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SUMMARY 
A main concern of descriptive epidemiologists is the presentation and interpretation of temporal variations in 
cancer rates. In its simplest form, this problem is that of the analysis of a set of rates arranged in a two-way 
table by age group and calendar period. We review the modern approach to the analysis of such data which 
justifies traditional methods of age standardization in terms of the multiplicative risk model. We discuss the 
use of this model when the temporal variations are due to purely secular (period) influences and when they are 
attributable to generational (cohort) influences. Finally we demonstrate the serious difficulties which attend 
the interpretation of regular trends. The methods described are illustrated by examples for incidence rates of 
bladder cancer in Birmingham, U.K., mortality from bladder cancer in Italy, and mortality from lung cancer 
in Belgium. 
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INTRODUCTION 

In recent years, advances in statistical theory (particularly in the fields of log-linear models and 
survival analysis) have led to a re-evaluation of traditional methods of analysis of vital rates. Such 
methods as direct and indirect standardization have been based upon the definition of summary 
indices with desirable properties. For example, age standardized rates are indices of mortality 
which, for fixed age specific rates, remain constant under changes to the age structure of the 
population or cohort under study. A more modern approach, however, views such indices as 
estimates of parameters of a probabilistic model for mortality. 

This approach has brought great benefits in the shape of a unification of the methodologies for 
the analysis of vital rates in descriptive epidemiology,' for the regression analysis of individual 
records in cohort studies' and for the analysis of matched and unmatched casecontrol ~ t u d i e s . ~  
However, this advance has not been achieved without cost. The purposes and methods of 
probabilistic modelling are still not as widely understood as statisticians tend to assume, and the 
correct interpretation of such analyses depends upon a level of understanding of applied 
mathematics beyond that demanded of previous generations of medically qualified epidemi- 
ologists. This may lead to incomprehension, or, perhaps worse, to serious over-interpretation. 
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The advantages and difficulties accompanying the model-based approach are illustrated in 
recent approaches to an old and fundamental methodological problem in epidemiology: the 
analysis of temporal variation in disease incidence or mortality. The new methods lead naturally to 
generalization of the method of indirect standardization to, eventually, estimation of parameters of 
the age-period-cohort model.’. We believe that these methods are a useful advance, particularly 
for the purposes of comparison of temporal variation of disease in different populations, but they 
have brought serious difficulties and dangers. The models are beset by problems of identifiability, 
by which we mean that identical descriptions of data may be obtained from different sets of 
parameter values. Also, two such indistinguishable sets of parameter values may lead to quite 
different interpretations. Therefore, it is essential that the epidemiologist working with these 
models should fully understand the strengths and weaknesses of the approach and should be aware 
of the limits to inference. Alas, this process has not been aided by several recent papers which 
apparently have resolved the identifiability Unfortunately, all such attempts depend 
upon mathematical assumptions which have no biological basis. 

This first paper deals with the use of log-linear models to describe variations in rates simply in 
terms either of the calendar period of observation or of thecohort or generation to whom the rates 
apply. Since no analysis in cancer epidemiology can ignore age, we are led to the age-period and 
age-cohort models, respectively. In the section on regular trends we encounter the problem of 
‘drift’, a type of variation described equally well by either model. This introduces the problems of 
identifiability we tackle in the second paper’ when we discuss the full age-period-cohort model. 

ESTIMATION OF PERIOD EFFECTS THE AGE-PERIOD MODEL 

Table I displays incidence rates of bladder cancer together with the corresponding cases (expressed 
in l00,OOO person-years observation) for males in the Birmingham (U.K.)cancer registry during the 
period 1960-1976 as published in Cancer Incidence in Fioe  continent^.^-'^ These data are laid out 
in the table in a manner which reflects the method of collection; that is, with columns defining P 
calendar periods of observation and rows defining A age groups. 

Naively, the most natural examination of the data is to plot, for each age group, the age-specific 
incidence rates against the central date of each period of observation, Here, as in all cancers, the 
age-specific rates vary over several orders of magnitude. However, by using a logarithmic scale for 
incidence rate, the trends for all age groups may be plotted on the same graph to facilitate 
comparison. The data from Table I are plotted in Figure 1. 

The dominant impression given by this figure is one of parallelism of the curves. There was a 
sharp increase in incidence between the second and third observation periods in just about every 
age group. This parallelism implies two important characteristics of the causal influence which gave 
rise to this observation: 

(1) it has either an immediate or a fixed delayed effect upon incidence, and 
(ii) it is constant across all age-groups; that is, the logarithmically transformed incidence rates 

are increased (or decreased) by the same quantity regardless of age. Such an effect is termed a 
period effect. 

When the