else down one position. To detach
the second copy repeat the command detach(births).

Exercise 3.12.

1. Use search() to make sure you have no data frames attached.

2. Use objects(1) to check that you have the data frame births in your work
space.

3. Verify that typing births$hyp will print the data on the variable hyp but typing
hyp will not.

4. Attach the births data frame in position 2 and check that the variables from
this data frame are now in position 2.

5. Verify that typing hyp will now print the data on the the variable hyp.

6. Summarize the variable bweight for hypertensive women.

> setwd(sweave.wd)

Chapter 4

Graphs in R

There are three kinds of plotting functions in R:

1. Functions that generate a new plot, e.g. hist() and plot().

2. Functions that add extra things to an existing plot, e.g. lines() and text().

3. Functions that allow you to interact with the plot, e.g. locator() and identify().

The normal procedure for making a graph in R is to make a fairly simple initial plot and then add
on points, lines, text etc., preferably in a script.

4.1 Simple plot on the screen

Load the births data and get an overview of the variables:

> library(Epi)
> data(births)
> str(births)

Now attach the dataframe and look at the birthweight distribution with

> attach(births)
> hist(bweight)

The histogram can be refined – take a look at the possible options with

> ?hist

and try some of the options, for example:

> hist(bweight, col="gray", border="white")

To look at the relationship between birthweight and gestational weeks, try

> plot(gestwks, bweight)

You can change the plot-symbol by the option pch=. If you want to see all the plot symbols try:

> plot(1:25, pch=1:25)

Exercise 4.13.

1. Make a plot of the birth weight versus maternal age with

> plot(matage, bweight)

2. Label the axes with

> plot(matage, bweight, xlab="Maternal age", ylab="Birth weight (g)")

16

Graphs in R 4.2 Colours 17

4.2 Colours

There are many colours recognized by R. You can list them all by colours() or, equivalently,
colors() (R allows you to use British or American spelling). To colour the points of birthweight
versus gestational weeks, try

> plot(gestwks, bweight, pch=16, col="green")

This creates a solid mass of colour in the center of the cluster of points and it is no longer possible
to see individual points. You can recover this information by overwriting the points with black
circles using the points() function.

> points(gestwks, bweight)

4.3 Adding to a plot

The points() function is one of several functions that add elements to an existing plot. By using
these functions, you can create quite complex graphs in small steps.

Suppose we wish to recreate the plot of birthweight vs gestational weeks using different colours
for male and female babies. To start with an empty plot, try

> plot(gestwks, bweight, type="n")

Then add the points with the points function.

> points(gestwks[sex==1], bweight[sex==1], col="blue")
> points(gestwks[sex==2], bweight[sex==2], col="red")

To add a legend explaining the colours, try

> legend("topleft", pch=1, legend=c("Boys","Girls"), col=c("blue","red"))

which puts the legend in the top left hand corner.
Finally we can add a title to the plot with

> title("Birth weight vs gestational weeks in 500 singleton births")

4.3.1 Using indexing for plot elements

One of the most powerful features of R is the possibility to index vectors, not only to get subsets
of them, but also for repeating their elements in complex sequences.

Putting separate colours on males and female as above would become very clumsy if we had a 5
level factor instead.

Instead of specifying one color for all points, we may specify a vector of colours of the same
length as the gestwks and bweight vectors. This is rather tedious to do directly, but R allows
you to specify an expression anywhere, so we can use the fact that sex takes the values 1 and 2,
as follows:

First create a colour vector with two colours, and take look at sex:

> c("blue","red")
> sex

Now see what happens if you index the colour vector by sex:

> c("blue","red")[sex]

For every occurrence of a 1 in sex you get "blue", and for every occurrence of 2 you get "red",
so the result is a long vector of "blue"s and "red"s corresponding to the males and females. This
can now be used in the plot:

18 4.4 Interacting with a plot R for epidemiology

> plot(gestwks, bweight, pch=16, col=c("blue","red")[sex])

The same trick can be used if we want to have a separate symbol for mothers over 40 say. We first
generate the indexing variable:

> oldmum <- (matage >= 40) + 1

Note we add 1 because (matage >= 40) generates a logic variable, so by adding 1 we get a
numeric variable with values 1 and 2, suitable for indexing:

> plot(gestwks, bweight, pch=c(16,3)[oldmum], col=c("blue","red")[sex])

so where oldmum is 1 we get pch=16 (a dot) and where oldmum is 2 we get pch=3 (a cross).
R will accept any kind of complexity in the indexing as long as the result is a valid index, so you

don’t need to create the variable oldmum, you can create it on the fly:

> plot(gestwks, bweight, pch=c(16,3)[(matage>=40)+1], col=c("blue","red")[sex])

Exercise 4.14.

1. Make a three level factor for maternal age with cutpoints at 30 and 40 years.

2. Use this to make the plot of gestational weeks with three different plotting
symbols. (Hint: Indexing with a factor automatically gives indexes 1,2,3 etc.).

4.3.2 Generating colours

R has functions that generate a vector of colours for you. For example,

> rainbow(4)

produces a vector with 4 colours (not immediately human readable, though). There are a few
other functions that generates other sequences of colours, type ?rainbow to see them.

Gray-tones are produced by the function gray (or grey), which takes a numerical argument
between 0 and 1; gray(0) is black and gray(1) is white. Try:

> plot(0:10, pch=16, cex=3, col=gray(0:10/10))
> points(0:10, pch=1, cex=3)

4.4 Interacting with a plot

The locator() function allows you to interact with the plot using the mouse. Typing
locator(1) shifts you to the graphics window and waits for one click of the left mouse button.
When you click, it will return the corresponding coordinates.

You can use locator() inside other graphics functions to position graphical elements exactly
where you want them. Recreate the birth-weight plot,

> plot(gestwks, bweight, pch=c(16,3)[(matage>=40)+1], col=c("blue","red")[sex])

and then add the legend where you wish it to appear by typing

> legend(locator(1), pch=1, legend=c("Boys","Girls"), col=c("blue","red"))

The identify() function allows you to find out which records in the data correspond to points
on the graph. Try

> identify(gestwks, bweight)

When you click the left mouse button, a label will appear on the graph identifying the row
number of the nearest point in the data frame births. If there is no point nearby, R will print a
warning message on the console instead. To end the interaction with the graphics window, right
click the mouse: the identify function returns a vector of identified points.

Graphs in R 4.5 Saving your graphs for use in other documents 19

Exercise 4.15.

1. Use identify() to find which records correspond to the smallest and largest
number of gestational weeks.

2. View all the variables corresponding to these records with:
> births[identify(gestwks, bweight),]

4.5 Saving your graphs for use in other documents

Once you have a graph on the screen you can click on File → Save as , and choose the format
you want your graph in. The PDF (Acrobat reader) format is normally the most economical, and
Acrobat reader has good options for viewing in more detail on the screen. The Metafile format
will give you an enhanced metafile .emf, which can be imported into a Word document by
Insert → Picture → From File . Metafiles can be resized and edited inside Word.
If you want exact control of the size of your plot you can start a graphics device before doing

the plot. Instead of appearing on the screen, the plot will be written directly to a file. After the
plot has been completed you will need to close the device again in order to be able to access the
file. Try:

> win.metafile(file="plot1.emf", height=3, width=4)
> plot(gestwks, bweight)
> dev.off()

This will give you a enhanced metafile plot1.emf with a graph which is 3 inches tall and 4 inches
wide.

4.6 The par() command

It is possible to manipulate any element in a graph, by using the graphics options. These are
collected on the help page of par(). For example, if you want axis labels always to be horizontal,
use the command par(las=1). This will be in effect until a new graphics device is opened.

Look at the typewriter-version of the help-page with

> ?par

or better, use the the html-version through Help → Html help → Packages → base → P →
par .

It is a good idea to take a print of this (having set the text size to “smallest” because it is long)
and carry it with you at any time to read in buses, cinema queues, during boring lectures etc.
Don’t despair, few R-users can understand what all the options are for.
par() can also be used to ask about the current plot, for example par("usr") will give you the

exact extent of the axes in the current plot.
If you want more plots on a single page you can use the command

> par(mfrow=c(2,3))

This will give you a layout of 2 rows by 3 columns for the next 6 graphs you produce. The plots
will appear by row, i.e. in the top row first. If you want the plots to appear column-wise, use
par(mfcol=c(2,3)) (you still get 2 rows by 3 columns). To restore the layout to a single plot
per page use

> par(mfrow=c(1,1))

Finally for more complex graphical lay-outs you can use the functions layout(), take a look:

> ?layout

Chapter 5

The effx function for effects
estimation

Identifying the response variable correctly is the key to analysis. The main types are:

• Metric (a measurement taking many values, usually with units)

• Binary (two values coded 0/1)

• Failure (does the subject fail at end of follow-up, and how long was follow-up)

• Count (aggregated failure data)

The response variable must be numeric.
Variables on which the response may depend are called explanatory variables. They can be

factors or numeric. A further important aspect of explanatory variables is the role they will play
in the analysis.

• Primary role: exposure

• Secondary role: confounder

The word effect is a general term referring to ways of comparing the values of the response
variable at different levels of an explanatory variable. The main measures of effect are:

• Differences in means for a metric response.

• Ratios of odds for a binary response.

• Ratios of rates for a failure or count response.

What other measures of effects might be used?

5.1 The function effx

The function effx is intended to introduce the estimation of effects in epidemiology, together
with the related ideas of stratification and controlling, without the need for familiarity with
statistical modelling.

We shall use the births data in the Epi package, which can be loaded and inspected with

> library(Epi)
> data(births)
> help(births)

20

The effx function for effects estimation 5.2 Factors on more than two levels 21

The variables we shall be interested in are bweight (birth weight) and hyp (hypertension). An
alternative way of characterizing birth weight is shown in lowbw which is coded 1 for babies with
low birth weight, and 0 otherwise. Other variables of interest are sex (of the baby) and gestwks,
the gestation time.

All variables are numeric, so first we need first to do a little housekeeping:

> births$hyp <- factor(births$hyp,labels=c("normal","hyper"))
> births$sex <- factor(births$sex,labels=c("M","F"))
> births$agegrp <- cut(births$matage,breaks=c(20,25,30,35,40,45),right=FALSE)
> births$gest4 <- cut(births$gestwks,breaks=c(20,35,37,39,45),right=FALSE)

Now try

> effx(response=bweight,typ="metric",exposure=sex,data=births)

The effect of sex on birth weight, measured as a difference in means, is −197. The command

> stat.table(sex,mean(bweight), data=births)

verifies this (3032.8− 3229.9 = −197.1). The p-value refers to the test that there is no effect of
sex on birth weight. Use effx to find the effect of hyp on bweight.

For another example, consider the effect of sex on the binary response lowbw.

> effx(response=lowbw,typ="binary",exposure=sex,data=births)

The effect of sex on lowbw, measured as an odds ratio, is 1.43. The command

> stat.table(sex,list(odds=ratio(lowbw,1-lowbw,100)),data=births)

can be used to verify this (16.26/11.39 = 1.427). Use effx to find the effect of hyp on lowbw.

5.2 Factors on more than two levels

The variable gest4 is the result of cutting gestwks into 4 groups with boundaries [20,35) [35,37)
[37,39) [39,45). We shall find the effects of gest4 on the metric response bweight.

> effx(response=bweight,typ="metric",exposure=gest4,data=births)

There are now 3 effects

[35,37) vs [20,35) 856.6

[37,39) vs [20,35) 1360.0

[39,45) vs [20,35) 1668.0

The command

> stat.table(gest4,mean(bweight),data=births)

verifies that the effect of agegrp (level 2 vs level 1) is 2590− 1733 = 857, etc. Find the effects of
gest4 on lowbw. Use the option base=4 to change the baseline for gest4 from 1 to 4.

5.3 Stratified effects

As an example we shall stratify the effects of hyp on bweight by sex with

> effx(bweight, type="metric", exposure=hyp, strata=sex,data=births)

The effects of hyp in the different strata defined by sex are −496 and −380.
Use effx to stratify the effect of hyp on lowbw first by sex and then by gest4.

22 5.4 Controlling the effect of hyp for sex R for epidemiology

5.4 Controlling the effect of hyp for sex

The effect of hyp is controlled for sex by first looking at the effects of hyp in the two strata
defined by sex, and then combining these effects if they are similar. In this case the effcts were
−496 and −380 which look similar (the test for effect modification is a test of whether they differ
significantly) so we can combine them, and control for sex.

The combining is done by declaring sex as a control variable:

> effx(bweight, type="metric", exposure=hyp, control=sex,data=births)

The effect of hyp on bweight controlled for sex is −448. Note that it is the name of the control
variable which is passed, not the variable itself. There can be more than one control variable,
control=list(sex,agegrp).

Many people go straight ahead and control for variables which are likely to confound the effect
of exposure without bothering to stratify first, but there are times when it is useful to stratify first.

5.5 Numeric exposures

If we wished to study the effect of gestation time on the baby’s birth weight then gestwks is a
numeric exposure. Assuming that the relationship of the response with gestwks is roughly linear
(for a metric response) or log-linear (for a binary response) we can find the linear effect of
gestwks.

> effx(response=bweight, type="metric", exposure=gestwks,data=births)

The linear effect of gestwks is 197 g per extra week of gestation. The linear effect of gestwks on
lowbw can be found similarly

> effx(response=lowbw, type="binary", exposure=gestwks,data=births)

The linear effect of gestwks on lowbw is a reduction by a factor of 0.408 per extra week of
gestation, i.e. the odds of a baby having a low birth weight is reduced by a factor of 0.408 per one
week increase in gestation.

You cannot stratify by a numeric variable, but you can study the effects of a numeric exposure
stratified by (say) agegrp with

> effx(lowbw, type="binary",exposure=gestwks,strata=agegrp,data=births)

You can control for a numeric variable by putting it in control=.

5.6 Checking on linearity

At this stage it will be best to make a visual check using plot. For example, to check whether
bweight goes up linearly with gestwks try

> with(births, plot(gestwks,bweight))

Is the relationship roughly linear? It is not possible to check graphically whether log odds of a
baby being low birth weight goes down linearly with gestation because the individual odds are
either 0 or ∞. Instead we use the grouped variable gest4:

> tab<-stat.table(gest4,ratio(lowbw,1-lowbw,100),data=births)
> str(tab)
> #Extract the odds from tab, and plot the logodds against 1:4
> odds<-tab[1,1:4]
> plot(1:4,log(odds),type="b")

The relationship is remarkably linear, but remember this is quite crude because it takes no
account of unequal gestation intervals. More about checking for linearity later.

The effx function for effects estimation 5.7 Frequency data 23

5.7 Frequency data

Data from very large studies are often summarized in the form of frequency data, which records
the frequency of all possible combinations of values of the variables in the study. Such data are
sometimes presented in the form of a contingency table, sometimes as a data frame in which one
variable is the frequency. As an example, consider the UCBAdmissions data, which is one of the
standard R data sets, and refers to the outcome of applications to 6 departments by gender. The
command

> UCBAdmissions

shows that the data are in the form of a 2× 2× 6 contingency table for the three variables Admit

(admitted/rejected), Gender (male/female), and Dept (A/B/C/D/E/F). Thus in department A
512 males were admitted while 312 were rejected, and so on. The question of interest is whether
there is any bias against admitting female applicants.

The command

> ucb <- as.data.frame(UCBAdmissions)
> head(ucb)

coerces the contingency table to a data frame, and shows the first 10 lines. The relationship
between the contingency table and the data frame should be clear. The command

> ucb$Admit <- as.numeric(ucb$Admit)-1

turns Admit into a numeric variable coded 1 for rejection, 0 for admission, so

> effx(Admit,type="binary",exposure=Gender,weights=Freq,data=ucb)

shows the odds of rejection for female applicants to be 1.84 times the odds for males (note the use
of weights to take account of the frequencies). A crude analysis therefore suggests there is a
strong bias against admitting females. Continue the analysis by stratifying the crude analysis by
department - does this still support a bias against females? What is the effect of gender controlled
for department?

Chapter 6

Dates in R

Epidemiological studies often contain date variables which take values such as 2/11/1962. We
shall use the diet data to illustrate how to deal with variables whose values are dates.

The important variables in the dataset are chd, which takes the value 1 if the subject develops
coronary heart disease during the study the value 0 if the observation is censored, and the three
date variables which are date of birth (dob), date of entry (doe) and date of exit (dox). The
command

> str(diet)

shows that these three variables are Date variables.
You will also see that the values are just numbers, but if you try

> head(diet)

you will see these variables printed as “real” dates. The variables are internally stored as number
of days since 1/1/1970.

To convert a character string (or a character variable) to date format try:

> as.Date("14/07/1952", format="%d/%m/%Y")
> as.numeric(as.Date("14/07/1952", format="%d/%m/%Y"))

The first form shows the date form and the latter the number of days since 1/1/1970, which is a
negative number for dates prior to 1/1/1970.

The format parts, “%d” etc., identify elements of the dates, whereas the “/”s are just the
separator characters that are in the character string. There are other possibilities for formats, see
?strftime or the section on dates and times in the R command sheet at the end of this document.

Reading dates from an external file is done by reading the fields as character variables and then
transforming them to date variables by the function as.Date

If you want to enter a fixed date, for example if you want to terminate follow-up at 1st April
1975 you could say:

> newx <- pmin(diet$dox, as.Date("1975-4-1", format="%F"))

The format %F is shorthand for the ISO-standard date representation %Y-%m-%d, which is the
default, so it can be omitted altogether:

> newx <- pmin(diet$dox, as.Date("1975-4-1"))

You can print dates in the format you like by using the function format.Date(), try for
example:

> bdat <- as.Date("1952-7-14", format="%F")
> format.Date(bdat, format="%A %d %B %Y")

24

Dates in R 25

Exercise 6.16.

1. Convert doe and dox to date variables.

2. Generate a new variable y which is the elapsed time in years between the date of
entry and the date of exit.

3. The file getdiet.R reads the diet data, converts all three date variables to
standard form using the transform function, and generates the variable y. Run
this script and check the results are what you want.

4. Enter your own birtday as a date. Print it using format.Date() with the format
"%A %d %B %Y". Did you learn anything new?

5. Enter the birthday of your husband/wife/. . . as a date too. When will you be
(were you) 100 years old together? (Hint: mean() works on vectors of dates as
well.)

In the Epi package is also a function cal.yr which converts dates to fractional years:

> as.Date("1952-7-14")
> cal.yr(as.Date("1952-7-14"))
> cal.yr("1952-7-14")

The function will also find all date-variabels in a dataframe and convert them; try:

> data(diet)
> str(diet)
> str(cal.yr(diet))

Chapter 7

Follow-up data in the Epi package

In the Epi-package, follow-up data is represented by adding some extra variables to a dataframe.
Such a dataframe is called a Lexis object. The tools for handling follow-up data then use the
structure of this for special plots, tabulations etc.

Follow-up data basically consists of a time of entry, a time of exit and an indication of the
status at exit (normally either “alive” or “dead”). Implicitly is also assumed a status during the
follow-up (usually “alive”).

7.1 Timescales

A timescale is a variable that varies deterministically within each person during follow-up, e.g.:

• Age

• Calendar time

• Time since treatment

• Time since relapse

All timescales advance at the same pace, so the time followed is the same on all timescales.
Therefore, it suffices to use only the entry point on each of the time scale, for example:

• Age at entry.

• Date of entry.

• Time since treatment (at treatment this is 0).

• Time since relapse (at relapse this is 0)..

In the Epi package, follow-up in a cohort is represented in a Lexis object. A Lexis object is a
dataframe with a bit of extra structure representing the follow-up. For the nickel data we would
construct a Lexis object by:

> data(nickel)
> nicL <- Lexis(entry = list(per=agein+dob,
+ age=agein,
+ tfh=agein-age1st),
+ exit = list(age=ageout),
+ exit.status = (icd %in% c(162,163))*1,
+ data = nickel)

26

Follow-up data in the Epi package 7.2 Splitting the follow-up time along a timescale 27

The entry argument is a named list with the entry points on each of the timescales we want to
use. It defines the names of the timescales and the entry points. The exit argument gives the
exit time on one of the timescales, so the name of the element in this list must match one of the
names of the entry list. This is sufficient, because the follow-up time on all time scales is the
same, in this case ageout - agein. Now take a look at the result:

> str(nickel)
> str(nicL)
> head(nicL)
> summary(nicL)

The Lexis object nicL has a variable for each timescale which is the entry point on this
timescale. The follow-up time is in the variable lex.dur (duration).

We defined the exit status to be death from lung cancer (ICD7 162,163), i.e. this variable is 1 if
follow-up ended with a death from this cause. If follow-up ended alive or by death from another
cause, the exit status is coded 0, i.e. as a censoring.

Note that the exit status is in the variable lex.Xst (eXit status. The variable lex.Cst is the
state where the follow-up takes place (Current status), in this case 0 (alive).

It is possible to get a visualization of the follow-up along the timescales chosen by using the
plot method for Lexis objects. nicL is an object of class Lexis, so using the function plot() on
it means that R will look for the function plot.Lexis and use this function.

> plot(nicL)

The function allows a lot of control over the output, and a points.Lexis function allows plotting
of the endpoints of follow-up.

> par(mar=c(3,3,1,1), mgp=c(3,1,0)/1.6)
> plot(nicL, 1:2, lwd=1, col=c("blue","red")[(nicL$exp>0)+1],
+ grid=TRUE, lty.grid=1, col.grid=gray(0.7),
+ xlim=1900+c(0,90), xaxs="i",
+ ylim= 10+c(0,90), yaxs="i", las=1)
> points(nicL, 1:2, pch=c(NA,3)[nicL$lex.Xst+1],
+ col="lightgray", lwd=3, cex=1.2)
> points(nicL, 1:2, pch=c(NA,3)[nicL$lex.Xst+1],
+ col=c("blue","red")[(nicL$exp>0)+1], lwd=1, cex=1.2)

If you want to learn a bit more about drawing Lexis diagrams, you can take a look at the example
shown on the help page for the dataset occup. One way to run the code is to say:

> example(occup)

7.2 Splitting the follow-up time along a timescale

The follow-up time in a cohort can be subdivided by for example current age. This is achieved by
the splitLexis (note that it is not called split.Lexis). This requires that the timescale and
the breakpoints on this timescale are supplied. Try:

> nicS1 <- splitLexis(nicL, "age", breaks=seq(0,100,10))
> str(nicL)

Classes 'Lexis' and 'data.frame': 679 obs. of 14 variables:
$ per : num 1934 1934 1934 1934 1934 ...
$ age : num 45.2 48.3 53 47.9 54.7 ...
$ tfh : num 27.7 25.1 27.7 23.2 24.8 ...
$ lex.dur : num 47.75 15 1.17 21.77 22.1 ...
$ lex.Cst : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.Xst : num 0 1 1 0 0 1 0 0 0 0 ...

28 7.2 Splitting the follow-up time along a timescale R for epidemiology

$ lex.id : int 1 2 3 4 5 6 7 8 9 10 ...
$ id : num 3 4 6 8 9 10 15 16 17 18 ...
$ icd : num 0 162 163 527 150 163 334 160 420 12 ...
$ exposure: num 5 5 10 9 0 2 0 0.5 0 0 ...
$ dob : num 1889 1886 1881 1886 1880 ...
$ age1st : num 17.5 23.2 25.2 24.7 30 ...
$ agein : num 45.2 48.3 53 47.9 54.7 ...
$ ageout : num 93 63.3 54.2 69.7 76.8 ...
- attr(*, "time.scales")= chr "per" "age" "tfh"
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: NULL
..$ tfh: NULL

> str(nicS1)

Classes 'Lexis' and 'data.frame': 2210 obs. of 14 variables:
$ lex.id : int 1 1 1 1 1 1 2 2 2 3 ...
$ per : num 1934 1939 1949 1959 1969 ...
$ age : num 45.2 50 60 70 80 ...
$ tfh : num 27.7 32.5 42.5 52.5 62.5 ...
$ lex.dur : num 4.77 10 10 10 10 ...
$ lex.Cst : num 0 0 0 0 0 0 0 0 0 0 ...
$ lex.Xst : num 0 0 0 0 0 0 0 0 1 1 ...

1940 1960 1980 2000

40
60

80
10

0

per

ag
e

Figure 7.1: Lexis diagram of the nickel dataset.

Follow-up data in the Epi package 7.2 Splitting the follow-up time along a timescale 29

$ id : num 3 3 3 3 3 3 4 4 4 6 ...
$ icd : num 0 0 0 0 0 0 162 162 162 163 ...
$ exposure: num 5 5 5 5 5 5 5 5 5 10 ...
$ dob : num 1889 1889 1889 1889 1889 ...
$ age1st : num 17.5 17.5 17.5 17.5 17.5 ...
$ agein : num 45.2 45.2 45.2 45.2 45.2 ...
$ ageout : num 93 93 93 93 93 ...
- attr(*, "breaks")=List of 3
..$ per: NULL
..$ age: num 0 10 20 30 40 50 60 70 80 90 ...
..$ tfh: NULL
- attr(*, "time.scales")= chr "per" "age" "tfh"

> round(subset(nicS1, id %in% 8:10), 2)

lex.id per age tfh lex.dur lex.Cst lex.Xst id icd exposure dob age1st agein
11 4 1934.25 47.91 23.19 2.09 0 0 8 527 9 1886.34 24.72 47.91
12 4 1936.34 50.00 25.28 10.00 0 0 8 527 9 1886.34 24.72 47.91
13 4 1946.34 60.00 35.28 9.68 0 0 8 527 9 1886.34 24.72 47.91
14 5 1934.25 54.75 24.79 5.25 0 0 9 150 0 1879.50 29.96 54.75
15 5 1939.50 60.00 30.04 10.00 0 0 9 150 0 1879.50 29.96 54.75
16 5 1949.50 70.00 40.04 6.84 0 0 9 150 0 1879.50 29.96 54.75

1900 1920 1940 1960 1980

20

40

60

80

100

per

ag
e

Figure 7.2: Lexis diagram of the nickel dataset, with bells and whistles. The red lines are for
persons with exposure> 0, so it is pretty evident that the oldest ones are the exposed part of the
cohort.

30 7.3 Cutting time at a specific date R for epidemiology

17 6 1934.25 44.33 23.04 5.67 0 0 10 163 2 1889.91 21.29 44.33
18 6 1939.91 50.00 28.71 10.00 0 0 10 163 2 1889.91 21.29 44.33
19 6 1949.91 60.00 38.71 2.54 0 1 10 163 2 1889.91 21.29 44.33

ageout
11 69.68
12 69.68
13 69.68
14 76.84
15 76.84
16 76.84
17 62.54
18 62.54
19 62.54

The resulting object is again a Lexis object, and so follow-up may be split further along another
timescale. Try this and list the result for individuals 4 and 6:

> nicS2 <- splitLexis(nicS1, "tfh", breaks=c(0,1,5,10,20,30,100))
> round(subset(nicS2, id %in% 8:10), 2)

lex.id per age tfh lex.dur lex.Cst lex.Xst id icd exposure dob age1st agein
13 4 1934.25 47.91 23.19 2.09 0 0 8 527 9 1886.34 24.72 47.91
14 4 1936.34 50.00 25.28 4.72 0 0 8 527 9 1886.34 24.72 47.91
15 4 1941.06 54.72 30.00 5.28 0 0 8 527 9 1886.34 24.72 47.91
16 4 1946.34 60.00 35.28 9.68 0 0 8 527 9 1886.34 24.72 47.91
17 5 1934.25 54.75 24.79 5.21 0 0 9 150 0 1879.50 29.96 54.75
18 5 1939.46 59.96 30.00 0.04 0 0 9 150 0 1879.50 29.96 54.75
19 5 1939.50 60.00 30.04 10.00 0 0 9 150 0 1879.50 29.96 54.75
20 5 1949.50 70.00 40.04 6.84 0 0 9 150 0 1879.50 29.96 54.75
21 6 1934.25 44.33 23.04 5.67 0 0 10 163 2 1889.91 21.29 44.33
22 6 1939.91 50.00 28.71 1.29 0 0 10 163 2 1889.91 21.29 44.33
23 6 1941.20 51.29 30.00 8.71 0 0 10 163 2 1889.91 21.29 44.33
24 6 1949.91 60.00 38.71 2.54 0 1 10 163 2 1889.91 21.29 44.33

ageout
13 69.68
14 69.68
15 69.68
16 69.68
17 76.84
18 76.84
19 76.84
20 76.84
21 62.54
22 62.54
23 62.54
24 62.54

If we want to model the effect of these timescales we will for each interval use either the value of
the left endpoint in each interval or the middle. There is a function timeBand which returns
these. Try:

> timeBand(nicS2, "age", "middle")[1:10]

Note that these are the midpoints of the intervals defined by breaks=, not the midpoints of the
actual follow-up intervals. This is because the variable to be used in modeling must be
independent of the censoring and mortality pattern — it should only depend on the chosen
grouping of the timescale.

7.3 Cutting time at a specific date

If we have a recording of the date of a specific event as for example recovery or relapse, we may
classify follow-up time as being before or after this intermediate event. This is achieved with the

Follow-up data in the Epi package 7.3 Cutting time at a specific date 31

function cutLexis, which takes three arguments: the time point, the timescale, and the name of
the (new) state following the date.

Now we define the age for the nickel workers where the cumulative exposure exceeds 50
exposure years:

> subset(nicL, id %in% 8:10)

per age tfh lex.dur lex.Cst lex.Xst lex.id id icd exposure dob age1st
4 1934.246 47.9067 23.1861 21.7727 0 0 4 8 527 9 1886.340 24.7206
5 1934.246 54.7465 24.7890 22.0977 0 0 5 9 150 0 1879.500 29.9575
6 1934.246 44.3314 23.0437 18.2099 0 1 6 10 163 2 1889.915 21.2877

agein ageout
4 47.9067 69.6794
5 54.7465 76.8442
6 44.3314 62.5413

> agehi <- nicL$age1st + 50/nicL$exposure
> nicC <- cutLexis(data=nicL, cut=agehi, timescale="age",
+ new.state=2, precursor.states=0)
> subset(nicC[order(nicC$id,nicC$age),], id %in% 8:10)

per age tfh lex.dur lex.Cst lex.Xst lex.id id icd exposure dob age1st
4100 1934.246 47.9067 23.1861 21.7727 2 2 4 8 527 9 1886.340 24.7206
5 1934.246 54.7465 24.7890 22.0977 0 0 5 9 150 0 1879.500 29.9575
6 1934.246 44.3314 23.0437 1.9563 0 2 6 10 163 2 1889.915 21.2877
680 1936.203 46.2877 25.0000 16.2536 2 1 6 10 163 2 1889.915 21.2877

agein ageout
4100 47.9067 69.6794
5 54.7465 76.8442
6 44.3314 62.5413
680 44.3314 62.5413

(The precursor.states= argument is explained below). Note that individual 6 has had his
follow-up split at age 25 where 50 exposure-years were attained. This could also have been
achieved in the split dataset nicS2 instead of nicL, try:

> subset(nicS2, id %in% 8:10)

lex.id per age tfh lex.dur lex.Cst lex.Xst id icd exposure dob age1st
13 4 1934.246 47.9067 23.1861 2.0933 0 0 8 527 9 1886.340 24.7206
14 4 1936.340 50.0000 25.2794 4.7206 0 0 8 527 9 1886.340 24.7206
15 4 1941.060 54.7206 30.0000 5.2794 0 0 8 527 9 1886.340 24.7206
16 4 1946.340 60.0000 35.2794 9.6794 0 0 8 527 9 1886.340 24.7206
17 5 1934.246 54.7465 24.7890 5.2110 0 0 9 150 0 1879.500 29.9575
18 5 1939.457 59.9575 30.0000 0.0425 0 0 9 150 0 1879.500 29.9575
19 5 1939.500 60.0000 30.0425 10.0000 0 0 9 150 0 1879.500 29.9575
20 5 1949.500 70.0000 40.0425 6.8442 0 0 9 150 0 1879.500 29.9575
21 6 1934.246 44.3314 23.0437 5.6686 0 0 10 163 2 1889.915 21.2877
22 6 1939.915 50.0000 28.7123 1.2877 0 0 10 163 2 1889.915 21.2877
23 6 1941.203 51.2877 30.0000 8.7123 0 0 10 163 2 1889.915 21.2877
24 6 1949.915 60.0000 38.7123 2.5413 0 1 10 163 2 1889.915 21.2877

agein ageout
13 47.9067 69.6794
14 47.9067 69.6794
15 47.9067 69.6794
16 47.9067 69.6794
17 54.7465 76.8442
18 54.7465 76.8442
19 54.7465 76.8442
20 54.7465 76.8442
21 44.3314 62.5413
22 44.3314 62.5413
23 44.3314 62.5413
24 44.3314 62.5413

32 7.3 Cutting time at a specific date R for epidemiology

> agehi <- nicS2$age1st + 50/nicS2$exposure
> nicS2C <- cutLexis(data=nicS2, cut=agehi, timescale="age",
+ new.state=2, precursor.states=0)
> subset(nicS2C[order(nicS2C$id,nicS2C$age),], id %in% 8:10)

lex.id per age tfh lex.dur lex.Cst lex.Xst id icd exposure dob age1st
3142 4 1934.246 47.9067 23.1861 2.0933 2 2 8 527 9 1886.340 24.7206
3143 4 1936.340 50.0000 25.2794 4.7206 2 2 8 527 9 1886.340 24.7206
3144 4 1941.060 54.7206 30.0000 5.2794 2 2 8 527 9 1886.340 24.7206
3145 4 1946.340 60.0000 35.2794 9.6794 2 2 8 527 9 1886.340 24.7206
17 5 1934.246 54.7465 24.7890 5.2110 0 0 9 150 0 1879.500 29.9575
18 5 1939.457 59.9575 30.0000 0.0425 0 0 9 150 0 1879.500 29.9575
19 5 1939.500 60.0000 30.0425 10.0000 0 0 9 150 0 1879.500 29.9575
20 5 1949.500 70.0000 40.0425 6.8442 0 0 9 150 0 1879.500 29.9575
21 6 1934.246 44.3314 23.0437 1.9563 0 2 10 163 2 1889.915 21.2877
3150 6 1936.203 46.2877 25.0000 3.7123 2 2 10 163 2 1889.915 21.2877
3151 6 1939.915 50.0000 28.7123 1.2877 2 2 10 163 2 1889.915 21.2877
3152 6 1941.203 51.2877 30.0000 8.7123 2 2 10 163 2 1889.915 21.2877
3153 6 1949.915 60.0000 38.7123 2.5413 2 1 10 163 2 1889.915 21.2877

agein ageout
3142 47.9067 69.6794
3143 47.9067 69.6794
3144 47.9067 69.6794
3145 47.9067 69.6794
17 54.7465 76.8442
18 54.7465 76.8442
19 54.7465 76.8442
20 54.7465 76.8442
21 44.3314 62.5413
3150 44.3314 62.5413
3151 44.3314 62.5413
3152 44.3314 62.5413
3153 44.3314 62.5413

> summary(nicS2C)

Transitions:
To

From 0 1 2 Records: Events: Risk time: Persons:
0 2043 65 74 2182 139 10772.53 466
2 0 72 949 1021 72 4575.52 296
Sum 2043 137 1023 3203 211 15348.06 679

Rates:
To

From 0 1 2 Total
0 0 0.01 0.01 0.01
2 0 0.02 0.00 0.02

Note that follow-up subsequent to the event is classified as being in state 2, but that the final
transition to state 1 (death from lung cancer) is preserved. This is the point of the
precursor.states= argument. It names the states (in this case 0, “Alive”) that will be
over-written by new.state (in this case 2, “High exposure”). Clearly, state 1 (“Dead”) should not
be updated even if it is after the time where the persons moves to state 2. On other words, only
state 0 is a precursor to state 2, state 1 is always subsequent to state 2.

Note if the intermediate event is to be used as a time-dependent variable in a Cox-model, then
lex.Cst should be used as the time-dependent variable, and lex.Xst==1 as the event.

It is possible to illustrate the transitions between the different states by the command
boxes.Lexis — if you omit boxpos=TRUE, you will be asked to click on the screen to locate the
boxes.

> boxes(nicS2C, boxpos=TRUE)

Follow-up data in the Epi package 7.4 Competing risks — multiple types of events 33

7.4 Competing risks — multiple types of events

If we want to consider death from lung cancer and death from other causes as separate events we
can code these as for example 1 and 2.

> data(nickel)
> nicL <- Lexis(entry = list(per=agein+dob,
+ age=agein,
+ tfh=agein-age1st),
+ exit = list(age=ageout),
+ exit.status = (icd > 0) + (icd %in% c(162,163)),
+ data = nickel)
> str(nicL)
> head(nicL)
> subset(nicL, id %in% 8:10)

If we want to label the states, we can enter the names of these in the states parameter, try for
example:

> nicL <- Lexis(entry = list(per=agein+dob,
+ age=agein,
+ tfh=agein-age1st),
+ exit = list(age=ageout),
+ exit.status = (icd > 0) + (icd %in% c(162,163)),
+ data = nickel,
+ states = c("Alive","D.oth","D.lung"))
> str(nicL)

You can get an overview of the number of records by state and transitions between states as well
as the person-years in each state by using summary.Lexis(), and computing rates:

> summary(nicL, scale=1000)

0
10,772.5

2
4,575.5

1

74

65

72

0
10,772.5

2
4,575.5

1

0
10,772.5

2
4,575.5

1

Figure 7.3: The persons years (in the boxes) and number of transitions between the states.

34 7.5 Multiple events of the same type (recurrent events) R for epidemiology

When we cut at a date as in this case, the date where cumulative exposure exceeds 50
exposure-years, we get the follow-up after the date classified as being in the new state if the exit
(lex.Xst) was to a state we defined as one of the precursor.states:

> nicL$agehi <- nicL$age1st + 50/nicL$exposure
> nicC <- cutLexis(data=nicL, cut=nicL$agehi, "age",
+ new.state="HiExp", precursor.states="Alive")
> subset(nicC, id %in% 8:10)
> summary(nicC, scale=1000)

Note that the persons-years is the same, but that the number of events has changed. This is
because events are now defined as any transition from alive, including the transitions to HiExp.

As before we can illustrate the different states with little boxes:

> boxes(nicC, boxpos=TRUE)

7.5 Multiple events of the same type (recurrent events)

Sometimes more events of the same type are recorded for each person and one would then like to
count these and put follow-up time in states accordingly. So states must be numbered. Essentially,
each set of cutpoints represents progressions from one state to the next. Therefore the states
should be numbered, and the numbering of states subsequently occupied be increased accordingly.

This is a behaviour different from the one outlined above, and it is achieved by the argument
count=TRUE to cutLexis. When count is set to TRUE, the value of the arguments new.state and

Alive
10,772.5

HiExp
4,575.5

D.othD.lung

83

27965 216
72

Alive
10,772.5

HiExp
4,575.5

D.othD.lung

Alive
10,772.5

HiExp
4,575.5

D.othD.lung

Figure 7.4: The persons years (in the boxes) and number of transitions between states in the com-
peting risks model.

Follow-up data in the Epi package 7.5 Multiple events of the same type (recurrent events) 35

precursor.states are ignored. Actually, when using the argument count=TRUE, the function
countLexis is called, so an alternative is to use this directly.

If we record when persons pass thresholds of exposure we have this situation. But if we at the
same time want to keep track of when people die, we must code death by a sufficiently large
number, because all states will be increased by one for each event:

> nicL <- Lexis(entry = list(per=agein+dob,
+ age=agein,
+ tfh=agein-age1st),
+ exit = list(age=ageout),
+ exit.status = (icd > 0)*100,
+ data = nickel)
> summary(nicL)

Transitions:
To

From 0 100 Records: Events: Risk time: Persons:
0 47 632 679 632 15348.06 679

Rates:
To

From 0 100 Total
0 0 0.04 0.04

We now cut the follow-up at successive exposure thresholds — note that we go through the levsle
(i.e. the times at which they are crossed) by going throught them in random order
(sample.int(x) returns a random permutation of the numbers 1, . . . , x).

> nicC <- nicL
> exlev <- seq(20,140,40)
> for(level in exlev[sample.int(length(exlev))])
+ {
+ agehi <- nicC$age1st + level/nicC$exposure
+ nicC <- cutLexis(data=nicC, cut=agehi, "age", count=TRUE)
+ }
> summary(nicC)

We can now plot these:

> nc <- length(table(nicC$lex.Cst))
> boxes(nicC, boxpos=list(x=rep(seq(5,95,,nc), 2),
+ y=rep(c(80,20), each=nc)))

We can put a few extra bells and whistles on the graph, by redefining the names of the names of
the states by first making them factors (using factorize), then by pasting the relevant pieces of
text to it. Moreover we also ask that rates instead of no. transitions be shown.

> nicF <- factorize(nicC)
> xlev <- paste(c("<",rep("",nc-1)),
+ c(exlev[1],exlev),
+ c("",rep("-",nc-1)), sep="")
> levels(nicF$lex.Cst) <-
+ levels(nicF$lex.Xst) <-
+ c(paste("Cum.ex.\n", xlev, "\n"),
+ paste("Dead\n", xlev))
> levels(nicF$lex.Cst)

[1] "Cum.ex.\n <20 \n" "Cum.ex.\n 20- \n" "Cum.ex.\n 60- \n" "Cum.ex.\n 100- \n"
[5] "Cum.ex.\n 140- \n" "Dead\n <20" "Dead\n 20-" "Dead\n 60-"
[9] "Dead\n 100-" "Dead\n 140-"

36 7.5 Multiple events of the same type (recurrent events) R for epidemiology

> boxes(nicF, boxpos=list(y=rep(c(80,20), each=nc),
+ x=rep(seq(5,95,,nc), 2)),
+ eq.ht=FALSE, hmult=1.5, scale.D=1000, pos=0.3)

The resulting graphs are shown in figure 7.5. A more thorough explanation of the Lexis

machinery and its practical use in modeling is given in the papers [1, 2].

0
8,870.0

1
2,287.6

2
1,058.1

3
727.6

4
2,404.8

100 101 102 103 104

65

274

78

87

73

58

70

43 170

0
8,870.0

1
2,287.6

2
1,058.1

3
727.6

4
2,404.8

100 101 102 103 104

0
8,870.0

1
2,287.6

2
1,058.1

3
727.6

4
2,404.8

100 101 102 103 104

Cum.ex.
 <20

8,870.0

Cum.ex.
 20−

2,287.6

Cum.ex.
 60−

1,058.1

Cum.ex.
 100−

727.6

Cum.ex.
 140−

2,404.8

Dead
 <20

Dead
 20−

Dead
 60−

Dead
 100−

Dead
 140−

7.3

30.9

34.1

38.0

69.0

54.8

96.2

59.1 70.7

Cum.ex.
 <20

8,870.0

Cum.ex.
 20−

2,287.6

Cum.ex.
 60−

1,058.1

Cum.ex.
 100−

727.6

Cum.ex.
 140−

2,404.8

Dead
 <20

Dead
 20−

Dead
 60−

Dead
 100−

Dead
 140−

Cum.ex.
 <20

8,870.0

Cum.ex.
 20−

2,287.6

Cum.ex.
 60−

1,058.1

Cum.ex.
 100−

727.6

Cum.ex.
 140−

2,404.8

Dead
 <20

Dead
 20−

Dead
 60−

Dead
 100−

Dead
 140−

Figure 7.5: The person years (in the boxes) and number of transitions between states in the counting
model. The bottom display is enhanced by labeling of exposure levels, and showing the transition
rates rather than the no. of transitions.

Bibliography

[1] Martyn Plummer and Bendix Carstensen. Lexis: An R class for epidemiological studies with
long-term follow-up. Journal of Statistical Software, 38(5):1–12, 1 2011.

[2] Bendix Carstensen and Martyn Plummer. Using Lexis objects for multi-state models in R.
Journal of Statistical Software, 38(6):1–18, 1 2011.

37

Chapter 8

R command sheet

This R Reference Card is written by Tom Short, EPRI PEAC, tshort@epri-peac.com,
2004-10-21 and granted to the public domain. See www.Rpad.org for the source and latest
version. Includes material from R for Beginners by Emmanuel Paradis (with permission).

It is also available separately as a 4-page landscape document from the R-hompage
www.r-project.org, Manuals → contributed documentation.

Getting help

Most R functions have online documentation.
help(topic) documentation on topic

?topic — the same.
help.search("topic") search the help system
apropos("topic") the names of all objects in the

search list matching the regular expression
”topic”

help.start() start the HTML version of help
str(a) display the internal *str*ucture of an R

object
summary(a) gives a “summary” of a, usually a

statistical summary but it is generic meaning
it has different operations for different classes
of a

ls() show objects in the search path; specify
pat="pat" to search on a pattern

ls.str() str() for each variable in the search path
dir() show files in the current directory
methods(a) shows S3 methods of a

methods(class=class(a)) lists all the methods
to handle objects of class a.

Input and output
load() load the datasets written with save

data(x) loads specified data sets
library(x) load add-on packages
read.table(file) reads a file in table format

and creates a data frame from it; the default
separator sep="" is any whitespace; use
header=TRUE to read the first line as a header
of column names; use as.is=TRUE to prevent
character vectors from being converted to
factors; use comment.char="" to prevent "#"

from being interpreted as a comment; use
skip=n to skip n lines before reading data; see
the help for options on row naming, NA
treatment, and others

read.csv("filename",header=TRUE) id. but
with defaults set for reading comma-delimited
files

read.delim("filename",header=TRUE) id. but
with defaults set for reading tab-delimited
files

read.fwf(file,widths,header=FALSE,sep="�",as.is=FALSE)
read a table of f ixed w idth f ormatted data
into a ’data.frame’; widths is an integer
vector, giving the widths of the fixed-width
fields

save(file,...) saves the specified objects (...)
in the XDR platform-independent binary
format

save.image(file) saves all objects
cat(..., file="", sep=" ") prints the

arguments after coercing to character; sep is
the character separator between arguments

print(a, ...) prints its arguments; generic,
meaning it can have different methods for
different objects

format(x,...) format an R object for pretty
printing

write.table(x,file="",row.names=TRUE,col.names=TRUE,

sep=" ") prints x after converting to a data
frame; if quote is TRUE, character or factor
columns are surrounded by quotes ("); sep is
the field separator; eol is the end-of-line
separator; na is the string for missing values;
use col.names=NA to add a blank column
header to get the column headers aligned
correctly for spreadsheet input

sink(file) output to file, until sink()

38

www.Rpad.org
www.r-project.org

R command sheet R command sheet 39

Most of the I/O functions have a file argument.
This can often be a character string naming a file or
a connection. file="" means the standard input or
output. Connections can include files, pipes, zipped
files, and R variables.

On windows, the file connection can also be used
with description = "clipboard". To read a table
copied from Excel, use

x <- read.delim("clipboard")

To write a table to the clipboard for Excel, use
write.table(x,"clipboard",sep="\t",col.names=NA)

For database interaction, see packages RODBC,
DBI, RMySQL, RPgSQL, and ROracle. See packages
XML, hdf5, netCDF for reading other file formats.

Data creation

c(...) generic function to combine arguments
with the default forming a vector; with
recursive=TRUE descends through lists
combining all elements into one vector

from:to generates a sequence; “:” has operator
priority; 1:4 + 1 is “2,3,4,5”

seq(from,to) generates a sequence by= specifies
increment; length= specifies desired length

seq(along=x) generates 1, 2, ...,

length(along); useful for for loops
rep(x,times) replicate x times; use each= to

repeat “each” element of x each times;
rep(c(1,2,3),2) is 1 2 3 1 2 3;
rep(c(1,2,3),each=2) is 1 1 2 2 3 3

data.frame(...) create a data frame of the
named or unnamed arguments;
data.frame(v=1:4,ch=c("a","B","c","d"),n=10);
shorter vectors are recycled to the length of
the longest

list(...) create a list of the named or unnamed
arguments; list(a=c(1,2),b="hi",c=3i);

array(x,dim=) array with data x; specify
dimensions like dim=c(3,4,2); elements of x

recycle if x is not long enough
matrix(x,nrow=,ncol=) matrix; elements of x

recycle
factor(x,levels=) encodes a vector x as a factor
gl(n,k,length=n*k,labels=1:n) generate levels

(factors) by specifying the pattern of their
levels; k is the number of levels, and n is the
number of replications

expand.grid() a data frame from all
combinations of the supplied vectors or factors

rbind(...) combine arguments by rows for
matrices, data frames, and others

cbind(...) id. by columns

Slicing and extracting data

Indexing vectors

x[n] nth element

x[-n] all but the nth element
x[1:n] first n elements
x[-(1:n)] elements from n+1 to the end
x[c(1,4,2)] specific elements
x["name"] element named "name"

x[x > 3] all elements greater than 3
x[x > 3 & x < 5] all elements between 3 and 5
x[x %in% c("a","and","the")] elements in the given set
Indexing lists
x[n] list with elements n

x[[n]] nth element of the list
x[["name"]] element of the list named "name"

x$name id.
Indexing matrices
x[i,j] element at row i, column j

x[i,] row i

x[,j] column j

x[,c(1,3)] columns 1 and 3
x["name",] row named "name"

Indexing data frames (matrix indexing plus the
following)

x[["name"]] column named "name"

x$name id.

Variable conversion

as.array(x), as.data.frame(x),

as.numeric(x), as.logical(x),

as.complex(x), as.character(x), ...

convert type; for a complete list, use
methods(as)

Variable information

is.na(x), is.null(x), is.array(x),

is.data.frame(x), is.numeric(x),

is.complex(x), is.character(x), ... test
for type; for a complete list, use methods(is)

length(x) number of elements in x

dim(x) Retrieve or set the dimension of an
object; dim(x) <- c(3,2)

dimnames(x) Retrieve or set the dimension names
of an object

nrow(x) number of rows; NROW(x) is the same but
treats a vector as a one-row matrix

ncol(x) and NCOL(x) id. for columns
class(x) get or set the class of x; class(x) <-

"myclass"

unclass(x) remove the class attribute of x

attr(x,which) get or set the attribute which of x
attributes(obj) get or set the list of attributes

of obj

40 R command sheet R for epidemiology

Data selection and
manipulation

which.max(x) returns the index of the greatest
element of x

which.min(x) returns the index of the smallest
element of x

rev(x) reverses the elements of x

sort(x) sorts the elements of x in increasing
order; to sort in decreasing order:
rev(sort(x))

cut(x,breaks) divides x into intervals (factors);
breaks is the number of cut intervals or a
vector of cut points

match(x, y) returns a vector of the same length
than x with the elements of x which are in y

(NA otherwise)
which(x == a) returns a vector of the indices of

x if the comparison operation is true (TRUE),
in this example the values of i for which x[i]

== a (the argument of this function must be a
variable of mode logical)

choose(n, k) computes the combinations of k
events among n repetitions = n!/[(n− k)!k!]

na.omit(x) suppresses the observations with
missing data (NA) (suppresses the
corresponding line if x is a matrix or a data
frame)

na.fail(x) returns an error message if x

contains at least one NA

unique(x) if x is a vector or a data frame,
returns a similar object but with the
duplicate elements suppressed

table(x) returns a table with the numbers of the
differents values of x (typically for integers or
factors)

subset(x, ...) returns a selection of x with
respect to criteria (..., typically comparisons:
x$V1 < 10); if x is a data frame, the option
select gives the variables to be kept or
dropped using a minus sign

sample(x, size) resample randomly and
without replacement size elements in the
vector x, the option replace = TRUE allows to
resample with replacement

prop.table(x,margin=) table entries as fraction
of marginal table

Math
sin,cos,tan,asin,acos,atan,atan2,log,log10,exp

max(x) maximum of the elements of x

min(x) minimum of the elements of x

range(x) id. then c(min(x), max(x))

sum(x) sum of the elements of x

diff(x) lagged and iterated differences of vector
x

prod(x) product of the elements of x

mean(x) mean of the elements of x

median(x) median of the elements of x

quantile(x,probs=) sample quantiles
corresponding to the given probabilities
(defaults to 0,.25,.5,.75,1)

weighted.mean(x, w) mean of x with weights w

rank(x) ranks of the elements of x

var(x) or cov(x) variance of the elements of x

(calculated on n− 1); if x is a matrix or a
data frame, the variance-covariance matrix is
calculated

sd(x) standard deviation of x

cor(x) correlation matrix of x if it is a matrix or
a data frame (1 if x is a vector)

var(x, y) or cov(x, y) covariance between x

and y, or between the columns of x and those
of y if they are matrices or data frames

cor(x, y) linear correlation between x and y, or
correlation matrix if they are matrices or data
frames

round(x, n) rounds the elements of x to n

decimals
log(x, base) computes the logarithm of x with

base base

scale(x) if x is a matrix, centers and reduces the
data; to center only use the option
center=FALSE, to reduce only scale=FALSE

(by default center=TRUE, scale=TRUE)
pmin(x,y,...) a vector which ith element is the

minimum of x[i], y[i], . . .
pmax(x,y,...) id. for the maximum
cumsum(x) a vector which ith element is the sum

from x[1] to x[i]

cumprod(x) id. for the product
cummin(x) id. for the minimum
cummax(x) id. for the maximum
union(x,y), intersect(x,y), setd-

iff(x,y), setequal(x,y),
is.element(el,set) “set” functions

Re(x) real part of a complex number
Im(x) imaginary part
Mod(x) modulus; abs(x) is the same
Arg(x) angle in radians of the complex number
Conj(x) complex conjugate
convolve(x,y) compute the several kinds of

convolutions of two sequences
fft(x) Fast Fourier Transform of an array
mvfft(x) FFT of each column of a matrix
filter(x,filter) applies linear filtering to a

univariate time series or to each series
separately of a multivariate time series

Many math functions have a logical parameter
na.rm=FALSE to specify missing data (NA) removal.

Matrices

t(x) transpose
diag(x) diagonal
%*% matrix multiplication
solve(a,b) solves a %*% x = b for x

solve(a) matrix inverse of a

R command sheet R command sheet 41

rowsum(x) sum of rows for a matrix-like object;
rowSums(x) is a faster version

colsum(x), colSums(x) id. for columns
rowMeans(x) fast version of row means
colMeans(x) id. for columns

Advanced data processing
apply(X,INDEX,FUN=) a vector or array or list of

values obtained by applying a function FUN to
margins (INDEX) of X

lapply(X,FUN) apply FUN to each element of the
list X

tapply(X,INDEX,FUN=) apply FUN to each cell of
a ragged array given by X with indexes INDEX

by(data,INDEX,FUN) apply FUN to data frame
data subsetted by INDEX

merge(a,b) merge two data frames by common
columns or row names

xtabs(a b,data=x) a contingency table from
cross-classifying factors

aggregate(x,by,FUN) splits the data frame x

into subsets, computes summary statistics for
each, and returns the result in a convenient
form; by is a list of grouping elements, each as
long as the variables in x

stack(x, ...) transform data available as
separate columns in a data frame or list into a
single column

unstack(x, ...) inverse of stack()

reshape(x, ...) reshapes a data frame between
’wide’ format with repeated measurements in
separate columns of the same record and
’long’ format with the repeated measurements
in separate records; use (direction=”wide”) or
(direction=”long”)

Strings
paste(...) concatenate vectors after converting

to character; sep= is the string to separate
terms (a single space is the default);
collapse= is an optional string to separate
“collapsed” results

substr(x,start,stop) substrings in a character
vector; can also assign, as substr(x, start,

stop) <- value

strsplit(x,split) split x according to the
substring split

grep(pattern,x) searches for matches to
pattern within x; see ?regex

gsub(pattern,replacement,x) replacement of
matches determined by regular expression
matching sub() is the same but only replaces
the first occurrence.

tolower(x) convert to lowercase
toupper(x) convert to uppercase
match(x,table) a vector of the positions of first

matches for the elements of x among table

x %in% table id. but returns a logical vector
pmatch(x,table) partial matches for the

elements of x among table

nchar(x) number of characters

Dates and Times
The class Date has dates without times. POSIXct

has dates and times, including time zones.
Comparisons (e.g. >), seq(), and difftime()

are useful. Date also allows + and −.
?DateTimeClasses gives more information.
See also package chron. as.Date(s) and
as.POSIXct(s) convert to the respective
class. format(dt) converts to a string
representation. The default string format is
“2001-02-21”. These accept a second
argument to specify a format for conversion.
Some common formats are:

%a, %A Abbreviated and full weekday name.
%b, %B Abbreviated and full month name.
%d Day of the month (01–31).
%H Hours (00–23).
%I Hours (01–12).
%j Day of year (001–366).
%m Month (01–12).
%M Minute (00–59).
%p AM/PM indicator.
%S Second as decimal number (00–61).
%U Week (00–53); the first Sunday as day 1 of week

1.
%w Weekday (0–6, Sunday is 0).
%W Week (00–53); the first Monday as day 1 of

week 1.
%y Year without century (00–99). Don’t use.
%Y Year with century.
%z (output only.) Offset from Greenwich; -0800 is

8 hours west of.
%Z (output only.) Time zone as a character string

(empty if not available).

Where leading zeros are shown they will be used on
output but are optional on input. See
?strftime.

Plotting
plot(x) plot of the values of x (on the y-axis)

ordered on the x-axis
plot(x, y) bivariate plot of x (on the x-axis)

and y (on the y-axis)
hist(x) histogram of the frequencies of x

barplot(x) histogram of the values of x; use
horiz=FALSE for horizontal bars

dotplot(x) if x is a data frame, plots a
Cleveland dot plot (stacked plots line-by-line
and column-by-column)

piechart(x) circular pie-chart
boxplot(x) “box-and-whiskers” plot

42 R command sheet R for epidemiology

sunflowerplot(x, y) id. than plot() but the
points with similar coordinates are drawn as
flowers which petal number represents the
number of points

stripplot(x) plot of the values of x on a line (an
alternative to boxplot() for small sample
sizes)

coplot(x~y | z) bivariate plot of x and y for
each value or interval of values of z

interaction.plot (f1, f2, y) if f1 and f2 are
factors, plots the means of y (on the y-axis)
with respect to the values of f1 (on the
x-axis) and of f2 (different curves); the
option fun allows to choose the summary
statistic of y (by default fun=mean)

matplot(x,y) bivariate plot of the first column of
x vs. the first one of y, the second one of x vs.
the second one of y, etc.

fourfoldplot(x) visualizes, with quarters of
circles, the association between two
dichotomous variables for different
populations (x must be an array with
dim=c(2, 2, k), or a matrix with dim=c(2,

2) if k = 1)
assocplot(x) Cohen–Friendly graph showing the

deviations from independence of rows and
columns in a two dimensional contingency
table

mosaicplot(x) ‘mosaic’ graph of the residuals
from a log-linear regression of a contingency
table. Also useful for graphical display of
contingency tables.

pairs(x) if x is a matrix or a data frame, draws
all possible bivariate plots between the
columns of x

plot.ts(x) if x is an object of class "ts", plot of
x with respect to time, x may be multivariate
but the series must have the same frequency
and dates

ts.plot(x) id. but if x is multivariate the series
may have different dates and must have the
same frequency

qqnorm(x) quantiles of x with respect to the
values expected under a normal law

qqplot(x, y) quantiles of y with respect to the
quantiles of x

contour(x, y, z) contour plot (data are
interpolated to draw the curves), x and y

must be vectors and z must be a matrix so
that dim(z)=c(length(x), length(y)) (x
and y may be omitted)

filled.contour(x, y, z) id. but the areas
between the contours are coloured, and a
legend of the colours is drawn as well

image(x, y, z) id. but with colours (actual data
are plotted)

persp(x, y, z) id. but in perspective (actual
data are plotted)

stars(x) if x is a matrix or a data frame, draws
a graph with segments or a star where each
row of x is represented by a star and the
columns are the lengths of the segments

symbols(x, y, ...) draws, at the coordinates
given by x and y, symbols (circles, squares,
rectangles, stars, thermometres or “boxplots”)
which sizes, colours . . . are specified by
supplementary arguments

termplot(mod.obj) plot of the (partial) effects of
a regression model (mod.obj)

The following parameters are common to many
plotting functions:

add=FALSE if TRUE superposes the plot on the
previous one (if it exists)

axes=TRUE if FALSE does not draw the axes and
the box

type="p" specifies the type of plot, "p": points,
"l": lines, "b": points connected by lines,
"o": id. but the lines are over the points, "h":
vertical lines, "s": steps, the data are
represented by the top of the vertical lines,
"S": id. but the data are represented by the
bottom of the vertical lines

xlim=, ylim= specifies the lower and upper limits
of the axes, for example with xlim=c(1, 10)

or xlim=range(x)

xlab=, ylab= annotates the axes, must be
variables of mode character

main= main title, must be a variable of mode
character

sub= sub-title (written in a smaller font)

Low-level plotting commands

points(x, y) adds points (the option type= can
be used)

lines(x, y) id. but with lines
text(x, y, labels, ...) adds text given by

labels at coordinates (x,y); a typical use is:
plot(x, y, type="n"); text(x, y, names)

mtext(text, side=3, line=0, ...) adds text
given by text in the margin specified by side

(see axis() below); line specifies the line
from the plotting area

segments(x0, y0, x1, y1) draws lines from
points (x0,y0) to points (x1,y1)

arrows(x0, y0, x1, y1, angle= 30, code=2)

id. with arrows at points (x0,y0) if code=2, at
points (x1,y1) if code=1, or both if code=3;
angle controls the angle from the shaft of the
arrow to the edge of the arrow head

abline(a,b) draws a line of slope b and intercept
a

abline(h=y) draws a horizontal line at ordinate y

abline(v=x) draws a vertical line at abcissa x

abline(lm.obj) draws the regression line given
by lm.obj

rect(x1, y1, x2, y2) draws a rectangle which
left, right, bottom, and top limits are x1, x2,
y1, and y2, respectively

polygon(x, y) draws a polygon linking the
points with coordinates given by x and y

R command sheet R command sheet 43

legend(x, y, legend) adds the legend at the
point (x,y) with the symbols given by legend

title() adds a title and optionally a sub-title
axis(side, vect) adds an axis at the bottom

(side=1), on the left (2), at the top (3), or on
the right (4); vect (optional) gives the abcissa
(or ordinates) where tick-marks are drawn

rug(x) draws the data x on the x-axis as small
vertical lines

locator(n, type="n", ...) returns the
coordinates (x, y) after the user has clicked n

times on the plot with the mouse; also draws
symbols (type="p") or lines (type="l") with
respect to optional graphic parameters (...);
by default nothing is drawn (type="n")

Graphical parameters
These can be set globally with par(...); many

can be passed as parameters to plotting
commands.

adj controls text justification (0 left-justified, 0.5
centred, 1 right-justified)

bg specifies the colour of the background (ex. :
bg="red", bg="blue", . . . the list of the 657
available colours is displayed with colors())

bty controls the type of box drawn around the
plot, allowed values are: "o", "l", "7", "c",
"u" ou "]" (the box looks like the
corresponding character); if bty="n" the box
is not drawn

cex a value controlling the size of texts and
symbols with respect to the default; the
following parameters have the same control
for numbers on the axes, cex.axis, the axis
labels, cex.lab, the title, cex.main, and the
sub-title, cex.sub

col controls the color of symbols and lines; use
color names: "red", "blue" see colors() or
as "#RRGGBB"; see rgb(), hsv(), gray(), and
rainbow(); as for cex there are: col.axis,
col.lab, col.main, col.sub

font an integer which controls the style of text
(1: normal, 2: italics, 3: bold, 4: bold italics);
as for cex there are: font.axis, font.lab,
font.main, font.sub

las an integer which controls the orientation of
the axis labels (0: parallel to the axes, 1:
horizontal, 2: perpendicular to the axes, 3:
vertical)

lty controls the type of lines, can be an integer or
string (1: "solid", 2: "dashed", 3: "dotted",
4: "dotdash", 5: "longdash", 6: "twodash",
or a string of up to eight characters (between
"0" and "9") which specifies alternatively the
length, in points or pixels, of the drawn
elements and the blanks, for example
lty="44" will have the same effect than lty=2

lwd a numeric which controls the width of lines,
default 1

mar a vector of 4 numeric values which control
the space between the axes and the border of
the graph of the form c(bottom, left, top,

right), the default values are c(5.1, 4.1,

4.1, 2.1)

mfcol a vector of the form c(nr,nc) which
partitions the graphic window as a matrix of
nr lines and nc columns, the plots are then
drawn in columns

mfrow id. but the plots are drawn by row
pch controls the type of symbol, either an integer

between 1 and 25, or a single character in "":
1: 2: 3: 4: 5: 6: 7: 8: 9:

10: 11: 12: 13: 14: 15: 16: 17: 18:

19: 20: 21: 22: 23: 24: 25: *: .:

●

● ● ●

● ● ● *
ps an integer which controls the size in points of

texts and symbols
pty a character which specifies the type of the

plotting region, "s": square, "m": maximal
tck a value which specifies the length of

tick-marks on the axes as a fraction of the
smallest of the width or height of the plot; if
tck=1 a grid is drawn

tcl a value which specifies the length of
tick-marks on the axes as a fraction of the
height of a line of text (by default tcl=-0.5)

xaxt if xaxt="n" the x-axis is set but not drawn
(useful in conjonction with axis(side=1,

...))
yaxt if yaxt="n" the y-axis is set but not drawn

(useful in conjonction with axis(side=2,

...))

Lattice (Trellis) graphics

barchart(y~x) histogram of the values of y with
respect to those of x

bwplot(y~x) “box-and-whiskers” plot
densityplot(~x) density functions plot
dotplot(y~x) Cleveland dot plot (stacked plots

line-by-line and column-by-column)
histogram(~x) histogram of the frequencies of x

qqmath(~x) quantiles of x with respect to the
values expected under a theoretical
distribution

stripplot(y~x) single dimension plot, x must be
numeric, y may be a factor

qq(y~x) quantiles to compare two distributions, x
must be numeric, y may be numeric,
character, or factor but must have two ‘levels’

xyplot(y~x) bivariate plots (with many
functionalities)

levelplot(z~x*y) coloured plot of the values of
z at the coordinates given by x and y (x, y
and z are all of the same length)

splom(~x) matrix of bivariate plots
parallel(~x) parallel coordinates plot

44 R command sheet R for epidemiology

Optimization and model
fitting

optim(par, fn, method = c("Nelder-Mead",

"BFGS", "CG", "L-BFGS-B", "SANN")

general-purpose optimization; par is initial
values, fn is function to optimize (normally
minimize)

nlm(f,p) minimize function f using a
Newton-type algorithm with starting values p

lm(formula) fit linear models; formula is
typically of the form response termA +

termB + ...; use I(x*y) + I(x^2) for terms
made of nonlinear components

glm(formula,family=) fit generalized linear
models, specified by giving a symbolic
description of the linear predictor and a
description of the error distribution; family is
a description of the error distribution and link
function to be used in the model; see ?family

nls(formula) nonlinear least-squares estimates
of the nonlinear model parameters

approx(x,y=) linearly interpolate given data
points; x can be an xy plotting structure

spline(x,y=) cubic spline interpolation
loess(formula) fit a polynomial surface using

local fitting
Many of the formula-based modeling functions

have several common arguments: data= the data
frame for the formala variables, subset= a subset of
variables used in the fit, na.action= action for
missing values: "na.fail", "na.omit", or a
function. The following generics often apply to
model fitting functions:

predict(fit,...) predictions from fit based on
input data

df.residual(fit) returns the number of residual
degrees of freedom

coef(fit) returns the estimated coefficients
(sometimes with their standard-errors)

residuals(fit) returns the residuals
deviance(fit) returns the deviance
fitted(fit) returns the fitted values
logLik(fit) computes the logarithm of the

likelihood and the number of parameters
AIC(fit) computes the Akaike information

criterion or AIC

Statistics

aov(formula) analysis of variance model
anova(fit,...) analysis of variance (or

deviance) tables for one or more fitted model
objects

density(x) kernel density estimates of x

binom.test(), pairwise.t.test(),
power.t.test(), prop.test(), t.test(), ...
use help.search("test")

Distributions
rnorm(n, mean=0, sd=1) Gaussian (normal)
rexp(n, rate=1) exponential
rgamma(n, shape, scale=1) gamma
rpois(n, lambda) Poisson
rweibull(n, shape, scale=1) Weibull
rcauchy(n, location=0, scale=1) Cauchy
rbeta(n, shape1, shape2) beta
rt(n, df) ‘Student’ (t)
rf(n, df1, df2) Fisher–Snedecor (F) (χ2)
rchisq(n, df) Pearson
rbinom(n, size, prob) binomial
rgeom(n, prob) geometric
rhyper(nn, m, n, k) hypergeometric
rlogis(n, location=0, scale=1) logistic
rlnorm(n, meanlog=0, sdlog=1) lognormal
rnbinom(n, size, prob) negative binomial
runif(n, min=0, max=1) uniform
rwilcox(nn, m, n), rsignrank(nn, n)

Wilcoxon’s statistics
All these functions can be used by replacing the

letter r with d, p or q to get, respectively, the
probability density (dfunc(x, ...)), the
cumulative probability density (pfunc(x,
...)), and the value of quantile (qfunc(p,
...), with 0 < p < 1).

Programming
function(arglist) expr function definition
return(value)

if(cond) expr

if(cond) cons.expr else alt.expr

for(var in seq) expr

while(cond) expr

repeat expr

break

next

Use braces {} around statements
ifelse(test, yes, no) a value with the same

shape as test filled with elements from either
yes or no

do.call(funname, args) executes a function call
from the name of the function and a list of
arguments to be passed to it.

The Epi package
The purpose of the Epi package is to provide

tools for advanced epidemiological data
manipulation and analysis. This section does
not provide the full set of arguments for the
functions, so please consult the help pages.

Lexis(entry,exit,duration,enty.status,

exit.status,id,data,merge,states)

Define a Lexis object with follow-up on
several timescales (and possibly several types
of events).

R command sheet R command sheet 45

plot.Lexis(),lines.Lexis(),points.Lexis()

Plot a Lexis diagram from a Lexis object,
and add lines and points.

splitLexis(lex,breaks,time.scale) Split the
follow-up time in a Lexis object along one
time scale.

cutLexis(data,cut,timescale) Cut the
follow-up at one specific point on a timescale.

summary.Lexis(x) Tabulate events and risk time
from a Lexis object.

boxes.Lexis(x) Illustrate a multistate model,
and show person.yeras and transitions.

timeScales(), timeBand(), breaks() Utilites
to acces parts of a Lexis object.

cal.yr(x,format) Convert x to fractional
calendar year.

stat.table(index,contents,...) Make tables,
classified by index, of sums, ratios etc. given
in contents.

effx(response, type, exposure, ...)

Epidemiological estimates of effects.
ci.lin(obj,ctr.mat,subset,diffs,Exp)

Extract parameters and linear functions of
them from a model object.

ci.cum(obj,ctr.mat,subset,intl,Exp) Extract
parameters and a model object and compute
the cumulative sum.

plotEst(ests,...) Make a plot of parameter
estimates.

twoby2(exposure,outcome,...) Analysis of a
2× 2 table. Input can be either two binary
variables or a matrix of counts.

More esoteric topics in the Epi package (look at the
help pages for links):

Icens() Fit a model to interval censored
follow-up data.

apc.fit() Fit age-period-cohort models to
tabulated data.

Chapter 9

The Epi package

The following is a printout of the manual pages for the commands available in the Epi package.

Version 1.1.24

Date 2011-07-19

Title A package for statistical analysis in epidemiology.

Author Bendix Carstensen, Martyn Plummer, Esa Laara, Michael Hills et. al.

Maintainer Bendix Carstensen <bxc@steno.dk>

Depends utils

Suggests splines, nlme, survival, mstate, MASS

Description Functions for demographic and epidemiological
analysis in the Lexis diagram, i.e. register and cohort follow-up
data, including interval censored data and representation of
multistate data. Also some useful functions for tabulation and
plotting. Contains some epidemiological datasets.

License GPL-2

URL http://www.pubhealth.ku.dk/~bxc/Epi/

apc.fit Fit an Age-Period-Cohort model to tabular data.

Description

Fits the classical five models to tabulated rate data (cases, person-years) classified by two of age,
period, cohort: Age, Age-drift, Age-Period, Age-Cohort and Age-period. There are no assumptions
about the age, period or cohort classes being of the same length, or that tabulation should be only by
two of the variables. Only requires that mean age and period for each tabulation unit is given.

Usage

apc.fit(data,

A,

P,

D,

Y,

ref.c,

ref.p,

dist = c("poisson","binomial"),

46

http://www.pubhealth.ku.dk/~bxc/Epi/

The Epi package apc.fit 47

model = c("ns","bs","ls","factor"),

dr.extr = c("weighted","Holford"),

parm = c("ACP","APC","AdCP","AdPC","Ad-P-C","Ad-C-P","AC-P","AP-C"),

npar = c(A=5, P=5, C=5),

scale = 1,

alpha = 0.05,

print.AOV = TRUE)

Arguments

data Data frame with (at least) variables, A (age), P (period), D (cases, deaths) and Y

(person-years). Cohort (date of birth) is computed as P-A. If thsi argument is given
the arguments A, P, D and Y are ignored.

A Age; numerical vector with mean age at diagnosis for each unit.

P Period; numerical vector with mean date of diagnosis for each unit.

D Cases, deaths; numerical vector.

Y Person-years; numerical vector. Also used as denominator for binomial data, see the
dist argument.

ref.c Reference cohort, numerical. Defaults to median date of birth among cases. If used
with parm="AdCP" or parm="AdPC", the resdiual cohort effects will be 1 at ref.c

ref.p Reference period, numerical. Defaults to median date of diagnosis among cases.

dist Distribution (or more precisely: Likelihood) used for modelling. if a binomial model
us ised, Y is assuemd to be the denominator; "binomial" gives a binomial model
with logit link.

model Type of model fitted:

• ns fits a model with natural splines for each of the terms, with npar parameters
for the terms.

• bs fits a model with B-splines for each of the terms, with npar parameters for
the terms.

• ls fits a model with linear splines.

• factor fits a factor model with one parameter per value of A, P and C. npar is
ignored in this case.

dr.extr Character. How the drift parameter should be extracted from the age-period-cohort
model. "weighted" (default) lets the weighted average (by marginal no. cases, D) of
the estimated period and cohort effects have 0 slope. "Holford" uses the naive
average over all values for the estimated effects, disregarding the no. cases.

parm Character. Indicates the parametrization of the effects. The first four refer to the
ML-fit of the Age-Period-Cohort model, the last four give Age-effects from a smaller
model and residuals relative to this. If one of the latter is chosen, the argument
dr.extr is ignored. Possible values for parm are:

• "ACP": ML-estimates. Age-effects as rates for the reference cohort. Cohort
effects as RR relative to the reference cohort. Period effects constrained to be 0
on average with 0 slope.

• "APC": ML-estimates. Age-effects as rates for the reference period. Period
effects as RR relative to the reference period. Cohort effects constrained to be 0
on average with 0 slope.

• "AdCP": ML-estimates. Age-effects as rates for the reference cohort. Cohort and
period effects constrained to be 0 on average with 0 slope. These effects do not
multiply to the fitted rates, the drift is missing and needs to be included to
produce the fitted values.

48 apc.fit The Epi package

• "AdPC": ML-estimates. Age-effects as rates for the reference period. Cohort and
period effects constrained to be 0 on average with 0 slope. These effects do not
multiply to the fitted rates, the drift is missing and needs to be included to
produce the fitted values.

• "Ad-C-P": Age effects are rates for the reference cohort in the Age-drift model
(cohort drift). Cohort effects are from the model with cohort alone, using
log(fitted values) from the Age-drift model as offset. Period effects are from the
model with period alone using log(fitted values) from the cohort model as offset.

• "Ad-P-C": Age effects are rates for the reference period in the Age-drift model
(period drift). Period effects are from the model with period alone, using
log(fitted values) from the Age-drift model as offset. Cohort effects are from the
model with cohort alone using log(fitted values) from the period model as offset.

• "AC-P": Age effects are rates for the reference cohort in the Age-Cohort model,
cohort effects are RR relative to the reference cohort. Period effects are from the
model with period alone, using log(fitted values) from the Age-Cohort model as
offset.

• "AP-C": Age effects are rates for the reference period in the Age-Period model,
period effects are RR relative to the reference period. Cohort effects are from
the model with cohort alone, using log(fitted values) from the Age-Period model
as offset.

npar The number of parameters to use for each of the terms in the model. It can be a list
of three numerical vectors, in which case these taken as the knots for the age, period
and cohort effect, the first and last element in each vector are used as the boundary
knots.

alpha The significance level. Estimates are given with (1-alpha) confidence limits.

scale numeric(1), factor multiplied to the rate estimates before output.

print.AOV Should the analysis of deviance table for the models be printed?

Value

An object of class ”apc” (recognized by apc.lines and apc.plot) — a list with components:

Age Matrix with 4 colums: A.pt with the ages (equals unique(A)) and three columns
giving the estimated rates with c.i.s.

Per Matrix with 4 colums: P.pt with the dates of diagnosis (equals unique(P)) and
three columns giving the estimated RRs with c.i.s.

Coh Matrix with 4 colums: C.pt with the dates of birth (equals unique(P-A)) and three
columns giving the estimated RRs with c.i.s.

Drift A 3 column matrix with drift-estimates and c.i.s: The first row is the ML-estimate of
the drift (as defined by drift), the second row is the estimate from the Age-drift
model. For the sequential parametrizations, only the latter is given.

Ref Numerical vector of length 2 with reference period and cohort. If ref.p or ref.c was
not supplied the corresponding element is NA.

AOV Analysis of deviance table comparing the five classical models.

Type Character string explaining the model and the parametrization.

Knots If model is one of "ns" or "bs", a list with three components: Age, Per, Coh, each
one a vector of knots. The max and the min are the boundary knots.

Author(s)

Bendix Carstensen, http://www.biostat.ku.dk/~bxc

http://www.biostat.ku.dk/~bxc

The Epi package apc.frame 49

References

The considerations behind the parametrizations used in this function are given in details in a preprint
from Department of Biostatistics in Copenhagen:
http://www.pubhealth.ku.dk/bs/publikationer/rr-06-1.pdf, later published as: B. Carstensen:
Age-period-cohort models for the Lexis diagram. Statistics in Medicine, 10; 26(15):3018-45, 2007.

See Also

apc.frame, apc.lines, apc.plot.

Examples

library(Epi)

data(lungDK)

Taylor a dataframe that meets the requirements

exd <- lungDK[,c("Ax","Px","D","Y")]

names(exd)[1:2] <- c("A","P")

Two different ways of parametrizing the APC-model, ML

ex.H <- apc.fit(exd, npar=7, model="ns", dr.extr="Holford", parm="ACP", scale=10^5)

ex.W <- apc.fit(exd, npar=7, model="ns", dr.extr="weighted", parm="ACP", scale=10^5)

Sequential fit, first AC, then P given AC.

ex.S <- apc.fit(exd, npar=7, model="ns", parm="AC-P", scale=10^5)

Show the estimated drifts

ex.H[["Drift"]]

ex.W[["Drift"]]

ex.S[["Drift"]]

Plot the effects

fp <- apc.plot(ex.H)

apc.lines(ex.W, frame.par=fp, col="red")

apc.lines(ex.S, frame.par=fp, col="blue")

apc.frame Produce an empty frame for display of parameter-estimates from Age-Period-
Cohort-models.

Description

A plot is generated where both the age-scale and the cohort/period scale is on the x-axis. The left
vertical axis will be a logarithmic rate scale referring to age-effects and the right a logarithmic rate-ratio
scale of the same relative extent as the left referring to the cohort and period effects (rate ratios).

Only an empty plot frame is generated. Curves or points must be added with points, lines or the
special utility function apc.lines.

Usage

apc.frame(a.lab,

cp.lab,

r.lab,

rr.lab = r.lab / rr.ref,

rr.ref = r.lab[length(r.lab)/2],

http://www.pubhealth.ku.dk/bs/publikationer/rr-06-1.pdf

50 apc.frame The Epi package

a.tic = a.lab,

cp.tic = cp.lab,

r.tic = r.lab,

rr.tic = r.tic / rr.ref,

tic.fac = 1.3,

a.txt = "Age",

cp.txt = "Calendar time",

r.txt = "Rate per 100,000 person-years",

rr.txt = "Rate ratio",

ref.line = TRUE,

gap = diff(range(c(a.lab, a.tic)))/3,

col.grid = gray(0.85),

sides = c(1,2,4))

Arguments

a.lab Numerical vector of labels for the age-axis.

cp.lab Numerical vector of labels for the cohort-period axis.

r.lab Numerical vector of labels for the rate-axis (left vertical)

rr.lab Numerical vector of labels for the RR-axis (right vertical)

rr.ref At what level of the rate scale is the RR=1 to be.

a.tic Location of additional tick marks on the age-scale

cp.tic Location of additional tick marks on the cohort-period-scale

r.tic Location of additional tick marks on the rate-scale

rr.tic Location of additional tick marks on the RR-axis.

tic.fac Factor with which to diminish intermediate tick marks

a.txt Text for the age-axis (left part of horizontal axis).

cp.txt Text for the cohort/period axis (right part of horizontal axis).

r.txt Text for the rate axis (left vertical axis).

rr.txt Text for the rate-ratio axis (right vertical axis)

ref.line Logical. Should a reference line at RR=1 be drawn at the calendar time part of the
plot?

gap Gap between the age-scale and the cohort-period scale

col.grid Colour of the grid put in the plot.

sides Numerical vector indicating on which sides axes should be drawn and annotated.
This option is aimed for multi-panel displays where axes only are put on the outer
plots.

Details

The function produces an empty plot frame for display of results from an age-period-cohort model,
with age-specific rates in the left side of the frame and cohort and period rate-ratio parameters in the
right side of the frame. There is a gap of gap between the age-axis and the calendar time axis, vertical
grid lines at c(a.lab,a.tic,cp.lab,cp.tic), and horizontal grid lines at c(r.lab,r.tic).

The function returns a numerical vector of length 2, with names c("cp.offset","RR.fac"). The
y-axis for the plot will be a rate scale for the age-effects, and the x-axis will be the age-scale. The
cohort and period effects are plotted by subtracting the first element (named "cp.offset") of the
returned result form the cohort/period, and multiplying the rate-ratios by the second element of the
returned result (named "RR.fac").

The Epi package apc.lines 51

Value

A numerical vector of length two, with names c("cp.offset","RR.fac"). The first is the offset for
the cohort period-axis, the second the multiplication factor for the rate-ratio scale.

Side-effect: A plot with axes and grid lines but no points or curves. Moreover, the option
apc.frame.par is given the value c("cp.offset","RR.fac"), which is recognized by apc.plot and
apc.lines.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.pubhealth.ku.dk/~bxc/

References

http://www.pubhealth.ku.dk/~bxc/APC/notes.pdf

See Also

apc.lines,apc.fit

Examples

par(mar=c(4,4,1,4))

res <-

apc.frame(a.lab=seq(30,90,20), cp.lab=seq(1880,2000,30), r.lab=c(1,2,5,10,20,50),

a.tic=seq(30,90,10), cp.tic=seq(1880,2000,10), r.tic=c(1:10,1:5*10),

gap=27)

res

What are the axes actually?

par(c("usr","xlog","ylog"))

How to plot in the age-part: a point at (50,10)

points(50, 10, pch=16, cex=2, col="blue")

How to plot in the cohort-period-part: a point at (1960,0.3)

points(1960-res[1], 0.3*res[2], pch=16, cex=2, col="red")

apc.lines Plot APC-estimates (and other things) in an APC-frame.

Description

When an APC-frame has been produced by apc.frame, this function draws a set of estimates from an
APC-fit in the frame. An optional drift parameter can be added to the period parameters and
subtracted from the cohort and age parameters.

Usage

apc.lines(A, P, C,

scale = c("log","ln","rates","inc","RR"),

frame.par = options()[["apc.frame.par"]],

drift = 0,

c0 = median(C[,1]),

a0 = median(A[,1]),

p0 = c0 + a0,

ci = rep(FALSE, 3),

lwd = c(3,1,1),

lty = 1,

http://www.pubhealth.ku.dk/~bxc/
http://www.pubhealth.ku.dk/~bxc/APC/notes.pdf

52 apc.lines The Epi package

col = "black",

type = "l",

knots = FALSE,

...)

pc.points(x, y, ...)

pc.lines(x, y, ...)

pc.matpoints(x, y, ...)

pc.matlines(x, y, ...)

Arguments

A Age effects. A 4-column matrix with columns age, age-specific rates, lower and upper
c.i. If A is of class apc (see apc.fit, P, C, c0, a0 and p0 are ignored, and the
estimates from there plotted.

P Period effects. Rate-ratios. Same form as for the age-effects.

C Cohort effects. Rate-ratios. Same form as for the age-effects.

scale Are effects given on a log-scale? Character variable, one of "log", "ln", "rates",
"inc", "RR". If "log" or "ln" it is assumed that effects are log(rates) and log(RRs)
otherwise the actual effects are assumed given in A, P and C. If A is of class apc, it is
assumed to be "rates".

frame.par 2-element vector with the cohort-period offset and RR multiplicator. This will
typically be the result from the call of apc.frame. See this for details.

drift The drift parameter to be added to the period effect. If scale="log" this is assumed
to be on the log-scale, otherwise it is assumed to be a multiplicative factor per unit of
the first columns of A, P and C

c0 The cohort where the drift is assumed to be 0; the subtracted drift effect is
drift*(C[,1]-c0).

a0 The age where the drift is assumed to be 0.

p0 The period where the drift is assumed to be 0.

ci Should confidence interval be drawn. Logical or character. If character, any
occurrence of "a" or "A" produces confidence intervals for the age-effect. Similarly
for period and cohort.

lwd Line widths for estimates, lower and upper confidence limits.

lty Linetypes for the three effects.

col Colours for the three effects.

type What type of lines / points should be used.

knots Should knots from the model be shown?

... Further parameters to be transmitted to points lines, matpoints or matlines used
for plotting the three sets of curves.

x vector of x-coordinates.

y vector of y-coordinates.

Details

The drawing of three effects in an APC-frame is a rather trivial task, and the main purpose of the
utility is to provide a function that easily adds the functionality of adding a drift so that several sets of
lines can be easily produced in the same frame.

Since the Age-part of the frame is referred to by its real coordinates plotting in the calendar time part
requires translation and scaling to put things correctly there, that is done by the functions pc.points

etc.

The Epi package apc.plot 53

Value

A list of three matrices with the effects plotted is returned invisibly.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.pubhealth.ku.dk/~bxc

See Also

apc.frame, apc.fit, apc.plot

apc.plot Plot the estimates from a fitted Age-Period-Cohort model

Description

This function plots the estimates created by apc.fit in a single graph. It just calls apc.frame after
computing some sensible values of the parameters, and subsequently plots the estimates using
apc.lines.

Usage

apc.plot(obj, r.txt = "Rate", ...)

Arguments

obj An object of class apc.

r.txt The text to put on the vertical rate axis.

... Additional arguments passed on to apc.lines.

Value

A numerical vector of length two, with names c("cp.offset","RR.fac"). The first is the offset for
the cohort period-axis, the second the multiplication factor for the rate-ratio scale. Therefore, if you
want to plot at (x,y) in the right panel, use
(x-res["cp.offset"],y/res["RR.fac"])=(x-res[1],y/res[2]). This vector should be supplied for
the parameter frame.par to apc.lines if more sets of estimates is plotted in the same graph.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.pubhealth.ku.dk/~bxc

See Also

apc.lines ,apc.frame, apc.fit

Examples

data(lungDK)

attach(lungDK)

apc1 <- apc.fit(A=Ax, P=Px, D=D, Y=Y/10^5)

fp <- apc.plot(apc1)

apc.lines(apc1, frame.par=fp, drift=1.01, col="red")

for(i in 1:11)

apc.lines(apc1, frame.par=fp, drift=1+(i-6)/100, col=rainbow(12)[i])

http://www.pubhealth.ku.dk/~bxc
http://www.pubhealth.ku.dk/~bxc

54 bdendo11 The Epi package

bdendo A case-control study of endometrial cancer

Description

The bdendo data frame has 315 rows and 13 columns. These data concern a study in which each case
of endometrial cancer was matched with 4 controls. Matching was by date of birth (within one year),
marital status, and residence.

Format

This data frame contains the following columns:

set: Case-control set: a numeric vector
d: Case or control: a numeric vector (1=case, 0=control)

gall: Gall bladder disease: a factor with levels No Yes.
hyp: Hypertension: a factor with levels No Yes.
ob: Obesity: a factor with levels No Yes.
est: A factor with levels No Yes.
dur: Duration of conjugated oestrogen therapy: an ordered factor with levels 0 < 1 < 2 < 3 < 4.
non: Use of non oestrogen drugs: a factor with levels No Yes.

duration: Months of oestrogen therapy: a numeric vector.
age: A numeric vector.
cest: Conjugated oestrogen dose: an ordered factor with levels 0 < 1 < 2 < 3.

agegrp: A factor with levels 55-59 60-64 65-69 70-74 75-79 80-84

age3: a factor with levels <64 65-74 75+

Source

Breslow NE, and Day N, Statistical Methods in Cancer Research. Volume I: The Analysis of
Case-Control Studies. IARC Scientific Publications, IARC:Lyon, 1980.

Examples

data(bdendo)

bdendo11 A 1:1 subset of the endometrial cancer case-control study

Description

The bdendo11 data frame has 126 rows and 13 columns. This is a subset of the dataset bdendo in
which each case was matched with a single control.

Source

Breslow NE, and Day N, Statistical Methods in Cancer Research. Volume I: The Analysis of
Case-Control Studies. IARC Scientific Publications, IARC:Lyon, 1980.

Examples

data(bdendo11)

The Epi package blcaIT 55

births Births in a London Hospital

Description

Data from 500 singleton births in a London Hospital

Usage

data(births)

Format

A data frame with 500 observations on the following 8 variables.

id: Identity number for mother and baby.
bweight: Birth weight of baby.
lowbw: Indicator for birth weight less than 2500 g.

gestwks: Gestation period.
preterm: Indicator for gestation period less than 37 weeks.
matage: Maternal age.

hyp: Indicator for maternal hypertension.
sex: Sex of baby: 1:Male, 2:Female.

Source

Anonymous

References

Michael Hills and Bianca De Stavola (2002). A Short Introduction to Stata 8 for Biostatistics,
Timberlake Consultants Ltd http://www.timberlake.co.uk

Examples

data(births)

blcaIT Bladder cancer mortality in Italian males

Description

Number of deaths from bladder cancer and person-years in the Italian male population 1955–1979, in
ages 25–79.

Format

A data frame with 55 observations on the following 4 variables:

age: Age at death. Left endpoint of age class
period: Period of death. Left endpoint of period

D: Number of deaths
Y: Number of person-years.

http://www.timberlake.co.uk

56 cal.yr The Epi package

Examples

data(blcaIT)

brv Bereavement in an elderly cohort

Description

The brv data frame has 399 rows and 11 columns. The data concern the possible effect of marital
bereavement on subsequent mortality. They arose from a survey of the physical and mental health of a
cohort of 75-year-olds in one large general practice. These data concern mortality up to 1 January,
1990 (although further follow-up has now taken place).

Subjects included all lived with a living spouse when they entered the study. There are three distinct
groups of such subjects: (1) those in which both members of the couple were over 75 and therefore
included in the cohort, (2) those whose spouse was below 75 (and was not, therefore, part of the main
cohort study), and (3) those living in larger households (that is, not just with their spouse).

Format

This data frame contains the following columns:

id: subject identifier, a numeric vector
couple: couple identifier, a numeric vector

dob: date of birth, a date
doe: date of entry into follow-up study, a date
dox: date of exit from follow-up study, a date
dosp: date of death of spouse, a date (if the spouse was still alive at the end of follow-up, this was coded to January 1, 2000)
fail: status at end of follow-up, a numeric vector (0=alive,1=dead)
group: see Description, a numeric vector
disab: disability score, a numeric vector
health: perceived health status score, a numeric vector

sex: a factor with levels Male Female

Source

Jagger C, and Sutton CJ, Death after Marital Bereavement. Statistics in Medicine, 10:395-404, 1991.
(Data supplied by Carol Jagger).

Examples

data(brv)

cal.yr Functions to convert character, factor and various date objects into a number,
and vice versa.

Description

Dates are converted to a numerical value, giving the calendar year as a fractional number. 1 January
1970 is converted to 1970.0, and other dates are converted by assuming that years are all 365.25 days
long, so inaccuracies may arise, for example, 1 Jan 2000 is converted to 1999.999. Differences between
converted values will be 1/365.25 of the difference between corresponding Date objects.

The Epi package cal.yr 57

Usage

cal.yr(x, format="%Y-%m-%d", wh=NULL)

as.Date.cal.yr(x, ...)

Arguments

x A factor or character vector, representing a date in format format, or an object of
class Date, POSIXlt, POSIXct, date, dates or chron (the latter two requires the
chron package). If x is a data frame, all variables in the data-frame which are of one
the classes mentioned are converted to class cal.yr. See arguemt wh, though.

format Format of the date values if x is factor or character. If this argument is supplied and
x is a datafame, all character variables are converted to class cal.yr. Factors in the
dataframe will be ignored.

wh Indices of the variables to convert if x is a data frame. Can be either a numerical or
character vector.

... Arguments passed on from other methods.

Value

cal.yr returns a numerical vector of the same length as x, of class c("cal.yr","numeric"). If x is a
data frame a dataframe with some of the columns converted to class "cal.yr" is returned.

as.Date.cal.yr returns a Date object.

Author(s)

Bendix Carstensen, Steno Diabetes Center \& Dept. of Biostatistics, University of Copenhagen,
<bxc@steno.dk>, http://www.pubhealth.ku.dk/~bxc

See Also

DateTimeClasses, Date

Examples

Character vector of dates:

birth <- c("14/07/1852","01/04/1954","10/06/1987","16/05/1990",

"01/01/1996","01/01/1997","01/01/1998","01/01/1999")

Proper conversion to class "Date":

birth.dat <- as.Date(birth, format="%d/%m/%Y")

Converson of character to class "cal.yr"

bt.yr <- cal.yr(birth, format="%d/%m/%Y")

Back to class "Date":

bt.dat <- as.Date(bt.yr)

Numerical calculation of days since 1.1.1970:

days <- Days <- (bt.yr-1970)*365.25

Blunt assignment of class:

class(Days) <- "Date"

Then data.frame() to get readable output of results:

data.frame(birth, birth.dat, bt.yr, bt.dat, days, Days, round(Days))

http://www.pubhealth.ku.dk/~bxc

58 ccwc The Epi package

ccwc Generate a nested case-control study

Description

Given the basic outcome variables for a cohort study: the time of entry to the cohort, the time of exit
and the reason for exit (”failure” or ”censoring”), this function computes risk sets and generates a
matched case-control study in which each case is compared with a set of controls randomly sampled
from the appropriate risk set. Other variables may be matched when selecting controls.

Usage

ccwc(entry=0, exit, fail, origin=0, controls=1, match=list(), include=list(), data=NULL, silent=F)

Arguments

entry Time of entry to follow-up

exit Time of exit from follow-up

fail Status on exit (1=Fail, 0=Censored)

origin Origin of analysis time scale

controls The number of controls to be selected for each case

match List of categorical variables on which to match cases and controls

include List of other variables to be carried across into the case-control study

data Data frame in which to look for input variables

silent If False, echos a . to the screen for each case-control set created; otherwise produces
no output.

Value

The case-control study, as a dataframe containing:

Set case-control set number

Map row number of record in input dataframe

Time failure time of the case in this set

Fail failure status (1=case, 0=control)

These are followed by the matching variables, and finally by the variables in the include list

Author(s)

David Clayton

References

Clayton and Hills, Statistical Models in Epidemiology, Oxford University Press, Oxford:1993.

See Also

Lexis

The Epi package ci.cum 59

Examples

#

For the diet and heart dataset, create a nested case-control study

using the age scale and matching on job

#

data(diet)

dietcc <- ccwc(doe, dox, chd, origin=dob, controls=2, data=diet,

include=energy, match=job)

ci.cum Compute cumulative sum of estimates.

Description

Computes the cumulative sum of parameter functions and the standard error of it. Optionally the
exponential is applied to the parameter functions before it is cumulated.

Usage

ci.cum(obj,

ctr.mat = NULL,

subset = NULL,

intl = 1,

alpha = 0.05,

Exp = TRUE,

sample = FALSE)

Arguments

obj A model object (of class lm, glm, coxph, survreg, lme,mer,nls,gnlm, MIresult or
polr).

ctr.mat Contrast matrix defining the parameter functions from the parameters of the model.

subset Subset of the parameters of the model to which ctr.mat should be applied.

intl Interval length for the cumulation. Either a constant or a numerical vector of length
nrow(ctr.mat).

alpha Significance level used when computing confidence limits.

Exp Should the parameter function be exponentiated before it is cumulated?

sample Should a sample of the original parameters be used to compute a cumulative rate?

Details

The purpose of this function is to compute cumulative rate based on a model for the rates. If the
model is a multiplicative model for the rates, the purpose of ctr.mat is to return a vector of rates or
log-rates when applied to the coefficients of the model. If log-rates are returned from the model, the
they should be exponentiated before cumulated, and the variances computed accordingly. Since
log-linear models are the most common the Exp parameter defaults to TRUE.

Value

A matrix with 4 columns: Estimate, lower and upper c.i. and standard error. If sample is TRUE, a
sampled vector is reurned, if sample is numeric a matrix with sample columns is returned, each
column a cumulative rate based on a random sample from the distribution of the parameter estimates.

60 ci.lin The Epi package

Author(s)

Bendix Carstensen, http://www.pubhealth.ku.dk/~bxc

See Also

See also ci.lin

Examples

Packages required for this example

library(splines)

library(survival)

data(lung)

par(mfrow=c(1,2))

Plot the Kaplan-meier-estimator

plot(survfit(Surv(time, status==2) ~ 1, data=lung))

Declare data as Lexis

lungL <- Lexis(exit=list("tfd"=time),

exit.status=(status==2)*1, data=lung)

summary(lungL)

Cut the follow-up every 10 days

sL <- splitLexis(lungL, "tfd", breaks=seq(0,1100,10))

str(sL)

summary(sL)

Fit a Poisson model with a natural spline for the effect of time.

Extract the variables needed

D <- status(sL, "exit")

Y <- dur(sL)

tB <- timeBand(sL, "tfd", "left")

MM <- ns(tB, knots=c(50,100,200,400,700), intercept=TRUE)

mp <- glm(D ~ MM - 1 + offset(log(Y)),

family=poisson, eps=10^-8, maxit=25)

Contrast matrix to extract effects, i.e. matrix to multiply with the

coefficients to produce the log-rates: unique rows of MM, in time order.

T.pt <- sort(unique(tB))

T.wh <- match(T.pt, tB)

Lambda <- ci.cum(mp, ctr.mat=MM[T.wh,], intl=diff(c(0,T.pt)))

Put the estimated survival function on top of the KM-estimator

matlines(c(0,T.pt[-1]), exp(-Lambda[,1:3]), lwd=c(3,1,1), lty=1, col="Red")

Extract and plot the fitted intensity function

lambda <- ci.lin(mp, ctr.mat=MM[T.wh,], Exp=TRUE)

matplot(T.pt, lambda[,5:7]*10^3, type="l", lwd=c(3,1,1), col="black", lty=1,

log="y", ylim=c(0.2,20))

ci.lin Compute linear functions of parameters with s.e.

http://www.pubhealth.ku.dk/~bxc

The Epi package ci.lin 61

Description

For a given model object the function computes a linear function of the parameters and the
corresponding standard errors, p-values and confidence intervals.

Usage

ci.lin(obj,

ctr.mat = NULL,

subset = NULL,

subint = NULL,

diffs = FALSE,

fnam = !diffs,

vcov = FALSE,

alpha = 0.05,

df = Inf,

Exp = FALSE,

sample = FALSE)

Wald(obj, H0=0, ...)

ci.mat(alpha = 0.05, df=Inf)

Arguments

obj A model object (of class lm, glm, coxph, survreg, lme,mer,nls,gnlm, MIresult or
polr).

ctr.mat Contrast matrix to be multiplied to the parameter vector, i.e. the desired linear
function of the parameters.

subset The subset of the parameters to be used. If given as a character vector, the elements
are in turn matched against the parameter names (using grep) to find the subset.
Repeat parameters may result from using a character vector. This is considered a
facility.

subint SUBset selection like for subset, except that elements of a character vector given as
argument will be used to select subsets of parameters and only the INTersection of
these is returned.

diffs If TRUE, all differences between parameters in the subset are computed. ctr.mat is
ignored. If obj inherits from lm, and subset is given as a string subset is used to
search among the factors in the model and differences of all factor levels for the first
match are shown. If subset does not match any of the factors in the model, all
pairwise differences between parameters matching are returned.

fnam Should the common part of the parameter names be included with the annotation of
contrasts? Ignored if diffs==T. If a sting is supplied this will be prefixed to the
labels.

vcov Should the covariance matrix of the set of parameters be returned? If this is set, Exp
is ignored. See details.

alpha Significance level for the confidence intervals.

df Integer. Number of degrees of freedom in the t-distribution used to compute the
quantiles used to construct the confidence intervals.

Exp If TRUE columns 5:6 are replaced with exp(columns 1,5,6).

sample Logical or numerical. If TRUE or numerical a sample of the linear parameter function
as defined by subset and ctr.mat is returned.

H0 The null values for the selected/transformed parameters to be tested by a Wald test.
Must have the same length as the selected parameter vector.

... Parameters passed on to ci.lin.

62 ci.lin The Epi package

Value

ci.lin returns a matrix with number of rows and rownames as ctr.mat. The columns are Estimate,
Std.Err, z, P, 2.5% and 97.5%. If vcov=TRUE a list with components est, the desired functional of the
parameters and vcov, the variance covariance matrix of this, is returned but not printed. If Exp==TRUE
the confidence intervals for the parameters are replaced with three columns: exp(estimate,c.i.).

Wald computes a Wald test for a subset of (possibly linearly transformed) parameters. The selection of
the subset of parameters is the same as for ci.lin. Using the ctr.mat argument makes it possible to
do a Wald test for equality of parameters. Wald returns a named numerical vector of lenght 3, with
names Chisq, d.f. and P.

ci.mat returns a 2 by 3 matrix with rows c(1,0,0) and c(0,-1,1)*1.96, devised to post-multiply to
a p by 2 matrix with columns of estimates and standard errors, so as to produce a p by 3 matrix of
estimates and confidnece limits. Used internally in ci.lin and ci.cum. The 1.96 is replaced by the
appropriate quantile from the normal or t-distribution when arguments alpha and/or df are given.

Author(s)

Bendix Carstensen, http://www.pubhealth.ku.dk/~bxc & Michaal Hills
http://www.mhills.pwp.blueyonder.co.uk/

See Also

See also ci.cum

Examples

Bogus data:

f <- factor(sample(letters[1:5], 200, replace=TRUE))

g <- factor(sample(letters[1:3], 200, replace=TRUE))

x <- rnorm(200)

y <- 7 + as.integer(f) * 3 + 2 * x + 1.7 * rnorm(200)

Fit a simple model:

mm <- lm(y ~ x + f + g)

ci.lin(mm)

ci.lin(mm, subset=3:6, diff=TRUE, fnam=FALSE)

ci.lin(mm, subset=3:6, diff=TRUE, fnam=TRUE)

ci.lin(mm, subset="f", diff=TRUE, fnam="f levels:")

print(ci.lin(mm, subset="g", diff=TRUE, fnam="gee!:", vcov=TRUE))

Use character defined subset to get ALL contrasts:

ci.lin(mm, subset="f", diff=TRUE)

A Wald test of wheter the g-parameters are 0

Wald(mm, subset="g")

Wald test of whether the three first f-parameters are equal:

(CM <- rbind(c(1,-1,0,0), c(1,0,-1,0)))

Wald(mm, subset="f", ctr.mat=CM)

or alternatively

(CM <- rbind(c(1,-1,0,0), c(0,1,-1,0)))

Wald(mm, subset="f", ctr.mat=CM)

http://www.pubhealth.ku.dk/~bxc
http://www.mhills.pwp.blueyonder.co.uk/

The Epi package ci.pd 63

ci.pd Compute confidence limits for a difference of two independent proportions.

Description

The usual formula for the c.i. of at difference of proportions is inaccurate. Newcombe has compared 11
methods and method 10 in his paper looks like a winner. It is implemented here.

Usage

ci.pd(aa, bb=NULL, cc=NULL, dd=NULL,

method = "Nc",

alpha = 0.05, conf.level=0.95,

digits = 3,

print = TRUE,

detail.labs = FALSE)

Arguments

aa Numeric vector of successes in sample 1. Can also be a matrix or array (see details).

bb Successes in sample 2.

cc Failures in sample 1.

dd Failures in sample 2.

method Method to use for calculation of confidence interval, see ”Details”.

alpha Significance level

conf.level Confidence level

print Should an account of the two by two table be printed.

digits How many digits should the result be rounded to if printed.

detail.labs Should the computing of probability differences be reported in the labels.

Details

Implements method 10 from Newcombe(1998) (method=”Nc”) or from Agresti & Caffo(2000)
(method=”AC”).

aa, bb, cc and dd can be vectors. If aa is a matrix, the elements [1:2,1:2] are used, with successes
aa[,1:2]. If aa is a three-way table or array, the elements aa[1:2,1:2,] are used.

Value

A matrix with three columns: probability difference, lower and upper limit. The number of rows equals
the length of the vectors aa, bb, cc and dd or, if aa is a 3-way matrix, dim(aa)[3].

Author(s)

Bendix Carstensen, Esa Laara. http://www.biostat.ku.dk/~bxc

References

RG Newcombe: Interval estimation for the difference between independent proportions. Comparison of
eleven methods. Statistics in Medicine, 17, pp. 873-890, 1998.

A Agresti & B Caffo: Simple and effective confidence intervals for proportions and differences of
proportions result from adding two successes and two failures. The American Statistician, 54(4), pp.
280-288, 2000.

http://www.biostat.ku.dk/~bxc

64 clogistic The Epi package

See Also

twoby2, binom.test

Examples

(a <- matrix(sample(10:40, 4), 2, 2))

ci.pd(a)

twoby2(t(a))

prop.test(t(a))

(A <- array(sample(10:40, 20), dim=c(2,2,5)))

ci.pd(A)

ci.pd(A, detail.labs=TRUE, digits=3)

clogistic Conditional logistic regression

Description

Estimates a logistic regression model by maximizing the conditional likelihood. The conditional
likelihood calculations are exact, and scale efficiently to strata with large numbers of cases.

Usage

clogistic(formula, strata, data, subset, na.action, init,

model = TRUE, x = FALSE, y = TRUE, contrasts = NULL,

iter.max=20, eps=1e-6, toler.chol = sqrt(.Machine$double.eps))

Arguments

formula Model formula

strata Factor describing membership of strata for conditioning

data data frame containing the variables in the formula and strata arguments

subset subset of records to use

na.action missing value handling

init initial values

model a logical value indicating whether model frame should be included as a component of
the returned value

x,y logical values indicating whether the response vector and model matrix used in the
fitting process should be returned as components of the returned value.

contrasts an optional list. See the contrasts.arg of model.matrix.default

iter.max maximum number of iterations

eps Convergence tolerence. Iteration continues until the relative change in the
conditional log likelihood is less than eps. Must be positive.

toler.chol Tolerance used for detection of a singularity during a Cholesky decomposition of the
variance martrix. This is used to detect redundant predictor variables. Must be less
than eps.

The Epi package contr.cum 65

Value

An object of class "clogistic". This is a list containing the following components:

coefficients the estimates of the log-odds ratio parameters. If the model is over-determined there
will be missing values in the vector corresponding to the redundant columns in the
model matrix.

var the variance matrix of the coefficients. Rows and columns corresponding to any
missing coefficients are set to zero.

loglik a vector of length 2 containing the log-likelihood with the initial values and with the
final values of the coefficients.

iter number of iterations used.

n number of observations used. Observations may be dropped either because they are
missing, or because they belong to a homogenous stratum. For more details on which
observations were used, see informative below.

informative if model=TRUE, a logical vector of length equal to the number of rows in the model
frame. This indicates whether an observation is informative, in the sense that it
makes a non-zero contribution to the log-likelihood. If model=FALSE, this is NULL.

The output will also contain the following, for documentation see the glm object: terms, formula,
call, contrasts, xlevels, and, optionally, x, y, and/or frame.

Author(s)

Martyn Plummer

See Also

glm

Examples

data(bdendo)

clogistic(d ~ cest + dur, strata=set, data=bdendo)

contr.cum Contrast matrices

Description

Return a matrix of contrasts for factor coding.

Usage

contr.cum(n)

contr.diff(n)

contr.2nd(n)

contr.orth(n)

Arguments

n A vector of levels for a factor, or the number of levels.

66 cutLexis The Epi package

Details

These functions are used for creating contrast matrices for use in fitting regression models. The
columns of the resulting matrices contain contrasts which can be used for coding a factor with n levels.

contr.cum gives a coding corresponding to successive differences between factor levels.

contr.diff gives a coding that correspond to the cumulative sum of the value for each level. This is
not meaningful in a model where the intercept is included, therefore n columns ia always returned.

contr.2nd gives contrasts corresponding to 2nd order differences between factor levels. Returns a
matrix with n-2 columns.

contr.orth gives a matrix with n-2 columns, which are mutually orthogonal and orthogonal to the
matrix cbind(1,1:n)

Value

A matrix with n rows and k columns, with k=n for contr.diff k=n-1 for contr.cum k=n-2 for
contr.2nd and contr.orth.

Author(s)

Bendix Carstensen

See Also

contr.treatment

Examples

contr.cum(6)

contr.2nd(6)

contr.diff(6)

contr.orth(6)

cutLexis Cut follow-up at a specified date for each person.

Description

Follow-up intervals in a Lexis object are divided into two sub-intervals: one before and one after an
intermediate event. The intermediate event may denote a change of state, in which case the entry and
exit status variables in the split Lexis object are modified.

Usage

cutLexis(data, cut, timescale = 1,

new.state = nlevels(data$lex.Cst)+1,

new.scale = FALSE,

split.states = FALSE,

progressive = FALSE,

precursor.states = NULL,

count = FALSE)

countLexis(data, cut, timescale = 1)

The Epi package cutLexis 67

Arguments

data A Lexis object.

cut A numeric vector with the times of the intermediate event. If a time is missing (NA)
then the event is assumed to occur at time Inf. cut can also be a dataframe, see
details.

timescale The timescale that cut refers to. Numeric or character.

new.state The state to which a transition occur at time cut. It may be a single value, which is
then applied to all rows of data, or a vector with a separate value for each row

new.scale Name of the timescale defined as ”time since entry to new.state”. If TRUE a name for
the new scale is constructed. See details.

split.states Should states that are not precursor states be split according to whether the
intermediate event has occurred.

progressive a logical flag that determines the changes to exit status. See details.

precursor.states

an optional vector of states to be considered as ”less severe” than new.state. See
Details below

count logical indicating whether the countLexis options should be used. Specifying
count=TRUE amounts to calling countLexis, in which case the arguments
new.state, progressive and precursor.states will be ignored.

Details

The cutLexis function allows a number of different ways of specifying the cutpoints and of modifying
the status variable.

If the cut argument is a dataframe it must have columns lex.id, cut and new.state. The values of
lex.id must be unique. In this case it is assumed that each row represents a cutpoint (on the
timescale indicated in the argument timescale). This cutpoint will be applied to all records in data

with the corresponding lex.id. This makes it possible to apply cutLexis to a split Lexis object.

If a new.state argument is supplied, the status variable is only modified at the time of the cut point.
However, it is often useful to modify the status variable after the cutpoint when an important event
occurs. There are three distinct ways of doing this.

If the progressive=TRUE argument is given, then a ”progressive” model is assumed, in which the status
can either remain the same or increase during follow-up, but never decrease. This assumes that the
state variables lex.Cst and lex.Xst are either numeric or ordered factors. In this case, if
new.state=X, then any exit status with a value less than X is replaced with X. The Lexis object must
already be progressive, so that there are no rows for which the exit status is less than the entry status.
If lex.Cst and lex.Xst are factors they must be ordered factors if progressive=TRUE is given.

As an alternative to the progressive argument, an explicit vector of precursor states, that are
considered less severe than the new state, may be given. If new.state=X and
precursor.states=c(Y,Z) then any exit status of Y or Z in the second interval is replaced with X and
all other values for the exit status are retained.

The countLexis function is a variant of cutLexis when the cutpoint marks a recurrent event, and the
status variable is used to count the number of events that have occurred. Times given in cut represent
times of new events. Splitting with countLexis increases the status variable by 1. If the current status
is X and the exit status is Y before cutting, then after cutting the entry status is X, X+1 for the first and
second intervals, respectively, and the exit status is X+1, Y+1 respectively. Moreover the values of the
status is increased by 1 for all intervals for all intervals after the cut for the person in question. Hence,
a call to countLexis is needed for as many times as the person with most events. But also it is
immaterial in what order the cutpoints are entered.

68 cutLexis The Epi package

Value

A Lexis object, for which each follow-up interval containing the cutpoint is split in two: one before
and one after the cutpoint. An extra time-scale is added; the time since the event at cut. This is NA

for any follow-up prior to the intermediate event.

Note

The cutLexis function superficially resembles the splitLexis function. However, the splitLexis

function splits on a vector of common cut-points for all rows of the Lexis object, whereas the cutLexis

function splits on a single time point, which may be distinct for each row, modifies the status variables,
and adds a new timescale.

Author(s)

Bendix Carstensen, Steno Diabetes Center, <bxc@steno.dk>, Martyn Plummer, IARC,
<plummer@iarc.fr>.

See Also

splitLexis, Lexis, summary.Lexis

Examples

A small artificial example

xx <- Lexis(entry=list(age=c(17,24,33,29),per=c(1920,1933,1930,1929)),

duration=c(23,57,12,15), exit.status=c(1,2,1,2))

xx

cut <- c(33,47,29,50)

cutLexis(xx, cut, new.state=3, precursor=1)

cutLexis(xx, cut, new.state=3, precursor=2)

cutLexis(xx, cut, new.state=3, precursor=1:2)

The same as the last example

cutLexis(xx, cut, new.state=3)

The same example with a factor status variable

yy <- Lexis(entry = list(age=c(17,24,33,29),per=c(1920,1933,1930,1929)),

duration = c(23,57,12,15),

entry.status = factor(rep("alpha",4),

levels=c("alpha","beta","gamma")),

exit.status = factor(c("alpha","beta","alpha","beta"),

levels=c("alpha","beta","gamma")))

cutLexis(yy,c(33,47,29,50),precursor="alpha",new.state="gamma")

cutLexis(yy,c(33,47,29,50),precursor=c("alpha","beta"),new.state="aleph")

Using a dataframe as cut argument

rl <- data.frame(lex.id=1:3, cut=c(19,53,26), timescale="age", new.state=3)

rl

cutLexis(xx, rl)

cutLexis(xx, rl, precursor=1)

cutLexis(xx, rl, precursor=0:2)

It is immaterial in what order splitting and cutting is done

xs <- splitLexis(xx, breaks=seq(0,100,10), time.scale="age")

xs

xsC <- cutLexis(xs, rl, precursor=0)

The Epi package detrend 69

xC <- cutLexis(xx, rl, pre=0)

xC

xCs <- splitLexis(xC, breaks=seq(0,100,10), time.scale="age")

xCs

detrend Projection of a model matrix on to the orthogonal complement of a trend.

Description

The columns of the model matrix M is projected on the orthogonal complement to the matrix (1,t).
Orthogonality is defined w.r.t. an inner product defined by the weights weight.

Usage

detrend(M, t, weight = rep(1, nrow(M)))

Arguments

M A model matrix.

t The trend defining a subspace. A numerical vector of length nrow(M)

weight Weights defining the inner product of vectors x and y as sum(x*w*y). A numerical
vector of length nrow(M), defaults to a vector of 1s.

Details

The functions is intended to be used in parametrization of age-period-cohort models.

Value

A full-rank matrix with columns orthogonal to (1,t).

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.pubhealth.ku.dk/~bxc, with help from Peter
Dalgaard.

See Also

projection.ip

diet Diet and heart data

Description

The diet data frame has 337 rows and 14 columns. The data concern a subsample of subjects drawn
from larger cohort studies of the incidence of coronary heart disease (CHD). These subjects had all
completed a 7-day weighed dietary survey while taking part in validation studies of dietary
questionnaire methods. Upon the closure of the MRC Social Medicine Unit, from where these studies
were directed, it was found that 46 CHD events had occurred in this group, thus allowing a
serendipitous study of the relationship between diet and the incidence of CHD.

Format

This data frame contains the following columns:

http://www.pubhealth.ku.dk/~bxc

70 DMconv The Epi package

id: subject identifier, a numeric vector.
doe: date of entry into follow-up study, a Date variable.
dox: date of exit from the follow-up study, a Date variable.
dob: date of birth, a Date variable.
y: - number of years at risk, a numeric vector.

fail: status on exit, a numeric vector (codes 1, 3, 11, and 13 represent CHD events)
job: occupation, a factor with levels Driver Conductor Bank worker

month: month of dietary survey, a numeric vector
energy: total energy intake (KCal per day/100), a numeric vector
height: (cm), a numeric vector
weight: (kg), a numeric vector

fat: fat intake (g/day), a numeric vector
fibre: dietary fibre intake (g/day), a numeric vector

energy.grp: high daily energy intake, a factor with levels <=2750 KCal >2750 KCal

chd: CHD event, a numeric vector (1=CHD event, 0=no event)

Source

The data are described and used extensively by Clayton and Hills, Statistical Models in Epidemiology,
Oxford University Press, Oxford:1993. They were rescued from destruction by David Clayton and
reentered from paper printouts.

Examples

data(diet)

Illustrate the follow-up in a Lexis diagram

Lexis.diagram(age=c(30,75), date=c(1965,1990),

entry.date=cal.yr(doe), exit.date=cal.yr(dox), birth.date=cal.yr(dob),

fail=(fail>0), pch.fail=c(NA,16), col.fail=c(NA,"red"), cex.fail=1.0,

data=diet)

DMconv Conversion to diabetes

Description

Data from a randomized intervention study (”Addition”) where persons with prediabetic conditions are
followed up for conversion to diabetes (DM). Conversion dates are interval censored. Original data are
not published yet, so id-numbers have been changed and all dates have been randomly perturbed.

Usage

data(DMconv)

Format

A data frame with 1519 observations on the following 6 variables.

id Person identifier

doe Date of entry, i.e. first visit.

dlw Date last seen well, i.e. last visit without DM.

dfi Date first seen ill, i.e. first visit with DM.

gtol Glucose tolerance. Factor with levels: 1=”IFG” (impaired fasting glucose), 2=”IGT” (impaired
glucose tolerance).

grp Randomization. Factor with levels: 1=”Intervention”, 2=”Control”.

The Epi package DMlate 71

Source

Signe Saetre Rasmussen, Steno Diabetes Center. The Addition Study.

Examples

data(DMconv)

str(DMconv)

head(DMconv)

DMlate The Danish National Diabetes Register.

Description

These two datasets each contain a random sample of 10,000 persons from the Danish National
Diabetes Register. DMrand is a random sample from the register, whereas DMlate is a random sample
among those with date of diagnosis after 1.1.1995.

Usage

data(DMrand)

data(DMlate)

Format

A data frame with 10000 observations on the following 6 variables.

sex Sex, a factor with levels M F

dobth Date of birth

dodm Date of inclusion in the register

dodth Date of death

doins Date of first insulin prescription

dox Date of exit from follow-up.

Details

All dates are given in fractions of years, so 1997.00 corresponds to 1 January 1997 and 1997.997 to 31
December 1997.

Source

Danish National Board of Health.

References

B Carstensen, JK Kristensen, P Ottosen and K Borch-Johnsen: The Danish National Diabetes
Register: Trends in incidence, prevalence and mortality, Diabetologia, 51, pp 2187–2196, 2008.

In partucular see the appendix at the end of the paper.

72 effx The Epi package

Examples

data(DMlate)

str(DMlate)

dml <- Lexis(entry=list(Per=dodm, Age=dodm-dobth, DMdur=0),

exit=list(Per=dox),

exit.status=factor(!is.na(dodth),labels=c("DM","Dead")),

data=DMlate)

Split follow-up at Insulin

dmi <- cutLexis(dml, cut=dml$doins, new.state="Ins", pre="DM")

summary(dmi)

Introduce a new timescale

dmi <- cutLexis(dml, cut=dml$doins, new.state="Ins", pre="DM", new.scale=TRUE)

head(dmi)

Split the states following insulin and explictily name the new timescale

dmi <- cutLexis(dml, cut=dml$doins, new.state="Ins",

pre="DM", new.scale="Instime", split.states=TRUE)

summary(dmi)

effx Function to calculate effects

Description

The function calculates the effects of an exposure on a response, possibly stratified by a stratifying
variable, and/or controlled for one or more confounding variables.

Usage

effx(response, type = "metric",

fup = NULL,

exposure,

strata = NULL,

control = NULL,

weights = NULL,

alpha = 0.05,

base = 1,

digits = 3,

data = NULL)

Arguments

response The response variable - must be numeric

type The type of responsetype - must be one of ”metric”, ”binary”, ”failure”, or ”count”

fup The fup variable contains the follow-up time for a failure response. This must be
numeric.

exposure The exposure variable can be numeric or a factor

strata The strata stratifying variable - must be a factor

control The control variable(s) - these are passed as a list if there are more than one.

weights Frequency weights for binary response only

base Baseline for the effects of a categorical exposure, default 1

digits Number of significant digits for the effects, default 3

alpha 1 - confidence level

data data refers to the data used to evaluate the function

The Epi package effx.match 73

Details

The function is a wrapper for glm. Effects are calculated as differences in means for a metric response,
odds ratios for a binary response, and rate ratios for a failure or count response.

The k-1 effects for a categorical exposure with k levels are relative to a baseline which, by default, is
the first level. The effect of a metric (quantitative) exposure is calculated per unit of exposure.

The exposure variable can be numeric or a factor, but if it is an ordered factor the order will be ignored.

Value

comp1 Effects of exposure

comp2 Tests of significance

Author(s)

Michael Hills

References

www.mhills.pwp.blueyonder.co.uk

Examples

library(Epi)

data(births)

births$hyp <- factor(births$hyp,labels=c("normal","hyper"))

births$sex <- factor(births$sex,labels=c("M","F"))

bweight is the birth weight of the baby in gms, and is a metric

response (the default)

effect of hypertension on birth weight

effx(bweight,exposure=hyp,data=births)

effect of hypertension on birth weight stratified by sex

effx(bweight,exposure=hyp,strata=sex,data=births)

effect of hypertension on birth weight controlled for sex

effx(bweight,exposure=hyp,control=sex,data=births)

effect of gestation time on birth weight

effx(bweight,exposure=gestwks,data=births)

effect of gestation time on birth weight stratified by sex

effx(bweight,exposure=gestwks,strata=sex,data=births)

effect of gestation time on birth weight controlled for sex

effx(bweight,exposure=gestwks,control=sex,data=births)

lowbw is a binary response coded 1 for low birth weight and 0 otherwise

effect of hypertension on low birth weight

effx(lowbw,type="binary",exposure=hyp,data=births)

etc.

effx.match Function to calculate effects for individually matched case-control studies

Description

The function calculates the effects of an exposure on a response, possibly stratified by a stratifying
variable, and/or controlled for one or more confounding variables.

74 effx.match The Epi package

Usage

effx.match(response,

exposure,

match,

strata=NULL,

control=NULL,

base=1,

digits=3,

alpha=0.05,

data=NULL)

Arguments

response The response variable - must be numeric

exposure The exposure variable can be numeric or a factor

match The variable which identifies the matched sets

strata The strata stratifying variable - must be a factor

control The control variable(s). These are passed as a list if there are more than one of
them.

base Baseline for the effects of a categorical exposure, default 1

digits Number of significant digits for the effects, default 3

alpha 1 - confidence level

data data refers to the data used to evaluate the function

Details

Effects are calculated odds ratios. The function is a wrapper for clogit, from the survival package. The
k-1 effects for a categorical exposure with k levels are relative to a baseline which, by default, is the
first level. The effect of a metric (quantitative) exposure is calculated per unit of exposure. The
exposure variable can be numeric or a factor, but if it is an ordered factor the order will be ignored.

Value

comp1 Effects of exposure

comp2 Tests of significance

Author(s)

Michael Hills

References

www.mhills.pwp.blueyonder.co.uk

Examples

library(Epi)

library(survival)

data(bdendo)

d is the case-control variable, set is the matching variable.

The variable est is a factor and refers to estrogen use (no,yes)

The variable hyp is a factor with 2 levels and refers to hypertension (no, yes)

effect of est on the odds of being a case

The Epi package expand.data 75

effx.match(d,exposure=est,match=set,data=bdendo)

effect of est on the odds of being a case, stratified by hyp

effx.match(d,exposure=est,match=set,strata=hyp,data=bdendo)

effect of est on the odds of being a case, controlled for hyp

effx.match(d,exposure=est,match=set,control=hyp,data=bdendo)

ewrates Rates of lung and nasal cancer mortality, and total mortality.

Description

England and Wales mortality rates from lung cancer, nasal cancer, and all causes 1936 - 1980. The
1936 rates are repeated as 1931 rates in order to accomodate follow up for the nickel study.

Usage

data(ewrates)

Format

A data frame with 150 observations on the following 5 variables:

id: Subject identifier (numeric)
year Calendar period, 1931: 1931–35, 1936: 1936–40, . . .
age Age class: 10: 10–14, 15:15–19, . . .
lung Lung cancer mortality rate per 1,000,000 py.
nasal Nasal cancer mortality rate per 1,000,000 py.
other All cause mortality rate per 1,000,000 py.

Source

From Breslow and Day, Vol II, Appendix IX.

Examples

data(ewrates)

str(ewrates)

expand.data Function to expand data for regression analysis of interval censored data.

Description

This is a utility function.

The original records with first.well, last.well and first.ill are expanded to multiple records;
several for each interval where the person is known to be well and one where the person is known to
fail. At the same time columns for the covariates needed to estimate rates and the response variable
are generated.

Usage

expand.data(fu, formula, breaks, data)

76 fit.add The Epi package

Arguments

fu A 3-column matrix with first.well, last.well and first.ill in each row.

formula Model fromula, used to derive the model matrix.

breaks Defines the intervals in which the baseline rate is assumed constant. All follow-up
before the first and after the last break is discarded.

data Datafrem in which fu and formula is interpreted.

Value

Returns a list with three components

rates.frame Dataframe of covariates for estimation of the baseline rates — one per interval
defined by breaks.

cov.frame Dataframe for estimation of the covariate effects. A data-framed version of the
designmatrix from formula.

y Response vector.

Author(s)

Martyn Plummer, <plummer@iarc.fr>

References

B Carstensen: Regression models for interval censored survival data: application to HIV infection in
Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

See Also

Icens fit.mult fit.add

fit.add Fit an addive excess risk model to interval censored data.

Description

Utility function.

The model fitted assumes a piecewise constant intensity for the baseline, and that the covariates act
additively on the rate scale.

Usage

fit.add(y, rates.frame, cov.frame, start)

Arguments

y Binary vector of outcomes

rates.frame Dataframe expanded from the original data by expand.data, cooresponding to
covariates for the rate parameters.

cov.frame do., but covariates corresponding to the formula argument of Icens

start Starting values for the rate parameters. If not supplied, then starting values are
generated.

The Epi package fit.baseline 77

Value

A list with one component:

rates A glm object from a binomial model with log-link function.

Author(s)

Martyn Plummer, <plummer@iarc.fr>

References

B Carstensen: Regression models for interval censored survival data: application to HIV infection in
Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

CP Farrington: Interval censored survival data: a generalized linear modelling approach. Statistics in
Medicine, 15(3):283-292, 1996.

See Also

Icens fit.mult

Examples

data(HIV.dk)

fit.baseline Fit a piecewise contsnt intesity model for interval censored data.

Description

Utility function

Fits a binomial model with logaritmic link, with y as outcome and covariates in rates.frame to
estimate rates in the inttervals between breaks.

Usage

fit.baseline(y, rates.frame, start)

Arguments

y Binary vector of outcomes

rates.frame Dataframe expanded from the original data by expand.data

start Starting values for the rate parameters. If not supplied, then starting values are
generated.

Value

A glm object, with binomial error and logaritmic link.

Author(s)

Martyn Plummer, <plummer@iarc.fr>

See Also

fit.add fit.mult

78 fit.mult The Epi package

fit.mult Fits a multiplicative relative risk model to interval censored data.

Description

Utility function.

The model fitted assumes a piecewise constant baseline rate in intervals specified by the argument
breaks, and a multiplicative relative risk function.

Usage

fit.mult(y, rates.frame, cov.frame, start)

Arguments

y Binary vector of outcomes

rates.frame Dataframe expanded from the original data by expand.data, cooresponding to
covariates for the rate parameters.

cov.frame do., but covariates corresponding to the formula argument of Icens

start Starting values for the rate parameters. If not supplied, then starting values are
generated.

Details

The model is fitted by alternating between two generalized linear models where one estimates the
underlying rates in the intervals, and the other estimates the log-relative risks.

Value

A list with three components:

rates A glm object from a binomial model with log-link, estimating the baseline rates.

cov A glm object from a binomial model with complementary log-log link, estimating the
log-rate-ratios

niter Nuber of iterations, a scalar

Author(s)

Martyn Plummer, <plummer@iarc.fr>, Bendix Carstensen, <bxc@steno.dk>

References

B Carstensen: Regression models for interval censored survival data: application to HIV infection in
Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

CP Farrington: Interval censored survival data: a generalized linear modelling approach. Statistics in
Medicine, 15(3):283-292, 1996.

See Also

Icens fit.add

Examples

data(HIV.dk)

The Epi package float 79

float Calculate floated variances

Description

Given a fitted model object, the float() function calculates floating variances (a.k.a. quasi-variances)
for a given factor in the model.

Usage

float(object, factor, iter.max=50)

Arguments

object a fitted model object

factor character string giving the name of the factor of interest. If this is not given, the first
factor in the model is used.

iter.max Maximum number of iterations for EM algorithm

Details

The float() function implements the ”floating absolute risk” proposal of Easton, Peto and
Babiker(1992). This is an alternative way of presenting parameter estimates for factors in regression
models, which avoids some of the difficulties of treatment contrasts. It was originally designed for
epidemiological studies of relative risk, but the idea is widely applicable.

Treatment contrasts are not orthogonal. Consequently, the variances of treatment contrast estimates
may be inflated by a poor choice of reference level, and the correlations between them may also be
high. The float() function associates each level of the factor with a ”floating” variance (or
quasi-variance), including the reference level. Floating variances are not real variances, but they can be
used to calculate the variance error of contrast by treating each level as independent.

Plummer (2003) showed that floating variances can be derived from a covariance structure model
applied to the variance-covariance matrix of the contrast estimates. This model can be fitted by
minimizing the Kullback-Leibler information divergence between the true distribution of the parameter
estimates and the simplified distribution given by the covariance structure model. Fitting is done using
the EM algorithm.

In order to check the goodness-of-fit of the floating variance model, the float() function compares the
standard errors predicted by the model with the standard errors derived from the true
variance-covariance matrix of the parameter contrasts. The maximum and minimum ratios between
true and model-based standard errors are calculated over all possible contrasts. These should be within
5 percent, or the use of the floating variances may lead to invalid confidence intervals.

Value

An object of class floated. This is a list with the following components

coef A vector of coefficients. These are the same as the treatment contrasts but the
reference level is present with coefficient 0.

var A vector of floating (or quasi-) variances

limits The bounds on the accuracy of standard errors over all possible contrasts

Note

Menezes(1999) and Firth and Menezes (2004) take a slightly different approach to this problem, using
a pseudo-likelihood approach to fit the quasi-variance model. Their work is implemented in the
package qvcalc.

80 ftrend The Epi package

Author(s)

Martyn Plummer

References

Easton DF, Peto J and Babiker GAG (1991) Floating absolute risk: An alternative to relative risk in
survival and case control analysis avoiding an arbitrary reference group. Statistics in Medicine, 10,
1025-1035.

Firth D and Mezezes RX (2004) Quasi-variances. Biometrika 91, 65-80.

Menezes RX(1999) More useful standard errors for group and factor effects in generalized linear
models. D.Phil. Thesis, Department of Statistics, University of Oxford.

Plummer M (2003) Improved estimates of floating absolute risk, Statistics in Medicine, 23, 93-104.

See Also

ftrend, qvcalc

ftrend Fit a floating trend to a factor in generalized linear model

Description

Fits a ”floating trend” model to the given factor in a glm in a generalized linear model by centering
covariates.

Usage

ftrend(object, ...)

Arguments

object fitted lm or glm object. The model must not have an intercept term

... arguments to the nlm function

Details

ftrend() calculates ”floating trend” estimates for factors in generalized linear models. This is an
alternative to treatment contrasts suggested by Greenland et al. (1999). If a regression model is fitted
with no intercept term, then contrasts are not used for the first factor in the model. Instead, there is
one parameter for each level of this factor. However, the interpretation of these parameters, and their
variance-covariance matrix, depends on the numerical coding used for the covariates. If an arbitrary
constant is added to the covariate values, then the variance matrix is changed.

The ftrend() function takes the fitted model and works out an optimal constant to add to the
covariate values so that the covariance matrix is approximately diagonal. The parameter estimates can
then be treated as approximately independent, thus simplifying their presentation. This is particularly
useful for graphical display of dose-response relationships (hence the name).

Greenland et al. (1999) originally suggested centring the covariates so that their weighted mean, using
the fitted weights from the model, is zero. This heuristic criterion is improved upon by ftrend()

which uses the same minimum information divergence criterion as used by Plummer (2003) for floating
variance calculations. ftrend() calls nlm() to do the minimization and will pass optional arguments
to control it.

The Epi package gmortDK 81

Value

A list with the following components

coef coefficients for model with adjusted covariates.

vcov Variance-covariance matrix of adjusted coefficients.

Note

The ”floating trend” method is an alternative to the ”floating absolute risk” method, which is
implemented in the function float().

Author(s)

Martyn Plummer

References

Greenland S, Michels KB, Robins JM, Poole C and Willet WC (1999) Presenting statistical
uncertainty in trends and dose-response relations, American Journal of Epidemiology, 149, 1077-1086.

See Also

float

gmortDK Population mortality rates for Denmark in 5-years age groups.

Description

The gmortDK data frame has 418 rows and 21 columns.

Format

This data frame contains the following columns:

agr: Age group, 0:0–4, 5:5–9,..., 90:90+.
per: Calendar period, 38: 1938–42, 43: 1943–47, ..., 88:1988-92.
sex: Sex, 1: male, 2: female.
risk: Number of person-years in the Danish population.
dt: Number of deaths.
rt: Overall mortality rate in cases per 1000 person-years, i.e. rt=1000*dt/risk

Cause-specific mortality rates in cases per 1000 person-years:
r1: Infections
r2: Cancer.
r3: Tumors, benign, unspecific nature.
r4: Endocrine, metabolic.
r5: Blood.
r6: Nervous system, psychiatric.
r7: Cerebrovascular.
r8: Cardiac.
r9: Respiratory diseases, excl. cancer.
r10: Liver, excl. cancer.
r11: Digestive, other.
r12: Genitourinary.
r13: Ill-defined symptoms.
r14: All other, natural.
r15: Violent.

82 hivDK The Epi package

Source

Statistics Denmark, National board of health provided original data. Michael Andersson grouped the
causes of death.

See Also

thoro, mortDK

Examples

data(gmortDK)

hivDK hivDK: seroconversion in a cohort of Danish men

Description

Data from a survey of HIV-positivity of a cohort of Danish men followed by regular tests from 1983 to
1989.

Usage

data(hivDK)

Format

A data frame with 297 observations on the following 7 variables.

id ID of the person

entry Date of entry to the study. Date variable.

well Date last seen seronegative. Date variable.

ill Date first seen seroconverted. Date variable.

bth Year of birth minus 1950.

pyr Annual number of sexual partners.

us Indicator of wheter the person has visited the USA.

Source

Mads Melbye, Statens Seruminstitut.

References

Becker N.G. and Melbye M.: Use of a log-linear model to compute the empirical survival curve from
interval-censored data, with application to data on tests for HIV-positivity, Australian Journal of
Statistics, 33, 125–133, 1990.

Melbye M., Biggar R.J., Ebbesen P., Sarngadharan M.G., Weiss S.H., Gallo R.C. and Blattner W.A.:
Seroepidemiology of HTLV-III antibody in Danish homosexual men: prevalence, transmission and
disease outcome. British Medical Journal, 289, 573–575, 1984.

Examples

data(hivDK)

str(hivDK)

The Epi package Icens 83

Icens Fits a regression model to interval censored data.

Description

The models fitted assumes a piecewise constant baseline rate in intervals specified by the argument
breaks, and for the covariates either a multiplicative relative risk function (default) or an additive
excess risk function.

Usage

Icens(first.well, last.well, first.ill,

formula, model.type=c("MRR","AER"), breaks,

boot=FALSE, alpha=0.05, keep.sample=FALSE,

data)

Arguments

first.well Time of entry to the study, i.e. the time first seen without event. Numerical vector.

last.well Time last seen without event. Numerical vector.

first.ill Time first seen with event. Numerical vector.

formula Model formula for the log relative risk.

model.type Which model should be fitted.

breaks Breakpoints between intervals in which the underlying timescale is assumed constant.
Any observation outside the range of breaks is discarded.

boot Should bootstrap be performed to produce confidence intervals for parameters. If a
number is given this will be the number of bootsrap samples. The default is 1000.

alpha 1 minus the confidence level.

keep.sample Should the bootstrap sample of the parameter values be returned?

data Data frame in which the times and formula are interpreted.

Details

The model is fitted by calling either fit.mult or fit.add.

Value

An object of class "Icens": a list with three components:

rates A glm object from a binomial model with log-link, estimating the baseline rates, and
the excess risk if "AER" is specfied.

cov A glm object from a binomial model with complementary log-log link, estimating the
log-rate-ratios. Only if "MRR" is specfied.

niter Nuber of iterations, a scalar

boot.ci If boot=TRUE, a 3-column matrix with estimates and 1-alpha confidence intervals for
the parameters in the model.

sample A matrix of the parameterestimates from the bootstrapping. Rows refer to
parameters, columns to bootstrap samples.

Author(s)

Martyn Plummer, <plummer@iarc.fr>, Bendix Carstensen, <bxc@steno.dk>

84 lep The Epi package

References

B Carstensen: Regression models for interval censored survival data: application to HIV infection in
Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

CP Farrington: Interval censored survival data: a generalized linear modelling approach. Statistics in
Medicine, 15(3):283-292, 1996.

See Also

fit.add fit.mult

Examples

data(hivDK)

Convert the dates to fractional years so that rates are

expressed in cases per year

for(i in 2:4) hivDK[,i] <- cal.yr(hivDK[,i])

m.RR <- Icens(entry, well, ill,

model="MRR", formula=~pyr+us, breaks=seq(1980,1990,5),

data=hivDK)

Currently the MRR model returns a list with 2 glm objects.

round(ci.lin(m.RR$rates), 4)

round(ci.lin(m.RR$cov, Exp=TRUE), 4)

There is actually a print method:

print(m.RR)

m.ER <- Icens(entry, well, ill,

model="AER", formula=~pyr+us, breaks=seq(1980,1990,5),

data=hivDK)

There is actually a print method:

print(m.ER)

lep An unmatched case-control study of leprosy incidence

Description

The lep data frame has 1370 rows and 7 columns. This was an unmatched case-control study in which
incident cases of leprosy in a region of N. Malawi were compared with population controls.

Format

This data frame contains the following columns:

id: subject identifier: a numeric vector
d: case/control status: a numeric vector (1=case, 0=control)

age: a factor with levels 5-9 10-14 15-19 20-24 25-29 30-44 45+

sex: a factor with levels male, female
bcg: presence of vaccine scar, a factor with levels no yes

school: schooling, a factor with levels none 1-5yrs 6-8yrs sec/tert

house: housing, a factor with levels brick sunbrick wattle temp

The Epi package Lexis 85

Source

The study is described in more detail in Clayton and Hills, Statistical Models in Epidemiology, Oxford
University Press, Oxford:1993.

Examples

data(lep)

Lexis Create a Lexis object

Description

Create an object of class Lexis to represent follow-up on multiple time scales.

Usage

Lexis(entry, exit, duration, entry.status = 0, exit.status = 0, id, data,

merge=TRUE, states)

Arguments

entry a named list of entry times. Each element of the list is a numeric variable
representing the entry time on the named time scale. All time scales must have the
same units (e.g. years). The names of the timescales must be different from any
column name in date.

exit a named list of exit times.

duration a numeric vector giving the duration of follow-up.

entry.status a vector or a factor giving the status at entry

exit.status a vector or factor giving status at exit. Any change in status during follow-up is
assumed to take place exactly at the exit time.

id a vector giving a unique identity value for each row of the Lexis object.

data an optional data frame, list, or environment containing the variables. If not found in
data, the variables are taken from the environment from which Lexis was called.

merge a logical flag. If TRUE then the data argument will be coerced to a data frame and
then merged with the resulting Lexis object.

states A vector of labels for the states. If given, the state variables lex.Cst and lex.Xst

are returned as factors with identical levels attributes.

Details

The analysis of long-term population-based follow-up studies typically requires multiple time scales to
be taken into account, such as age, calender time, or time since an event. A Lexis object is a data
frame with additional attributes that allows these multiple time dimensions of follow-up to be managed.

Separate variables for current end exit state allows representation of multistate data.

Lexis objects are named after the German demographer Wilhelm Lexis (1837-1914), who is credited
with the invention of the ”Lexis diagram” for representing population dynamics simultaneously by
several timescales.

The Lexis function creates a minimal Lexis object with only those variables required to define the
follow-up history in each row. Additional variables can be merged into the Lexis object using the
merge method for Lexis objects. This is the default.

There are also merge, subset and transform methods for Lexis objects. They work as the
corresponding methods for data-frames but ensures that the result is a Lexis object.

86 Lexis The Epi package

Value

An object of class Lexis. This is represented as a data frame with a column for each time scale, and
additional columns with the following names:

lex.id Identification of the inidvidual

lex.dur Duration of follow-up

lex.Cst Entry status (Current state), i.e. the state in which the follow up takes place.

lex.Xst Exit status (eXit state), i.e. that state taken up after dur in lex.Cst.

If merge=TRUE then the Lexis object will also contain all variables from the data argument.

Note

Only two of the three arguments entry, exit and duration need to be given. If the third parameter is
missing, it is imputed. If duration is given, it must be the same on all time scales.

entry, exit must be numeric, using Date variables will cause some of the utilites to crash.
Transformation by cal.yr is recommended.

If only either exit or duration are supplied it is assumed that entry is 0. This is only meaningful
(and therefore checked) if there is only one timescale.

If any of entry.status or exit.status are of mode character, they will both be converted to factors.

If entry.status is not given, then its class is automatically set to that of exit.status. If
exit.status is factor, the value of entry.status is set to the first level. This may be highly
undesirable, and therefore noted. For example, if exit.status is character the first level will be the
first in the alphabetical ordering; slightly unfortunate if values are c("Well","Diseased"). If
exit.status is logical, the value of entry.status set to FALSE.

If entry.status or exit.status are factors or character, the corresponding state variables in the
returned Lexis object, lex.Cst and lex.Xst will be (unordered) factors with identical levels, namely
the union of the levels of entry.status and exit.status.

Author(s)

Martyn Plummer

See Also

plot.Lexis, splitLexis, cutLexis, merge.Lexis, subset.Lexis, transform.Lexis,
summary.Lexis, timeScales, timeBand, entry, exit, dur

Examples

A small bogus cohort

xcoh <- structure(list(id = c("A", "B", "C"),

birth = c("14/07/1952", "01/04/1954", "10/06/1987"),

entry = c("04/08/1965", "08/09/1972", "23/12/1991"),

exit = c("27/06/1997", "23/05/1995", "24/07/1998"),

fail = c(1, 0, 1)),

.Names = c("id", "birth", "entry", "exit", "fail"),

row.names = c("1", "2", "3"),

class = "data.frame")

Convert the character dates into numerical variables (fractional years)

xcoh <- cal.yr(xcoh, format="%d/%m/%Y", wh=2:4)

See how it looks

xcoh

The Epi package Lexis.diagram 87

Define as Lexis object with timescales calendar time and age

Lcoh <- Lexis(entry = list(per=entry),

exit = list(per=exit, age=exit-birth),

exit.status = fail,

data = xcoh)

Lcoh

Using character states may have undesired effects:

xcoh$Fail <- c("Dead","Well","Dead")

Lexis(entry = list(per=entry),

exit = list(per=exit, age=exit-birth),

exit.status = Fail,

data = xcoh)

unless you order the levels correctly

(xcoh$Fail <- factor(xcoh$Fail, levels=c("Well","Dead")))

Lexis(entry = list(per=entry),

exit = list(per=exit, age=exit-birth),

exit.status = Fail,

data = xcoh)

Lexis.diagram Plot a Lexis diagram

Description

Draws a Lexis diagram, optionally with life lines from a cohort, and with lifelines of a cohort if
supplied. Intended for presentation purposes.

Usage

Lexis.diagram(age = c(0, 60),

alab = "Age",

date = c(1940, 2000),

dlab = "Calendar time",

int = 5,

lab.int = 2*int,

col.life = "black",

lwd.life = 2,

age.grid = TRUE,

date.grid = TRUE,

coh.grid = FALSE,

col.grid = gray(0.7),

lwd.grid = 1,

las = 1,

entry.date = NA,

entry.age = NA,

exit.date = NA,

exit.age = NA,

risk.time = NA,

birth.date = NA,

fail = NA,

cex.fail = 1.1,

pch.fail = c(NA,16),

col.fail = rep(col.life, 2),

data = NULL, ...)

88 Lexis.diagram The Epi package

Arguments

age Numerical vector of length 2, giving the age-range for the diagram

alab Label on the age-axis.

date Numerical vector of length 2, giving the calendar time-range for the diagram

dlab label on the calendar time axis.

int The interval between grid lines in the diagram. If a vector of length two is given, the
first value will be used for spacing of age-grid and the second for spacing of the date
grid.

lab.int The interval between labelling of the grids.

col.life Colour of the life lines.

lwd.life Width of the life lines.

age.grid Should grid lines be drawn for age?

date.grid Should grid lines be drawn for date?

coh.grid Should grid lines be drawn for birth cohorts (diagonals)?

col.grid Colour of the grid lines.

lwd.grid Width of the grid lines.

las How are the axis labels plotted?

entry.date, entry.age, exit.date, exit.age, risk.time, birth.date

Numerical vectors defining lifelines to be plotted in the diagram. At least three must
be given to produce lines. Not all subsets of three will suffice, the given subset has to
define life lines. If insufficient data is given, no life lines are produced.

fail Logical of event status at exit for the persons whose life lines are plotted.

pch.fail Symbols at the end of the life lines for censorings (fail==0) and failures (fail != 0).

cex.fail Expansion of the status marks at the end of life lines.

col.fail Character vector of length 2 giving the colour of the failure marks for censorings and
failures respectively.

data Dataframe in which to interpret the arguments.

... Arguments to be passed on to the initial call to plot.

Details

The default unit for supplied variables are (calendar) years. If any of the variables entry.date,
exit.date or birth.date are of class ”Date” or if any of the variables entry.age, exit.age or
risk.time are of class ”difftime”, they will be converted to calendar years, and plotted correctly in
the diagram. The returned dataframe will then have colums of classes ”Date” and ”difftime”.

Value

If sufficient information on lifelines is given, a data frame with one row per person and columns with
entry ages and dates, birth date, risk time and status filled in.

Side effect: a plot of a Lexis diagram is produced with the life lines in it is produced. This will be the
main reason for using the function. If the primary aim is to illustrate follow-up of a cohort, then it is
better to represent the follow-up in a Lexis object, and use the generic plot.Lexis function.

Author(s)

Bendix Carstensen, http://www.biostat.ku.dk/~bxc

See Also

Life.lines, Lexis.lines

http://www.biostat.ku.dk/~bxc

The Epi package Lexis.lines 89

Examples

Lexis.diagram(entry.age = c(3,30,45),

risk.time = c(25,5,14),

birth.date = c(1970,1931,1925.7),

fail = c(TRUE,TRUE,FALSE))

LL <- Lexis.diagram(entry.age = sample(0:50, 17, replace=TRUE),

risk.time = sample(5:40, 17, r=TRUE),

birth.date = sample(1910:1980, 17, r=TRUE),

fail = sample(0:1, 17, r=TRUE),

cex.fail = 1.1,

lwd.life = 2)

Identify the persons' entry and exits

text(LL$exit.date, LL$exit.age, paste(1:nrow(LL)), col="red", font=2, adj=c(0,1))

text(LL$entry.date, LL$entry.age, paste(1:nrow(LL)), col="blue", font=2, adj=c(1,0))

data(nickel)

attach(nickel)

LL <- Lexis.diagram(age=c(10,100), date=c(1900,1990),

entry.age=age1st, exit.age=ageout, birth.date=dob,

fail=(icd %in% c(162,163)), lwd.life=1,

cex.fail=0.8, col.fail=c("green","red"))

abline(v=1934, col="blue")

nickel[1:10,]

LL[1:10,]

Lexis.lines Draw life lines in a Lexis diagram.

Description

Add life lines to a Lexis diagram.

Usage

Lexis.lines(entry.date = NA,

exit.date = NA,

birth.date = NA,

entry.age = NA,

exit.age = NA,

risk.time = NA,

col.life = "black",

lwd.life = 2,

fail = NA,

cex.fail = 1,

pch.fail = c(NA, 16),

col.fail = col.life,

data = NULL)

Arguments

entry.date, entry.age, exit.date, exit.age, risk.time, birth.date

Numerical vectors defining lifelines to be plotted in the diagram. At least three must
be given to produce lines. Not all subsets of three will suffice, the given subset has to
define life lines. If insufficient data is given, no life lines are produced.

col.life Colour of the life lines.

90 Life.lines The Epi package

lwd.life Width of the life lines.

fail Logical of event status at exit for the persons whose life lines are plotted.

cex.fail The size of the status marks at the end of life lines.

pch.fail The status marks at the end of the life lines.

col.fail Colour of the marks for censorings and failures respectively.

data Data frame in which to interpret values.

Value

If sufficient information on lifelines is given, a data frame with one row per person and columns with
entry ages and dates, birth date, risk time and status filled in.

Side effect: Life lines are added to an existing Lexis diagram. Lexis.lines adds life lines to an existing
plot.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.biostat.ku.dk/~bxc

See Also

Lexis.diagram, Life.lines

Examples

Lexis.diagram(entry.age = c(3,30,45),

risk.time = c(25,5,14),

birth.date = c(1970,1931,1925.7),

fail = c(TRUE,TRUE,FALSE))

Lexis.lines(entry.age = sample(0:50, 100, replace=TRUE),

risk.time = sample(5:40, 100, r=TRUE),

birth.date = sample(1910:1980, 100, r=TRUE),

fail = sample(0:1,100,r=TRUE),

cex.fail = 0.5,

lwd.life = 1)

Life.lines Compute dates/ages for life lines in a Lexis diagram

Description

Fills out the missing information for follow up of persons in a Lexis diagram if sufficient information is
given.

Usage

Life.lines(entry.date = NA,

exit.date = NA,

birth.date = NA,

entry.age = NA,

exit.age = NA,

risk.time = NA)

http://www.biostat.ku.dk/~bxc

The Epi package lls 91

Arguments

entry.date, exit.date,birth.date, entry.age, exit.age, risk.time

Vectors defining lifelines to be plotted in the diagram. At least three must be given
to produce a result. Not all subsets of three will suffice, the given subset has to define
life lines. If insufficient data is given, nothing is returned and a warning is given.

Value

Data frame with variables entry.date, entry.age, exit.date, exit.age, risk.time, birth.date,
with all entries computed for each person. If any of entry.date, exit.date or birth.date are of
class Date or if any of entry.age, exit.age or risk.time are of class difftime the date variables will
be of class Date and the other three of class difftime.

See Also

Lexis.diagram, Lexis.lines

Examples

(Life.lines(entry.age = c(3,30,45),

risk.time = c(25,5,14),

birth.date = c(1970,1931,1925.7)))

Draw a Lexis diagram

Lexis.diagram()

Compute entry and exit age and date.

(LL <- Life.lines(entry.age = c(3,30,45),

risk.time = c(25,5,14),

birth.date = c(1970,1931,1925.7)))

segments(LL[,1], LL[,2], LL[,3], LL[,4]) # Plot the life lines.

Compute entry and exit age and date, supplying a date variable

bd <- (c(1970,1931,1925.7) - 1970) * 365.25

class(bd) <- "Date"

(Life.lines(entry.age = c(3,30,45),

risk.time = c(25,5,14),

birth.date = bd))

lls Functions to manage and explore the workspace

Description

These functions help you to find out what has gone wrong and to start afresh if needed.

Usage

lls(pos = 1, pat = "", all=FALSE, print=TRUE)

clear()

Arguments

pos Numeric. What position in the search path do you want listed.

pat Character. List only objects that have this string in their name.

92 lungDK The Epi package

all Logical. Should invisible objects be printed too - see ls to which this argument is
passed.

print Logical. Should the result be printed?

Details

lls is designed to give a quick overview of the name, mode, class and dimension of the object in your
workspace. They may not always be what you think they are.

clear clears all your objects from workspace, and all attached objects too — it only leaves the loaded
packages in the search path; thus allowing a fresh start without closing and restarting R.

Value

lls returns a data frame with four character variables: codename, codemode, codeclass and codesize
and one row per object in the workspace (if pos=1). size is either the length or the dimension of the
object. The data frame is by default printed with left-justified columns.

Author(s)

lls: Unknown. Modified by Bendix Carstensen from a long forgotten snatch.

clear: Michael Hills / David Clayton.

Examples

x <- 1:10

y <- rbinom(10, 1, 0.5)

m1 <- glm(y ~ x, family=binomial)

M <- matrix(1:20, 4, 5)

.M <- M

lls()

clear()

lls()

lungDK Male lung cancer incidence in Denmark

Description

Male lung cancer cases and population riks time in Denmark, for the period 1943–1992 in ages 40–89.

Usage

data(lungDK)

Format

A data frame with 220 observations on the following 9 variables.

A5: Left end point of the age interval, a numeric vector.
P5: Left enpoint of the period interval, a numeric vector.
C5: Left enpoint of the birth cohort interval, a numeric vector.
up: Indicator of upper trianges of each age by period rectangle in the Lexis diagram. (up=(P5-A5-C5)/5).
Ax: The mean age of diagnois (at risk) in the triangle.
Px: The mean date of diagnosis (at risk) in the triangle.
Cx: The mean date of birth in the triangle, a numeric vector.

The Epi package merge.data.frame 93

D: Number of diagnosed cases of male lung cancer.
Y: Risk time in the male population, person-years.

Details

Cases and person-years are tabulated by age and date of diagnosis (period) as well as date of birth
(cohort) in 5-year classes. Each observation in the dataframe correponds to a triangle in a Lexis
diagram. Triangles are classified by age and date of diagnosis, period of diagnosis and date of birth, all
in 5-year groupings.

Source

The Danish Cancer Registry and Statistics Denmark.

References

For a more thorough exposition of statistical inference in the Lexis diagram, see:
http://staff.pubhealth.ku.dk/~bxc/APC/notes.pdf

Examples

data(lungDK)

Draw a Lexis diagram and show the number of cases in it.

attach(lungDK)

Lexis.diagram(age=c(40,90), date=c(1943,1993), coh.grid=TRUE)

text(Px, Ax, paste(D), cex=0.7)

merge.data.frame Merge data frame with a Lexis object

Description

Merge two data frames, or a data frame with a Lexis object.

Usage

S3 method for class 'data.frame'
merge(x, y, ...)

Arguments

x, y data frames, or objects to be coerced into one

... optional arguments for the merge method

Details

This version of merge.default masks the one in the base. It ensures that, if either x or y is a Lexis

object, then merge.Lexis is called.

Value

A merged Lexis object or data frame.

Author(s)

Martyn Plummer

http://staff.pubhealth.ku.dk/~bxc/APC/notes.pdf

94 merge.Lexis The Epi package

See Also

Lexis

merge.Lexis Merge a Lexis object with a data frame

Description

Merge additional variables from a data frame into a Lexis object.

Usage

S3 method for class 'Lexis'
merge(x, y, id, by, ...)

Arguments

x an object of class Lexis

y a data frame

id the name of the variable in y to use for matching against the variable lex.id in x.

by if matching is not done by id, a vector of variable names common to both x and y

... optional arguments to be passed to merge.data.frame

Details

A Lexis object can be considered as an augmented data frame in which some variables are
time-dependent variables representing follow-up. The Lexis function produces a minimal object
containing only these time-dependent variables. Additional variables may be added to a Lexis object
using the merge method.

Value

A Lexis object with additional columns taken from the merged data frame.

Note

The variable given as the by.y argument must not contain any duplicate values in the data frame y.

Author(s)

Martyn Plummer

See Also

merge.data.frame, subset.Lexis

The Epi package mh 95

mh Mantel-Haenszel analyses of cohort and case-control studies

Description

This function carries out Mantel-Haenszel comparisons in tabulated data derived from both cohort and
case-control studies.

Usage

mh(cases, denom, compare=1, levels=c(1, 2), by=NULL,

cohort=!is.integer(denom), confidence=0.9)

Arguments

cases the table of case frequencies (a multiway array).

denom the denominator table. For cohort studies this should be a table of person-years
observation, while for case-control studies it should be a table of control frequencies.

compare the dimension of the table which defines the comparison groups (can be referred to
either by number or by name). The default is the first dimension of the table.

levels a vector identifying (either by number or by name) the two groups to be compared.
The default is the first two levels of the selected dimension.

by the dimensions not to be collapsed in the Mantel-Haenszel computations. Thus, this
argument defines the structure of the resulting tables of estimates and tests.

cohort an indicator whether the data derive from a cohort or a case-control study. If the
denominator table is stored as an integer, a case-control study is assumed.

confidence the approximate coverage probability for the confidence intervals to be computed.

Details

Multiway tables of data are accepted and any two levels of any dimension can be chosen as defining the
comparison groups. The rate (odds) ratio estimates and the associated significance tests may be
collapsed over all the remaining dimensions of the table, or over selected dimensions only, so that
tables of estimates and tests are computed.

Value

A list giving tables of rate (odds) ratio estimates, their standard errors (on a log scale), lower and
upper confidence limits, chi-squared tests (1 degree of freedom) and the corresponding p-values. The
result list also includes numerator and denominator of the Mantel-Haenszel estimates (q, r), and score
test statistics and score variance (u, v).

Side Effects

None

References

Clayton, D. and Hills, M. : Statistical Models in Epidemiology, Oxford University Press (1993).

See Also

Lexis

96 mortDK The Epi package

Examples

If d and y are 3-way tables of cases and person-years

observation formed by tabulation by two confounders

(named "C1" and "C2") an exposure of interest ("E"),

the following command will calculate an overall

Mantel-Haenszel comparison of the first two exposure

groups.

#

Generate some bogus data

dnam <- list(E=c("low","medium","high"), C1=letters[1:2], C2=LETTERS[1:4])

d <- array(sample(2:80, 24),

dimnames=dnam, dim=sapply(dnam, length))

y <- array(abs(rnorm(24, 227, 50)),

dimnames=dnam, dim=sapply(dnam, length))

mh(d, y, compare="E")

#

Or, if exposure levels named "low" and "high" are to be

compared and these are not the first two levels of E :

#

mh(d, y, compare="E", levels=c("low", "high"))

#

If we wish to carry out an analysis which controls for C1,

but examines the results at each level of C2:

#

mh(d, y, compare="E", by="C2")

#

It is also possible to look at rate ratios for every

combination of C1 and C2 :

#

mh(d, y, compare="E", by=c("C1", "C2"))

#

If dimensions and levels of the table are unnamed, they must

be referred to by number.

#

mortDK Population mortality rates for Denmark in 1-year age-classes.

Description

The mortDK data frame has 1820 rows and 21 columns.

Format

This data frame contains the following columns:

age: Age class, 0–89, 90:90+.
per: Calendar period, 38: 1938–42, 43: 1943–47, ..., 88:1988-92.
sex: Sex, 1: male, 2: female.
risk: Number of person-years in the Danish population.
dt: Number of deaths.
rt: Overall mortality rate in cases per 1000 person-years, i.e. rt=1000*dt/risk

Cause-specific mortality rates in cases per 1000 person-years:
r1: Infections
r2: Cancer.

The Epi package msdata.Lexis 97

r3: Tumors, benign, unspecific nature.
r4: Endocrine, metabolic.
r5: Blood.
r6: Nervous system, psychiatric.
r7: Cerebrovascular.
r8: Cardiac.
r9: Respiratory diseases, excl. cancer.
r10: Liver, excl. cancer.
r11: Digestive, other.
r12: Genitourinary.
r13: Ill-defined symptoms.
r14: All other, natural.
r15: Violent.

Source

Statistics Denmark, National board of health provided original data. Michael Andersson grouped the
causes of death.

See Also

thoro, gmortDK

Examples

data(mortDK)

msdata.Lexis Create a dataframe suitable for use with the mstate package.

Description

The mstate package requires input in the form of a stacked dataset with specific variable names. This
is provided by this function. The resulting dataframe contains the same information as the result of a
call to stack.Lexis.

Usage

msdata(obj, ...)

S3 method for class 'Lexis'
msdata(obj, time.scale = timeScales(obj)[1], ...)

Arguments

obj A Lexis object.

time.scale Name or number of timescale in the Lexis object.

... Not used.

Value

A dataframe with the Lexis specific variables stripped, and with the following added: id, Tstart,
Tstop, from, to, trans, status, which are used in the mstate package.

98 ncut The Epi package

Author(s)

Bendix Carstensen, <bxc@steno.dk>, www.biostat.ku.dk/~bxc

See Also

stack.Lexis

Examples

data(DMlate)

str(DMlate)

dml <- Lexis(entry=list(Per=dodm,Age=dodm-dobth,DMdur=0),

exit=list(Per=dox),

exit.status=factor(!is.na(dodth),labels=c("DM","Dead")),

data=DMlate)

dmi <- cutLexis(dml, cut=dml$doins, new.state="Ins", pre="DM")

summary(dmi)

ms.dmi <- msdata.Lexis(dmi)

summary(dmi)

Check that all the transitions and person-years got across.

with(ms.dmi, rbind(table(status,trans),

tapply(Tstop-Tstart,trans,sum)))

ncut Function to group a variable in intervals.

Description

Cuts a continuous variable in intervals. As opposed to cut which returns a factor, ncut returns a
numeric variable.

Usage

ncut(x, breaks, type="left")

Arguments

x A numerical vector.

breaks Vector of breakpoints. NA will results for values below min(x) if type="left", for
values above max(x) if type="right" and for values outside range(x) if type="mid"

type Character: one of c("left","right","mid"), indicating whether the left, right or
midpoint of the intervals defined in breaks is returned.

Details

The function uses the base function findInterval.

Value

A numerical vector of the same length as x.

Author(s)

Bendix Carstensen, Steno Diabetes Center, <bxc@steno.dk>, http://www.biostat.ku.dk/~bxc/,
with essential input from Martyn Plummer, IARC.

www.biostat.ku.dk/~bxc
http://www.biostat.ku.dk/~bxc/

The Epi package nice 99

See Also

cut, findInterval

Examples

br <- c(-2,0,1,2.5)

x <- c(rnorm(10), br, -3, 3)

cbind(x, l=ncut(x, breaks=br, type="l"),

m=ncut(x, breaks=br, type="m"),

r=ncut(x, breaks=br, type="r"))[order(x),]

x <- rnorm(200)

plot(x, ncut(x, breaks=br, type="l"), pch=16, col="blue", ylim=range(x))

abline(0, 1)

abline(v=br)

points(x, ncut(x, breaks=br, type="r"), pch=16, col="red")

points(x, ncut(x, breaks=br, type="m"), pch=16, col="green")

nice Nice breakpoints

Description

The function calls pretty for linear scale. For a log-scale nice are computed using a set of specified
number in a decade.

Usage

nice(x, log = F, lpos = c(1, 2, 5), ...)

Arguments

x Numerical vector to

log Logical. Is the scale logartimic?

lpos Numeric. Numbers between 1 and 10 giving the desired breakpoints in this interval.

... Arguments passed on to pretty if log=FALSE

Value

A vector of breakpoints.

Author(s)

Bendix Carstensen, <bxc@steno.dk>, http://www.biostat.ku.dk/~bxc

See Also

pretty

Examples

nice(exp(rnorm(100)), log=TRUE)

http://www.biostat.ku.dk/~bxc

100 occup The Epi package

nickel A Cohort of Nickel Smelters in South Wales

Description

The nickel data frame has 679 rows and 7 columns. The data concern a cohort of nickel smelting
workers in South Wales and are taken from Breslow and Day, Volume 2. For comparison purposes,
England and Wales mortality rates (per 1,000,000 per annum) from lung cancer (ICDs 162 and 163),
nasal cancer (ICD 160), and all causes, by age group and calendar period, are supplied in the dataset
ewrates.

Format

This data frame contains the following columns:

id: Subject identifier (numeric)
icd: ICD cause of death if dead, 0 otherwise (numeric)

exposure: Exposure index for workplace (numeric)
dob: Date of birth (numeric)

age1st: Age at first exposure (numeric)
agein: Age at start of follow-up (numeric)
ageout: Age at end of follow-up (numeric)

Source

Breslow NE, and Day N, Statistical Methods in Cancer Research. Volume II: The Design and Analysis
of Cohort Studies. IARC Scientific Publications, IARC:Lyon, 1987.

Examples

data(nickel)

str(nickel)

occup A small occupational cohort

Description

This is the data that is behind the illustrative Lexis diagram in Breslow & Day’s book on case-control
studies.

Usage

data(occup)

Format

A data frame with 13 observations on the following 4 variables.

AoE a numeric vector, Age at Entry

DoE a numeric vector, Date of entry

DoX a numeric vector, Date of eXit

Xst eXit status D-event, W-withdrawal, X-censoring

The Epi package pctab 101

References

Breslow & Day: Statistical Methods in Cancer Research, vol 1: The analysis of case-control studies,
figure 2.2, p. 48.

Examples

data(occup)

lx <- Lexis(entry = list(per=DoE, age=AoE),

exit = list(per=DoX),

entry.status = "W",

exit.status = Xst,

data = occup)

plot(lx)

Split follow-up in 5-year classes

sx <- splitLexis(lx, seq(1940,1960,5), "per")

sx <- splitLexis(sx, seq(40, 60,5), "age")

plot(sx)

Plot with a bit more paraphernalia and a device to get

the years on the same physical scale on both axes

ypi <- 2.5 # Years per inch

x11(height=15/ypi+1, width=20/ypi+1) # add an inch in each direction for

par(mai=c(3,3,1,1)/4, mgp=c(3,1,0)/1.6) # the margins set in inches by mai=

plot(sx,las=1,col="black",lty.grid=1,lwd=2,type="l",

xlim=c(1940,1960),ylim=c(40,55),xaxs="i",yaxs="i",yaxt="n",

xlab="Calendar year", ylab="Age (years)")

axis(side=2, at=seq(40,55,5), las=1)

points(sx,pch=c(NA,16)[(sx$lex.Xst=="D")+1])

box()

Annotation with the person-years

PY.ann.Lexis(sx, cex=0.8)

pctab Create percentages in a table

Description

Computes percentages and a margin of totals along a given margin of a table.

Usage

pctab(TT, margin = length(dim(TT)), dec=1)

Arguments

TT A table or array object

margin Which margin should be the the total?

dec How many decimals should be printed? If 0 or FALSE nothing is printed

Value

A table, where all dimensions except the one specified margin has two extra levels named ”All” (where
all entries are 100) and ”N”. The function prints the table with dec decimals.

102 plot.Lexis The Epi package

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.biostat.ku.dk/~bxc.

See Also

addmargins

Examples

Aye <- sample(c("Yes","Si","Oui"), 177, replace=TRUE)

Bee <- sample(c("Hum","Buzz"), 177, replace=TRUE)

Sea <- sample(c("White","Black","Red","Dead"), 177, replace=TRUE)

A <- table(Aye, Bee, Sea)

A

ftable(pctab(A))

ftable(pctab(addmargins(A, 1), 3))

round(ftable(pctab(addmargins(A, 1), 3), row.vars=3), 1)

plot.Lexis Lexis diagrams

Description

The follow-up histories represented by a Lexis object can be plotted using one or two dimensions. The
two dimensional plot is a Lexis diagram showing follow-up time simultaneously on two time scales.

Usage

S3 method for class 'Lexis'
plot(x=Lexis(entry=list(Date=1900,Age=0), exit=list(Age=0)),

time.scale = NULL, type="l", breaks="lightgray", ...)

S3 method for class 'Lexis'
points(x, time.scale = options()[["Lexis.time.scale"]] , ...)

S3 method for class 'Lexis'
lines(x, time.scale = options()[["Lexis.time.scale"]], ...)

S3 method for class 'Lexis'
PY.ann(x, time.scale = options()[["Lexis.time.scale"]], digits=1, ...)

Arguments

x An object of class Lexis. The default is a bogus Lexis object, so that plot.Lexis
can be called without the first argument and still produce a(n empty) Lexis diagram.
Unless arguments xlim and ylim are given in this case the diagram is looking pretty
daft.

time.scale A vector of length 1 or 2 giving the time scales to be plotted either by name or
numerical order

type Character indication what to draw: ”n” nothing (just set up the diagram), ”l” -
liefelines, ”p” - endpoints of follow-up, ”b” - both lifelines and endpoints.

breaks a string giving the colour of grid lines to be drawn when plotting a split Lexis object.
Grid lines can be suppressed by supplying the value NULL to the breaks argument

digits Numerical. How many digits after the demimal points should be when plotting the
person-years.

... Further graphical parameters to be passed to the plotting methods.

Grids can be drawn (behind the life lines) using the following parameters in plot:

http://www.biostat.ku.dk/~bxc

The Epi package plot.Lexis 103

• grid If logical, a background grid is set up using the axis ticks. If a list, the first
component is used as positions for the vertical lines and the last as positions for
the horizontal. If a nunerical vector, grids on both axes are set up using the
distance between the numbers.

• col.grid="lightgray" Color of the background grid.

• lty.grid=2 Line type for the grid.

• coh.grid=FALSE Should a 45 degree grid be plotted?

Details

The plot method for Lexis objects traces “life lines” from the start to the end of follow-up. The
points method plots points at the end of the life lines.

If time.scale is of length 1, the life lines are drawn horizontally, with the time scale on the X axis and
the id value on the Y axis. If time.scale is of length 2, a Lexis diagram is produced, with diagonal
life lines plotted against both time scales simultaneously.

If lex has been split along one of the time axes by a call to splitLexis, then vertical or horizontal
grid lines are plotted (on top of the life lines) at the break points.

PY.ann writes the length of each (segment of) life line at the middle of the line. Not advisable to use
with large cohorts. Another example is in the example file for occup.

Author(s)

Martyn Plummer

See Also

Lexis, splitLexis

Examples

A small bogus cohort

xcoh <- structure(list(id = c("A", "B", "C"),

birth = c("14/07/1952", "01/04/1957", "10/06/1987"),

entry = c("04/08/1965", "08/09/1972", "23/12/1991"),

exit = c("27/06/1997", "23/05/1995", "24/07/1998"),

fail = c(1, 0, 1)),

.Names = c("id", "birth", "entry", "exit", "fail"),

row.names = c("1", "2", "3"),

class = "data.frame")

Convert the character dates into numerical variables (fractional years)

xcoh$bt <- cal.yr(xcoh$birth, format="%d/%m/%Y")

xcoh$en <- cal.yr(xcoh$entry, format="%d/%m/%Y")

xcoh$ex <- cal.yr(xcoh$exit , format="%d/%m/%Y")

See how it looks

xcoh

Define as Lexis object with timescales calendar time and age

Lcoh <- Lexis(entry = list(per=en),

exit = list(per=ex, age=ex-bt),

exit.status = fail,

data = xcoh)

Default plot of follow-up

plot(Lcoh)

104 plotEst The Epi package

Show follow-up time

PY.ann(Lcoh)

Show exit status

plot(Lcoh, type="b")

Same but failures only

plot(Lcoh, type="b", pch=c(NA,16)[Lcoh$fail+1])

With a grid and deaths as endpoints

plot(Lcoh, grid=0:10*10, col="black")

points(Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1])

With a lot of bells and whistles:

plot(Lcoh, grid=0:20*5, col="black", xaxs="i", yaxs="i",

xlim=c(1960,2010), ylim=c(0,50), lwd=3, las=1)

points(Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1], col="red", cex=1.5)

plotEst Plot estimates with confidence limits

Description

Plots parameter estimates with confidence intervals, annotated with parameter names. A dot is plotted
at the estimate and a horizontal line extending from the lower to the upper limit is superimposed.

Usage

plotEst(ests,

y = dim(ests)[1]:1,

txt = rownames(ests),

txtpos = y,

ylim = range(y)-c(0.5,0),

xlab = "",

xtic = nice(ests[!is.na(ests)], log = xlog),

xlim = range(xtic),

xlog = FALSE,

pch = 16,

cex = 1,

lwd = 2,

col = "black",

col.lines = col,

col.points = col,

vref = NULL,

grid = FALSE,

col.grid = gray(0.9),

restore.par = TRUE)

linesEst(ests, y = dim(ests)[1]:1, pch = 16, cex = 1, lwd = 2,

col="black", col.lines=col, col.points=col)

pointsEst(ests, y = dim(ests)[1]:1, pch = 16, cex = 1, lwd = 2,

col="black", col.lines=col, col.points=col)

Arguments

ests Matrix with three columns: Estimate, lower limit, upper limit. If a model object is
supplied, ci.lin is invoked for this object first.

The Epi package plotEst 105

y Vertical position of the lines.

txt Annotation of the estimates.

txtpos Vertical position of the text. Defaults to y.

ylim Extent of the vertical axis.

xlab Annotation of the horizontal axis.

xtic Location of tickmarks on the x-axis.

xlim Extent of the x-axis.

xlog Should the x-axis be logarithmic?

pch What symbol should be used?

cex Expansion of the symbol.

col Colour of the points and lines.

col.lines Colour of the lines.

col.points Colour of the symbol.

lwd Thickness of the lines.

vref Where should vertical reference line(s) be drawn?

grid If TRUE, vertical gridlines are drawn at the tickmarks. If a numerical vector is given
vertical lines are drawn at grid.

col.grid Colour of the vertical gridlines

restore.par Should the graphics parameters be restored? If set to FALSE the coordinate system
will still be available for additional plotting, and par("mai") will still have the very
large value set in order to make room for the labelling of the estimates.

Details

plotEst make a news plot, whereas linesEst and pointsEst (identical functions) adds to an existing
plot.

Value

NULL

Author(s)

Bendix Carstensen, <bxc@steno.dk>, http://www.pubhealth.ku.dk/~bxc

See Also

ci.lin

Examples

Bogus data and a linear model

f <- factor(sample(letters[1:5], 100, replace=TRUE))

x <- rnorm(100)

y <- 5 + 2 * as.integer(f) + 0.8 * x + rnorm(100) * 2

m1 <- lm(y ~ f)

Produce some confidence intervals for contrast to first level

(cf <- summary(m1)$coef[2:5,1:2] %*% rbind(c(1,1,1), 1.96*(c(0,-1,1))))

Plots with increasing amount of bells and whistles

par(mfcol=c(3,2), mar=c(3,3,2,1))

http://www.pubhealth.ku.dk/~bxc

106 plotevent The Epi package

plotEst(cf)

plotEst(cf, grid=TRUE)

plotEst(cf, grid=TRUE, cex=2, lwd=3)

plotEst(cf, grid=TRUE, cex=2, col.points="red", col.lines="green")

plotEst(cf, grid=TRUE, cex=2, col.points="red", col.lines="green",

xlog=TRUE, xtic=c(1:8), xlim=c(0.8,6))

rownames(cf)[1] <- "Contrast to fa:\n\n fb"

plotEst(cf, grid=TRUE, cex=2, col.points=rainbow(4), col.lines=rainbow(4), vref=1)

plotevent Plot Equivalence Classes

Description

For interval censored data, segments of times between last.well and first.ill are plotted for each
conversion in the data. It also plots the equivalence classes.

Usage

plotevent(last.well, first.ill, data)

Arguments

last.well Time at which the individuals are last seen negative for the event

first.ill Time at which the individuals are first seen positive for the event

data Data with a transversal shape

Details

last.well and first.ill should be written as character in the function.

Value

Graph

Author(s)

Delphine Maucort-Boulch, Bendix Carstensen, Martyn Plummer

References

Carstensen B. Regression models for interval censored survival data: application to HIV infection in
Danish homosexual men.Stat Med. 1996 Oct 30;15(20):2177-89.

Lindsey JC, Ryan LM. Tutorial in biostatistics methods for interval-censored data.Stat Med. 1998 Jan
30;17(2):219-38.

See Also

Icens

The Epi package projection.ip 107

projection.ip Projection of columns of a matrix.

Description

Projects the columns of the matrix M on the space spanned by the columns of the matrix X, with
respect to the inner product defined by weight: <x|y>=sum(x*w*y).

Usage

projection.ip(X, M, orth = FALSE, weight = rep(1, nrow(X)))

Arguments

X Matrix defining the space to project onto.

M Matrix of columns to be projected. Must have the same number of rows as X.

orth Should the projection be on the orthogonal complement to span(X)?

weight Weights defining the inner product. Numerical vector of length nrow(X).

Value

A matrix of full rank with columns in span(X).

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.pubhealth.ku.dk/~bxc, with help from Peter
Dalgaard.

See Also

detrend

rateplot Functions to plot rates from a table classified by age and calendar time (pe-
riod)

Description

Produces plots of rates versus age, connected within period or cohort (Aplot), rates versus period
connected within age-groups (Pplot) and rates and rates versus date of birth cohort (Cplot).
rateplot is a wrapper for these, allowing to produce the four classical displays with a single call.

Usage

rateplot(rates,

which = c("ap","ac","pa","ca"),

age = as.numeric(dimnames(rates)[[1]]),

per = as.numeric(dimnames(rates)[[2]]),

grid = FALSE,

a.grid = grid,

p.grid = grid,

c.grid = grid,

ygrid = grid,

http://www.pubhealth.ku.dk/~bxc

108 rateplot The Epi package

col.grid = gray(0.9),

a.lim = range(age, na.rm=TRUE) + c(0,diff(range(age))/30),

p.lim = range(per, na.rm=TRUE) + c(0,diff(range(age))/30),

c.lim = NULL,

ylim = range(rates[rates>0], na.rm=TRUE),

at = NULL,

labels = paste(at),

a.lab = "Age at diagnosis",

p.lab = "Date of diagnosis",

c.lab = "Date of birth",

ylab = "Rates",

type = "l",

lwd = 2,

lty = 1,

log.ax = "y",

las = 1,

ann = FALSE,

a.ann = ann,

p.ann = ann,

c.ann = ann,

xannx = 1/20,

cex.ann = 0.8,

a.thin = seq(1, length(age), 2),

p.thin = seq(1, length(per), 2),

c.thin = seq(2, length(age) + length(per) - 1, 2),

col = par("fg"),

a.col = col,

p.col = col,

c.col = col,

...)

Aplot(rates, age = as.numeric(dimnames(rates)[[1]]),

per = as.numeric(dimnames(rates)[[2]]), grid = FALSE,

a.grid = grid, ygrid = grid, col.grid = gray(0.9),

a.lim = range(age, na.rm=TRUE), ylim = range(rates[rates>0], na.rm=TRUE),

at = NULL, labels = paste(at), a.lab = names(dimnames(rates))[1],

ylab = deparse(substitute(rates)), type = "l", lwd = 2, lty = 1,

col = par("fg"), log.ax = "y", las = 1, c.col = col, p.col = col,

c.ann = FALSE, p.ann = FALSE, xannx = 1/20, cex.ann = 0.8,

c.thin = seq(2, length(age) + length(per) - 1, 2),

p.thin = seq(1, length(per), 2), p.lines = TRUE,

c.lines = !p.lines, ...)

Pplot(rates, age = as.numeric(dimnames(rates)[[1]]),

per = as.numeric(dimnames(rates)[[2]]), grid = FALSE,

p.grid = grid, ygrid = grid, col.grid = gray(0.9),

p.lim = range(per, na.rm=TRUE) + c(0,diff(range(per))/30),

ylim = range(rates[rates>0], na.rm=TRUE), p.lab = names(dimnames(rates))[2],

ylab = deparse(substitute(rates)), at = NULL, labels = paste(at),

type = "l", lwd = 2, lty = 1, col = par("fg"), log.ax = "y",

las = 1, ann = FALSE, cex.ann = 0.8, xannx = 1/20,

a.thin = seq(1, length(age), 2), ...)

Cplot(rates, age = as.numeric(rownames(rates)),

per = as.numeric(colnames(rates)), grid = FALSE,

c.grid = grid, ygrid = grid, col.grid = gray(0.9),

The Epi package rateplot 109

c.lim = NULL, ylim = range(rates[rates>0], na.rm=TRUE),

at = NULL, labels = paste(at), c.lab = names(dimnames(rates))[2],

ylab = deparse(substitute(rates)), type = "l", lwd = 2, lty = 1,

col = par("fg"), log.ax = "y", las = 1, xannx = 1/20, ann = FALSE,

cex.ann = 0.8, a.thin = seq(1, length(age), 2), ...)

Arguments

rates A two-dimensional table (or array) with rates to be plotted. It is assumed that the
first dimension is age and the second is period.

which A character vector with elements from c("ap","ac","apc","pa","ca"), indication
which plots should be produced. One plot per element is produced. The first letter
indicates the x-axis of the plot, the remaining which groups should be connected, i.e.
"pa" will plot rates versus period and connect age-classes, and "apc" will plot rates
versus age, and connect both periods and cohorts.

age Numerical vector giving the means of the age-classes. Defaults to the rownames of
rates as numeric.

per Numerical vector giving the means of the periods. Defaults to the columnnames of
rates as numeric.

grid Logical indicating whether a background grid should be drawn.

a.grid Logical indicating whether a background grid on the age-axis should be drawn. If
numerical it indicates the age-coordinates of the grid.

p.grid do. for the period.

c.grid do. for the cohort.

ygrid do. for the rate-dimension.

col.grid The colour of the grid.

a.lim Range for the age-axis.

p.lim Range for the period-axis.

c.lim Range for the cohort-axis.

ylim Range for the y-axis (rates).

at Position of labels on the y-axis (rates).

labels Labels to put on the y-axis (rates).

a.lab Text on the age-axis. Defaults to ”Age”.

p.lab Text on the period-axis. Defaults to ”Date of diagnosis”.

c.lab Text on the cohort-axis. Defaults to ”Date of birth”.

ylab Text on the rate-axis. Defaults to the name of the rate-table.

type How should the curves be plotted. Defaults to "l".

lwd Width of the lines. Defaults to 2.

lty Which type of lines should be used. Defaults to 1, a solid line.

log.ax Character with letters from "apcyr", indicating which axes should be logarithmic.
"y" and "r" both refer to the rate scale. Defaults to "y".

las see par.

ann Should the curves be annotated?

a.ann Logical indicating whether age-curves should be annotated.

p.ann do. for period-curves.

c.ann do. for cohort-curves.

xannx The fraction that the x-axis is expanded when curves are annotated.

110 rateplot The Epi package

cex.ann Expansion factor for characters annotating curves.

a.thin Vector of integers indicating which of the age-classes should be labelled.

p.thin do. for the periods.

c.thin do. for the cohorts.

col Colours for the curves.

a.col Colours for the age-curves.

p.col do. for the period-curves.

c.col do. for the cohort-curves.

p.lines Should rates from the same period be connected?

c.lines Should rates from the same cohort be connected?

... Additional arguments pssed on to matlines when plotting the curves.

Details

Zero values of the rates are ignored. They are neiter in the plot nor in the calculation of the axis ranges.

Value

NULL. The function is used for its side-effect, the plot.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.pubhealth.ku.dk/~bxc/

See Also

apc.frame

Examples

data(blcaIT)

attach(blcaIT)

Table of rates:

bl.rate <- tapply(D, list(age,period), sum) /

tapply(Y, list(age,period), sum)

bl.rate

The four classical plots:

par(mfrow=c(2,2))

rateplot(bl.rate*10^6)

The labels on the vertical axis could be nicer:

rateplot(bl.rate*10^6, at=10^(-1:3), labels=c(0.1,1,10,100,1000))

More bells an whistles

par(mfrow=c(1,3), mar=c(3,3,1,1), oma=c(0,3,0,0), mgp=c(3,1,0)/1.6)

rateplot(bl.rate*10^6, ylab="", ann=TRUE, which=c("AC","PA","CA"),

at=10^(-1:3), labels=c(0.1,1,10,100,1000),

col=topo.colors(11), cex.ann=1.2)

http://www.pubhealth.ku.dk/~bxc/

The Epi package Relevel 111

Relevel Reorder and combine levels of a factor

Description

The levels of a factor are re-ordered so that the levels specified by ref is first and the others are moved
down. This is useful for contr.treatment contrasts which take the first level as the reference. Levels
may also be combined.

Usage

Relevel(f, ref, first = TRUE, collapse="+")

Arguments

f An unordered factor

ref The names or numbers of levels to be the first. If ref is a list, factor levels
mentioned in each list element are combined. If the list is named the names are used
as new factor levels.

first Should the levels mentioned in ref come before those not?

collapse String used when collapsing factor levels.

Value

An unordered factor.

Examples

ff <- factor(sample(letters[1:5], 100, replace=TRUE))

table(ff, Relevel(ff, list(AB=1:2, "Dee"=4, c(3,5))))

table(ff, rr=Relevel(ff, list(5:4, Z=c("c","a")), coll="-und-", first=FALSE))

ROC Function to compute and draw ROC-curves.

Description

Computes sensitivity, specificity and positive and negative predictive values for a test based on
dichotomizing along the variable test, for prediction of stat. Alternatively a model formula may
given, in which case the the linear predictor is the test variable and the response is taken as the true
status variable. Plots curves of these and a ROC-curve.

Usage

ROC(test = NULL,

stat = NULL,

form = NULL,

plot = c("sp", "ROC"),

PS = is.null(test),

PV = TRUE,

MX = TRUE,

MI = TRUE,

AUC = TRUE,

112 ROC The Epi package

grid = seq(0,100,10),

col.grid = gray(0.9),

cuts = NULL,

lwd = 2,

data = parent.frame(),

...)

Arguments

test Numerical variable used for prediction.

stat Logical variable of true status.

form Formula used in a logistic regression. If this is given, test and stat are ignored. If
not given then both test and stat must be supplied.

plot Character variable. If ”sp”, the a plot of sensitivity, specificity and predictive values
against test is produced, if ”ROC” a ROC-curve is plotted. Both may be given.

PS logical, if TRUE the x-axis in the plot ”ps”-plot is the the predicted probability for
stat==TRUE, otherwise it is the scale of test if this is given otherwise the scale of
the linear predictor from the logistic regression.

PV Should sensitivity, specificity and predictive values at the optimal cutpoint be given
on the ROC plot?

MX Should the “optimal cutpoint” (i.e. where sens+spec is maximal) be indicated on the
ROC curve?

MI Should model summary from the logistic regression model be printed in the plot?

AUC Should the area under the curve (AUC) be printed in the ROC plot?

grid Numeric or logical. If FALSE no background grid is drawn. Otherwise a grid is
drawn on both axes at grid percent.

col.grid Colour of the grid lines drawn.

cuts Points on the test-scale to be annotated on the ROC-curve.

lwd Thickness of the curves

data Data frame in which to interpret the variables.

... Additional arguments for the plotting of the ROC-curve. Passed on to plot

Value

A list with two components:

res dataframe with variables sn, sp, pvp, pvn and fv. The latter is the unique values of
test (for PS==FALSE) or linear predictor from the logistic regression

lr glm object with the logistic regression result used for construction of the ROC curve

0, 1 or 2 plots are produced according to the setting of plot.

Author(s)

Bendix Carstensen, Steno Diabetes Center \& University of Copenhagen,
http://www.biostat.ku.dk/~bxc

Examples

x <- rnorm(100)

z <- rnorm(100)

w <- rnorm(100)

tigol <- function(x) 1 - (1 + exp(x))^(-1)

y <- rbinom(100, 1, tigol(0.3 + 3*x + 5*z + 7*w))

ROC(form = y ~ x + z, plot="ROC")

http://www.biostat.ku.dk/~bxc

The Epi package S.typh 113

S.typh Salmonella Typhimurium outbreak 1996 in Denmark.

Description

Matched case-control study of food poisoning.

Format

A data frame with 136 observations on the following 15 variables:

id: Person identification
set: Matched set indicator
case: Case-control status (1:case, 0:control
age: Age of individual
sex: Sex of individual (1:male, 2:female)

abroad: Within the last two weeks visited abroad (1:yes, 0:no)
beef: Within the last two weeks eaten beef
pork: Within the last two weeks eaten pork
veal: Within the last two weeks eaten veal

poultry: Within the last two weeks eaten poultry
liverp: Within the last two weeks eaten liverpaste

veg: Within the last two weeks eaten vegetables
fruit: Within the last two weeks eaten fruit
egg: Within the last two weeks eaten eggs

plant7: Within the last two weeks eaten meat from plant no. 7

Details

In the fall of 1996 an unusually large number of Salmonella Typhimurium cases were recorded in Fyn
county in Denmark. The Danish Zoonosis Centre set up a matched case-control study to find the
sources. Cases and two age-, sex- and residency-matched controls were telephone interviewed about
their food intake during the last two weeks.

The participants were asked at which retailer(s) they had purchased meat. Retailers were
independently of this linked to meat processing plants, and thus participants were linked to meat
processing plants. This way persons could be linked to (amongst other) plant no 7.

Source

Tine Hald.

References

Molbak K and Hald T: Salmonella Typhimurium outbreak in late summer 1996. A Case-control study.
(In Danish: Salmonella typhimurium udbrud paa Fyn sensommeren 1996. En case-kontrol
undersogelse.) Ugeskrift for Laeger., 159(36):5372-7, 1997.

Examples

data(S.typh)

114 splitLexis The Epi package

splitLexis Split follow-up time in a Lexis object

Description

The splitLexis function divides each row of a Lexis object into disjoint follow-up intervals according
to the supplied break points.

Usage

splitLexis(lex, breaks, time.scale, tol=.Machine$double.eps^0.5)

Arguments

lex an object of class Lexis

breaks a vector of break points

time.scale the name or number of the time scale to be split

tol numeric value >= 0. Intervals shorter than this value are dropped

Value

An object of class Lexis with multiple rows for each row of the argument lex. Each row of the new
Lexis object contains the part of the follow-up interval that falls inside one of the time bands defined
by the break points.

The variables representing the various time scales, are appropriately updated in the new Lexis object.
The entry and exit status variables are also updated according to the rule that the entry status is
retained until the end of follow-up. All other variables are considered to represent variables that are
constant in time, and so are replicated across all rows having the same id value.

Note

The splitLexis() function divides follow-up time into intervals using breakpoints that are common to
all rows of the Lexis object. To split a Lexis object by break points that are unique to each row, use
the cut.Lexis function.

Author(s)

Martyn Plummer

See Also

timeBand, cutLexis, summary.Lexis

Examples

A small bogus cohort

xcoh <- structure(list(id = c("A", "B", "C"),

birth = c("14/07/1952", "01/04/1954", "10/06/1987"),

entry = c("04/08/1965", "08/09/1972", "23/12/1991"),

exit = c("27/06/1997", "23/05/1995", "24/07/1998"),

fail = c(1, 0, 1)),

.Names = c("id", "birth", "entry", "exit", "fail"),

row.names = c("1", "2", "3"),

class = "data.frame")

The Epi package stack.Lexis 115

Convert the character dates into numerical variables (fractional years)

xcoh$bt <- cal.yr(xcoh$birth, format="%d/%m/%Y")

xcoh$en <- cal.yr(xcoh$entry, format="%d/%m/%Y")

xcoh$ex <- cal.yr(xcoh$exit , format="%d/%m/%Y")

See how it looks

xcoh

Define as Lexis object with timescales calendar time and age

Lcoh <- Lexis(entry = list(per=en),

exit = list(per=ex, age=ex-bt),

exit.status = fail,

data = xcoh)

Default plot of follow-up

plot(Lcoh)

With a grid and deaths as endpoints

plot(Lcoh, grid=0:10*10, col="black")

points(Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1])

With a lot of bells and whistles:

plot(Lcoh, grid=0:20*5, col="black", xaxs="i", yaxs="i",

xlim=c(1960,2010), ylim=c(0,50), lwd=3, las=1)

points(Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1], col="red", cex=1.5)

Split time along two time-axes

(x2 <- splitLexis(Lcoh, breaks = seq(1900,2000,5), time.scale="per"))

(x2 <- splitLexis(x2, breaks = seq(0,80,5), time.scale="age"))

str(x2)

Tabulate the cases and the person-years

summary(x2)

tapply(status(x2,"exit")==1, list(timeBand(x2,"age","left"),

timeBand(x2,"per","left")), sum)

tapply(dur(x2), list(timeBand(x2,"age","left"),

timeBand(x2,"per","left")), sum)

stack.Lexis Functions to facilitate analysis of multistate models.

Description

stack.Lexis produces a stacked object suited for analysis of several transitions simultaneously.

Usage

S3 method for class 'Lexis'
stack(x, ...)

tmat(x, ...)

S3 method for class 'Lexis'
tmat(x, ...)

Arguments

x A Lexis object.

... Not used.

116 start.Lexis The Epi package

Value

tmat.Lexis returns a square transition matrix, classified by the levels of lex.Cst and lex.Xst, it has
a 1 for every transition occurring and NA in all oter entries.

stack.Lexis returns a dataframe to be used for analysis of multistate data when all transitions are
modelled together, for example if some parameters are required to be the same for different transitions.

The dataframe has same variables as the original Lexis object, but with each record duplicated as
many times as there are possible exits from the current state, lex.Cst. Two variables are added:
lex.Fail, an indicator of wheter an event for the transition names in lex.Tr has occurred or not.
lex.Tr is a factor with levels made up of combinations of the levels of lex.Cst and lex.Xst that do
occur together in x, joined by a ”->”.

Author(s)

Bendix Carstensen, <bxc@steno.dk>, www.biostat.ku.dk/~bxc

See Also

splitLexis cutLexis Lexis

Examples

data(DMlate)

str(DMlate)

dml <- Lexis(entry=list(Per=dodm, Age=dodm-dobth, DMdur=0),

exit=list(Per=dox),

exit.status=factor(!is.na(dodth),labels=c("DM","Dead")),

data=DMlate)

dmi <- cutLexis(dml, cut=dml$doins, new.state="Ins", pre="DM")

summary(dmi)

ls.dmi <- stack(dmi)

str(ls.dmi)

Check that all the transitions and person-years got across.

with(ls.dmi, rbind(table(lex.Fail,lex.Tr),

tapply(lex.dur,lex.Tr,sum)))

start.Lexis Time series methods for Lexis objects

Description

Extract the entry time, exit time, status, or duration of follow-up from a Lexis object.

Usage

entry(x, time.scale = NULL)

exit(x, time.scale = NULL)

status(x, at="exit")

dur(x)

Arguments

x an object of class Lexis.

time.scale a string or integer indicating the time scale. If omitted, all times scales are used.

at string indicating the time point(s) at which status is to be measured.

www.biostat.ku.dk/~bxc

The Epi package stat.table 117

Value

The entry and exit functions return a vector of entry times and exit times, respectively, on the
requested time scale. If multiple time scales are requested, then a matrix is returned.

The status function returns a vector giving the status at entry or exit and dur returns a vector with
the lengths of the follow-up intervals.

Author(s)

Martyn Plummer

See Also

Lexis

stat.table Tables of summary statistics

Description

stat.table creates tabular summaries of the data, using a limited set of functions. A list of index
variables is used to cross-classify summary statistics. It does NOT work inside with()!

Usage

stat.table(index, contents = count(), data, margins = FALSE)

S3 method for class 'stat.table'
print(x, width=7, digits,...)

Arguments

index A factor, or list of factors, used for cross-classification. If the list is named, then the
names will be used when printing the table. This feature can be used to give
informative labels to the variables.

contents A function call, or list of function calls. Only a limited set of functions may be called
(See Details below). If the list is named, then the names will be used when printing
the table.

data an optional data frame containing the variables to be tabulated. If this is omitted,
the variables will be searched for in the calling environment.

margins a logical scalar or vector indicating which marginal tables are to be calculated. If a
vector, it should be the same length as the index argument: values corresponding to
TRUE will be retained in marginal tables.

x an object of class stat.table.

width a scalar giving the minimum column width when printing.

digits a scalar, or named vector, giving the number of digits to print after the decimal
point. If a named vector is used, the names should correspond to one of the
permitted functions (See Details below) and all results obtained with that function
will be printed with the same precision.

... further arguments passed to other print methods.

118 stat.table The Epi package

Details

This function is similar to tapply, with some enhancements: multiple summaries of multiple variables
may be mixed in the same table; marginal tables may be calculated; columns and rows may be given
informative labels; pretty printing may be controlled by the associated print method.

This function is not a replacement for tapply as it also has some limitations. The only functions that
may be used in the contents argument are: count, mean, weighted.mean, sum, quantile, median,
IQR, max, min, ratio, and percent.

The count() function, which is the default, simply creates a contingency table of counts. The other
functions are applied to each cell created by combinations of the index variables.

Value

An object of class stat.table, which is a multi-dimensional array. A print method is available to
create formatted one-way and two-way tables.

Note

The permitted functions in the contents list are defined inside stat.table. They have the same
interface as the functions callable from the command line, except for two differences. If there is an
argument na.rm then its default value is always TRUE. A second difference is that the quantile

function can only produce a single quantile in each call.

Author(s)

Martyn Plummer

See Also

table, tapply, mean, weighted.mean, sum, quantile, median, IQR, max, min, ratio, percent, count

Examples

data(warpbreaks)

A one-way table

stat.table(tension,list(count(),mean(breaks)),data=warpbreaks)

The same table with informative labels

stat.table(index=list("Tension level"=tension),list(N=count(),

"mean number of breaks"=mean(breaks)),data=warpbreaks)

A two-way table

stat.table(index=list(tension,wool),mean(breaks),data=warpbreaks)

The same table with margins over tension, but not wool

stat.table(index=list(tension,wool),mean(breaks),data=warpbreaks,

margins=c(TRUE, FALSE))

A table of column percentages

stat.table(list(tension,wool), percent(tension), data=warpbreaks)

Cell percentages, with margins

stat.table(list(tension,wool),percent(tension,wool), margin=TRUE,

data=warpbreaks)

A table with multiple statistics

Note how each statistic has its own default precision

a <- stat.table(index=list(wool,tension),

contents=list(count(),mean(breaks),percent (wool)),

data=warpbreaks)

The Epi package stattable.funs 119

print(a)

Print the percentages rounded to the nearest integer

print(a, digits=c(percent=0))

stattable.funs Special functions for use in stat.table

Description

These functions may be used as contents arguments to the function stat.table. They are defined
internally in stat.table and have no independent existence.

Usage

count(id)

ratio(d,y,scale=1, na.rm=TRUE)

percent(...)

Arguments

id numeric vector in which identical values identify the same individual.

d, y numeric vectors of equal length (d for Deaths, y for person-Years)

scale a scalar giving a value by which the ratio should be multiplied

na.rm a logical value indicating whether NA values should be stripped before computation
proceeds.

... a list of variables taken from the index argument to stat.table

Value

When used as a contents argument to stat.table, these functions create the following tables:

count If given without argument (count()) it returns a contingency table of counts. If
given an id argument it returns a table of the number of different values of id in
each cell, i.e. how many persons contribute in each cell.

ratio returns a table of values scale * sum(d)/sum(y)

percent returns a table of percentages of the classifying variables. Variables that are in the
index argument to stat.table but not in the call to percent are used to define
strata, within which the percentages add up to 100.

Author(s)

Martyn Plummer

See Also

stat.table

120 summary.Lexis The Epi package

subset.Lexis Subsetting Lexis objects

Description

Return subsets of Lexis objects which meet conditions

Usage

S3 method for class 'Lexis'
subset(x, ...)

Arguments

x an object of class Lexis

... additional arguments to be passed to subset.data.frame

Details

The subset method for Lexis objects works exactly as the method for data frames.

Value

A Lexis object with selected rows and columns.

Author(s)

Martyn Plummer

See Also

Lexis, merge.Lexis

summary.Lexis Summarize transitions and risk time from a Lexis object

Description

A two-way table of records and transitions classified by states (lex.Cst and lex.Xst), as well the risk
time in each state.

Usage

S3 method for class 'Lexis'
summary(object, simplify=TRUE, scale=1, ...)

S3 method for class 'summary.Lexis'
print(x, ..., digits=2)

The Epi package tbox 121

Arguments

object A Lexis object.

x A summary.Lexis object.

simplify Should rows with 0 follow-up time be dropped?

scale Scaling factor for the rates. The calculated rates are multiplied by this number.

digits How many digits should be used for printing?

... Other parameters - ignored

Value

An object of class summary.Lexis, a list with two components, Transitions and Rates, each one a
matrix with rows classified by states where persons spend time, and columns classified by stated to
which persons transit. The Transitions contains number of transitions and has two extra columns of
total number events and total risk time attached. The Rates contians the transitions rates.

Author(s)

Bendix Carstensen, <bxc@steno.dk>

Examples

data(nickel)

Lung cancer deaths and other deaths are coded 1 and 2

nic <- Lexis(data=nickel,

entry=list(age=agein),

exit=list(age=ageout,cal=ageout+dob,tfh=ageout-age1st),

exit.status=factor((icd > 0) + (icd %in% c(162,163)),

labels=c("Alive","Other","Lung")))

str(nic)

head(nic)

summary(nic)

tbox Draw boxes and arrows for illustration of multistate models.

Description

Boxes can be drawn with text (tbox) or a cross (dbox), and arrows pointing between the boxes
(boxarr) can be drawn automatically not overlapping the boxes. Lexis objects can be used to
generate displays with person-years and events.

Usage

tbox(txt, x, y, wd, ht,

font=2, lwd=2,

col.txt="black",

col.border="black",

col.bg="transparent")

dbox(x, y, wd, ht=wd,

font=2, lwd=2, cwd=5,

col.cross="black",

col.border="black",

col.bg="transparent")

boxarr(b1, b2, offset=FALSE, pos=0.45, ...)

122 tbox The Epi package

boxes(obj, ...)

S3 method for class 'Lexis'
boxes(obj, file,

detailed = FALSE,

boxpos = FALSE,

wmult = 1.5,

hmult = 1.5*wmult,

cex = 1.5,

show = inherits(obj, "Lexis"),

show.Y = show,

scale.Y = 1,

digits.Y = 1,

show.D = show,

scale.D = FALSE,

digits.D = as.numeric(as.logical(scale.D)),

eq.wd = TRUE,

eq.ht = TRUE,

wd,

ht,

subset = NULL,

exclude = NULL,

font = 2,

lwd = 2,

col.txt = "black",

col.border = col.txt,

col.bg = "transparent",

col.arr = "black",

lwd.arr = 2,

font.arr = 2,

txt.arr = NULL,

col.txt.arr = col.arr,

offset.arr = 2, ...)

fillarr(x1, y1, x2, y2, gap=2, fr=0.8,

angle=17, lwd=2, length=par("pin")[1]/30, ...)

Arguments

txt Text to be placed inside the box.

x x-coordinate of center of box.

y y-coordinate of center of box.

wd width of boxes in percentage of the plot width.

ht height of boxes in percentage of the plot height.

font Font for the text. Defaults to 2 (=bold).

lwd Line width of the boxborders.

col.txt Color for the text in boxes.

col.border Color of the box border.

col.bg Background color for the interior of the box.

... Arguments to be passed on to the call of other functions.

cwd Width of the lines in the cross.

col.cross Color of the cross.

b1 Coordinates of the ”from” box. A vector with 4 components, x, y, w, h.

b2 Coordinates of the ”to” box; like b1.

The Epi package tbox 123

offset Logical. Should the arrow be offset a bit to the left.

pos Numerical between 0 and 1, determines the position of the point on the arrow which
is returned.

obj A Lexis object, or a transition matrix; that is a matrix

file Name of the file with the code reproducing the plot.

detailed Should the output of R-code be detailed, showing all parameters?

boxpos If TRUE the boxes are positioned equidistantly on a circle, if FALSE (the default) you
are queried to click on the screen for the positions. This argument can also be a
named list with elements x and y, both numerical vectors, giving the centers of the
boxes.

wmult Multiplier for the width of the box relative to the width of the text in the box.

hmult Multiplier for the height of the box relative to the height of the text in the box.

cex Character expansion for text in the box.

show Should person-years and transitions be put in the plot. Ignored if obj is not a Lexis

object.

show.Y Should person-years be put in the boxes. Ignored if obj is not a Lexis object.

scale.Y What scale should be used for annotation of person-years.

digits.Y How many digits after the decimal point should be used for the person-years.

show.D Should transitions be put alongside the arrows. Ignored if obj is not a Lexis object.

scale.D If this a scalar, rates instead of no. transitions are printed at the arrows, scaled by
scale.D.

digits.D How many digits after the decimal point should be used for the rates.

eq.wd Should boxes all have the same width?

eq.ht Should boxes all have the same height?

subset Draw only boxes and arrows for a subset of the states. Can be given either as a
numerical vector or character vector state names.

exclude Exclude states from the plot. The complementary of subset. Ignored if subset is
given.

col.arr Color of the arrows between boxes. A vector of character strings, the arrows are
referred to as the row-wise sequence of non-NA elements of the transition matrix.
Thus the first ones refer to the transitions out of state 1, in order of states.

lwd.arr Line withs of the arrows.

font.arr Font of the text annotation the arrows.

txt.arr Text put on the arrows.

col.txt.arr Colors for text on the arrows.

offset.arr The amount offset between arrows that go between the same pair of boxes (two-way
transitions).

x1 x-coordinate of the starting point.

y1 y-coordinate of the starting point.

x2 x-coordinate of the end point.

y2 y-coordinate of the end point.

gap Length of the gap between the box and the ends of the arrows.

fr Length of the arrow as the fraction of the distance between the boxes. Ignored unless
given explicitly, in which case any value given for gap is ignored.

angle What angle should the arrow-head have?

length Length of the arrow head in inches. Defaults to 1/30 of the physical width of the plot.

124 tbox The Epi package

Details

These functions are designed to facilitate the drawing of multistate models, mainly by automatic
calculation of the arrows between boxes.

tbox draws a box with centered text, and returns a vector of location, height and width of the box.
This is used when drawing arrows between boxes. dbox draws a box with a cross, symbolizing a death
state. boxarr draws an arrow between two boxes, making sure it does not intersect the boxes. Only
straight lines are drawn.

boxes.Lexis takes as input a Lexis object sets up an empty plot area (with axes 0 to 100 in both
directions) and if boxpos=FALSE (the default) prompts you to click on the locations for the state boxes,
and then draws arrows implied by the actual transitions in the Lexis object.

A transition matrix can also be supplied, in which case the row/column names are used as state names.

Optionally returns the R-code reproducing the plot in a file, which can be useful if you want to
produce exactly the same plot with differing arrow colors etc.

boxarr draws an arrow between two boxes, on the line connecting the two box centers. The offset

argument is used to offset the arrow a bit to the left (as seen in the direction of the arrow) on order to
accommodate arrows both ways between boxes. boxarr returns a named list with elements x, y and d,
where the two former give the location of a point on the arrow used for printing (see argument pos)
and the latter is a unit vector in the direction of the arrow, which is used by boxes.Lexis to position
the annotation of arrows with the number of transitions. fill.arr is just a utility drawing nicer
arrows than the default arrows command, basically by using filled arrow-heads; called by boxarr.

Value

The functions tbox and dbox return the location and dimension of the boxes, c(x,y,w,h), which are
designed to be used as input to the boxarr function.

The boxarr function returns the coordinates (as a named list with names x and y) of a point on the
arrow, designated to be used for annotation of the arrow.

Author(s)

Bendix Carstensen

Examples

par(mar=c(0,0,0,0), cex=1.5)

plot(NA,

bty="n",

xlim=0:1*100, ylim=0:1*100, xaxt="n", yaxt="n", xlab="", ylab="")

bw <- tbox("Well" , 10, 60, 22, 10, col.txt="blue")

bo <- tbox("other Ca", 45, 80, 22, 10, col.txt="gray")

bc <- tbox("Ca" , 45, 60, 22, 10, col.txt="red")

bd <- tbox("DM" , 45, 40, 22, 10, col.txt="blue")

bcd <- tbox("Ca + DM" , 80, 60, 22, 10, col.txt="gray")

bdc <- tbox("DM + Ca" , 80, 40, 22, 10, col.txt="red")

boxarr(bw, bo , col=gray(0.7), lwd=3)

Note the argument adj= can takes values outside (0,1)

text(boxarr(bw, bc , col="blue", lwd=3),

expression(lambda[Well]), col="blue", adj=c(1,-0.2), cex=0.8)

boxarr(bw, bd , col=gray(0.7) , lwd=3)

boxarr(bc, bcd, col=gray(0.7) , lwd=3)

text(boxarr(bd, bdc, col="blue", lwd=3),

expression(lambda[DM]), col="blue", adj=c(1.1,-0.2), cex=0.8)

Set up a transition matrix allowing recovery

tm <- rbind(c(NA,1,1), c(1,NA,1), c(NA,NA,NA))

The Epi package thoro 125

rownames(tm) <- colnames(tm) <- c("Cancer","Recurrence","Dead")

boxes.Lexis(tm, file="", boxpos=TRUE)

boxes.Lexis(tm, file="", detailed=TRUE, boxpos=TRUE)

Illustrate texting of arrows

boxes.Lexis(tm, boxpos=TRUE, txt.arr=c("en","to","tre","fire"))

boxes.Lexis(tm, boxpos=TRUE, txt.arr=c(expression(lambda[C]),

expression(mu[C]),

"recovery",

expression(mu[R])))

Set up a Lexis object

data(DMlate)

str(DMlate)

dml <- Lexis(entry=list(Per=dodm, Age=dodm-dobth, DMdur=0),

exit=list(Per=dox),

exit.status=factor(!is.na(dodth),labels=c("DM","Dead")),

data=DMlate)

Split follow-up at Insulin

dmi <- cutLexis(dml, cut=dml$doins, new.state="Ins", pre="DM")

summary(dmi)

boxes(dmi, boxpos=TRUE, file="")

Set up a bogus recovery date

dmi$dorec <- dmi$doins + runif(nrow(dmi),0.5,10)

dmi$dorec[dmi$dorec>dmi$dox] <- NA

dmR <- cutLexis(dmi, cut=dmi$dorec, new.state="DM", pre="Ins")

summary(dmR)

boxes(dmR, boxpos=TRUE, file="")

thoro Thorotrast Study

Description

The thoro data frame has 2470 rows and 14 columns. Each row represents one patient that have had
cerebral angiography (X-ray of the brain) with an injected contrast medium, either Thorotrast or
another one (the controls).

Format

This data frame contains the following columns:

id: Identification of person.
sex: Sex, 1: male / 2: female.

birthdat: Date of birth, Date variable.
contrast: Group, 1: Thorotrast / 2: Control.
injecdat: Date of contrast injection, Date variable.
volume: Injected volume of Thorotrast in ml. Control patients have a 0 in this variable.
exitdat: Date of exit from the study, Date variable.
exitstat: Status at exit, 1: dead / 2: alive, censored at closing of study, 20 February 1992 / 3: censored alive at some earlier date.

cause: Cause of death. See causes in the helpfile for gmortDK
liverdat: Date of liver cancer diagnosis, Date variable.

liver: Indicator of liver cancer diagnosis. Not all livercancers are histologically verified, hence liver >= hepcc + chola + hmang

hepcc: Hepatocellular carcinoma at liverdat.
chola: Cholangiocellular carcinoma at liverdat.
hmang: Haemangisarcoma carcinoma at liverdat.

126 timeBand The Epi package

Source

M Andersson, M Vyberg, J Visfeldt, B Carstensen & HH Storm: Primary liver tumours among Danish
patients exposed to Thorotrast. Radiation Research, 137, pp. 262–273, 1994.

M Andersson, B Carstensen HH Storm: Mortality and cancer incidence after cerebral angiography.
Radiation Research, 142, pp. 305–320, 1995.

See Also

mortDK, gmortDK

Examples

data(thoro)

str(thoro)

timeBand Extract time band data from a split Lexis object

Description

The break points of a Lexis object (created by a call to splitLexis) divide the follow-up intervals
into time bands along a given time scale. The breaks function returns the break points, for a given
time scale, and the timeBand classifies each row (=follow-up interval) into one of the time bands.

Usage

timeBand(lex, time.scale, type="integer")

breaks(lex, time.scale)

Arguments

lex an object of class Lexis

time.scale a character or integer vector of length 1 identifying the time scale of interest

type a string that determines how the time bands are labelled. See Details below

Details

Time bands may be labelled in various ways according to the type argument. The permitted values of
the type argument, and the corresponding return values are:

”integer” a numeric vector with integer codes starting from 0.

”factor” a factor (unordered) with labels ”(left,right]”

”left” the left-hand limit of the time band

”middle” the midpoint of the time band

”right” the right-hand limit of the time band

Value

The breaks function returns a vector of break points for the Lexis object, or NULL if no break points
have been defined by a call to splitLexis. The timeBand function returns a numeric vector or factor,
depending on the value of the type argument.

The Epi package timeScales 127

Note

A newly created Lexis object has no break points defined. In this case, breaks will return NULL, and
timeBand will a vector of zeros.

Author(s)

Martyn Plummer

See Also

Lexis

Examples

data(diet)

diet <- cal.yr(diet)

diet.lex <- Lexis(entry=list(period=doe),

exit=list(period=dox, age=dox-dob),

exit.status=chd,

data=diet)

diet.split <- splitLexis(diet.lex, breaks=seq(40,70,5), "age")

age.left <- timeBand(diet.split, "age", "left")

table(age.left)

age.fact <- timeBand(diet.split, "age", "factor")

table(age.fact)

age.mid <- timeBand(diet.split, "age", "mid")

table(age.mid)

timeScales The time scales of a Lexis object

Description

Function to get the names of the time scales of a Lexis object.

Usage

timeScales(x)

Arguments

x an object of class Lexis

Value

A character vector containing the names of the variables in x that represent the time scales

Author(s)

Martyn Plummer

See Also

Lexis, splitLexis

128 twoby2 The Epi package

transform.Lexis Transform a Lexis objects

Description

Transform a Lexis object

Usage

S3 method for class 'Lexis'
transform(`_data`, ...)

S3 method for class 'Lexis'
factorize(obj, ...)

Arguments

_data an object of class Lexis.

obj an object of class Lexis.

... additional arguments to be passed to transform.data.frame.

Details

The transform method for Lexis objects works exactly as the method for data frames.

factorize simply transforms the variables lex.Cst and lex.Xst to factors with the same set of levels.

Value

A transformed Lexis object.

Author(s)

Martyn Plummer, Bendix Carstensen

See Also

Lexis, merge.Lexis, subset.Lexis

twoby2 Analysis of a two by two table

Description

Computes the usual measures of association in a 2 by 2 table with confidence intervals. Also produces
asymtotic and exact tests. Assumes that comparison of probability of the first column level between
levels of the row variable is of interest. Output requires that the input matrix has meaningful row and
column labels.

Usage

twoby2(exposure, outcome,

alpha = 0.05, print = TRUE, dec = 4,

conf.level = 1-alpha, F.lim = 10000)

The Epi package twoby2 129

Arguments

exposure If a table the analysis is based on the first two rows and first two columns of this. If
a variable, this variable is tabulated against

outcome as the second variable

alpha Significance level

print Should the results be printed?

dec Number of decimals in the printout.

conf.level 1-alpha

F.lim If the table total exceeds F.lim, Fisher’s exact test is not computed

Value

A list with elements:

table The analysed 2 x 2 table augmented with probabilities and confidence intervals. The
confidence intervals for the probabilities are computed using the normal
approximation to the log-odds. Confidence intervals for the difference of proportions
are computed using method 10 from Newcombe, Stat.Med. 1998, 17, pp.873 ff.

measures A table of Odds-ratios and relative risk with confidence intervals.

p.value Exact p-value for the null hypothesis of OR=1

Author(s)

Mark Myatt. Modified by Bendix Carstensen.

Examples

Treat <- sample(c("A","B"), 50, rep=TRUE)

Resp <- c("Yes","No")[1+rbinom(50,1,0.3+0.2*(Treat=="A"))]

twoby2(Treat, Resp)

twoby2(table(Treat, Resp)[,2:1]) # Comparison the other way round

Index

∗Topic aplot
plot.Lexis, 102

∗Topic array
detrend, 69
merge.Lexis, 94
pctab, 101
projection.ip, 107

∗Topic attributes
lls, 91

∗Topic attribute
timeBand, 126
timeScales, 127

∗Topic category
stat.table, 117
stattable.funs, 119

∗Topic chron
cal.yr, 56

∗Topic datagen
ccwc, 58

∗Topic datasets
bdendo, 54
bdendo11, 54
births, 55
blcaIT, 55
brv, 56
diet, 69
DMconv, 70
DMlate, 71
ewrates, 75
gmortDK, 81
hivDK, 82
lep, 84
lungDK, 92
mortDK, 96
nickel, 100
occup, 100
S.typh, 113
thoro, 125

∗Topic design
contr.cum, 65

∗Topic distribution
ci.pd, 63

∗Topic dplot
Lexis.diagram, 87
Lexis.lines, 89
Life.lines, 90

∗Topic hplot
apc.frame, 49

apc.lines, 51
apc.plot, 53
Lexis.diagram, 87
Lexis.lines, 89
plot.Lexis, 102
plotEst, 104
rateplot, 107
tbox, 121

∗Topic htest
ci.pd, 63
mh, 95
ROC, 111
twoby2, 128

∗Topic iplot
tbox, 121

∗Topic iteration
stat.table, 117
stattable.funs, 119

∗Topic manip
cal.yr, 56
Life.lines, 90
merge.Lexis, 94
ncut, 98
nice, 99
pctab, 101
Relevel, 111
ROC, 111
splitLexis, 114
subset.Lexis, 120
transform.Lexis, 128

∗Topic methods
pctab, 101

∗Topic models
apc.fit, 46
ci.cum, 59
ci.lin, 60
clogistic, 64
contr.cum, 65
effx, 72
effx.match, 73
expand.data, 75
fit.add, 76
fit.baseline, 77
fit.mult, 78
Icens, 83
plotEst, 104
plotevent, 106

∗Topic regression

130

The Epi package INDEX 131

apc.fit, 46
ci.cum, 59
ci.lin, 60
effx, 72
effx.match, 73
expand.data, 75
fit.add, 76
fit.baseline, 77
fit.mult, 78
float, 79
ftrend, 80
Icens, 83
plotevent, 106

∗Topic survival
cutLexis, 66
expand.data, 75
fit.add, 76
fit.baseline, 77
fit.mult, 78
Icens, 83
Lexis, 85
msdata.Lexis, 97
plotevent, 106
stack.Lexis, 115
start.Lexis, 116
summary.Lexis, 120
tbox, 121

∗Topic ts
merge.data.frame, 93
start.Lexis, 116

∗Topic univar
twoby2, 128

addmargins, 102
apc.fit, 46, 51–53
apc.frame, 49, 49, 51–53, 110
apc.lines, 48, 49, 51, 51, 53
apc.plot, 48, 49, 51, 53, 53
Aplot (rateplot), 107
arrows, 124
as.Date.cal.yr (cal.yr), 56

bdendo, 54, 54
bdendo11, 54
binom.test, 64
births, 55
blcaIT, 55
boxarr (tbox), 121
boxes (tbox), 121
breaks (timeBand), 126
brv, 56

cal.yr, 56, 86
ccwc, 58
ci.cum, 59, 62
ci.lin, 60, 60, 104
ci.mat (ci.lin), 60

ci.pd, 63
clear (lls), 91
clogistic, 64
contr.2nd (contr.cum), 65
contr.cum, 65
contr.diff (contr.cum), 65
contr.orth (contr.cum), 65
contr.treatment, 66
count, 118
count (stattable.funs), 119
countLexis (cutLexis), 66
Cplot (rateplot), 107
cut, 99
cutLexis, 66, 86, 114, 116

Date, 56, 57, 70, 86
date, 57
DateTimeClasses, 57
dbox (tbox), 121
detrend, 69, 107
diet, 69
DMconv, 70
DMlate, 71
DMrand (DMlate), 71
dur, 86
dur (start.Lexis), 116

effx, 72
effx.match, 73
entry, 86
entry (start.Lexis), 116
ewrates, 75, 100
exit, 86
exit (start.Lexis), 116
expand.data, 75, 76–78

factorize (transform.Lexis), 128
fillarr (tbox), 121
findInterval, 99
fit.add, 76, 76, 77, 78, 83, 84
fit.baseline, 77
fit.mult, 76, 77, 78, 83, 84
float, 79, 81
ftrend, 80, 80

glm, 65, 77
gmortDK, 81, 97, 125, 126

hivDK (hivDK), 82
hivDK, 82

Icens, 76–78, 83, 106
IQR, 118

lep, 84
Lexis, 58, 68, 85, 88, 94, 95, 97, 103, 115–117,

120, 121, 123, 127, 128
Lexis.diagram, 87, 90, 91

132 INDEX The Epi package

Lexis.lines, 88, 89, 91
Life.lines, 88, 90, 90
lines.Lexis (plot.Lexis), 102
linesEst (plotEst), 104
lls, 91
ls, 92
lungDK, 92

mathematical functions, 10
max, 118
mean, 118
median, 118
merge.data.frame, 93, 94
merge.Lexis, 86, 94, 120, 128
mh, 95
min, 118
mortDK, 82, 96, 126
msdata (msdata.Lexis), 97
msdata.Lexis, 97

ncut, 98
nice, 99
nickel, 75, 100

occup, 100, 103

pc.lines (apc.lines), 51
pc.matlines (apc.lines), 51
pc.matpoints (apc.lines), 51
pc.points (apc.lines), 51
pctab, 101
percent, 118
percent (stattable.funs), 119
plot.Lexis, 86, 88, 102
plotEst, 104
plotevent, 106
points.Lexis (plot.Lexis), 102
pointsEst (plotEst), 104
POSIXct, 57
POSIXlt, 57
Pplot (rateplot), 107
pretty, 99
print.floated (float), 79
print.Icens (Icens), 83
print.stat.table (stat.table), 117
print.summary.Lexis (summary.Lexis), 120
projection.ip, 69, 107
PY.ann (plot.Lexis), 102

quantile, 118

rateplot, 107
ratio, 118
ratio (stattable.funs), 119
Relevel, 111
ROC, 111

S.typh, 113

splitLexis, 68, 86, 103, 114, 116, 127
stack.Lexis, 97, 98, 115
start.Lexis, 116
stat.table, 117, 119
stattable.funs, 119
status (start.Lexis), 116
subset.Lexis, 86, 94, 120, 128
sum, 118
summary.Lexis, 68, 86, 114, 120

table, 118
tapply, 118
tbox, 121
thoro, 82, 97, 125
timeBand, 86, 114, 126
timeScales, 86, 127
tmat (stack.Lexis), 115
transform.Lexis, 86, 128
twoby2, 64, 128

Wald (ci.lin), 60
weighted.mean, 118

	Contents
	Getting R running on your computer
	What is R?
	Getting R
	Starting R
	Quitting R

	Working with the script editor
	Try!

	Changing the looks of R
	Further reading

	Some basic commands in R
	Preliminaries
	Using R as a calculator
	Objects and functions
	Sequences
	The births data
	Referencing parts of the data frame
	Summaries
	Turning a variable into a factor
	Frequency tables
	Grouping the values of a metric variable
	Tables of means and other things
	Generating new variables
	Logical variables

	Working with R
	Saving the work space
	Saving output in a file
	Saving R objects in a file
	Using a text editor with R
	The search path
	Attaching a data frame

	Graphs in R
	Simple plot on the screen
	Colours
	Adding to a plot
	Using indexing for plot elements
	Generating colours

	Interacting with a plot
	Saving your graphs for use in other documents
	The par() command

	The effx function for effects estimation
	The function effx
	Factors on more than two levels
	Stratified effects
	Controlling the effect of hyp for sex
	Numeric exposures
	Checking on linearity
	Frequency data

	Dates in R
	Follow-up data in the Epi package
	Timescales
	Splitting the follow-up time along a timescale
	Cutting time at a specific date
	Competing risks — multiple types of events
	Multiple events of the same type (recurrent events)
	References

	R command sheet
	Getting help
	Input and output
	Data creation
	Slicing and extracting data
	Variable conversion
	Variable information
	Data selection and manipulation
	Math
	Matrices
	Advanced data processing
	Strings
	Dates and Times
	Plotting
	Low-level plotting commands
	Graphical parameters
	Lattice (Trellis) graphics
	Optimization and model fitting
	Statistics
	Distributions
	Programming
	The Epi package

	The Epi package
	apc.fit
	apc.frame
	apc.lines
	apc.plot
	bdendo
	bdendo11
	births
	blcaIT
	brv
	cal.yr
	ccwc
	ci.cum
	ci.lin
	ci.pd
	clogistic
	contr.cum
	cutLexis
	detrend
	diet
	DMconv
	DMlate
	effx
	effx.match
	ewrates
	expand.data
	fit.add
	fit.baseline
	fit.mult
	float
	ftrend
	gmortDK
	hivDK
	Icens
	lep
	Lexis
	Lexis.diagram
	Lexis.lines
	Life.lines
	lls
	lungDK
	merge.data.frame
	merge.Lexis
	mh
	mortDK
	msdata.Lexis
	ncut
	nice
	nickel
	occup
	pctab
	plot.Lexis
	plotEst
	plotevent
	projection.ip
	rateplot
	Relevel
	ROC
	S.typh
	splitLexis
	stack.Lexis
	start.Lexis
	stat.table
	stattable.funs
	subset.Lexis
	summary.Lexis
	tbox
	thoro
	timeBand
	timeScales
	transform.Lexis
	twoby2

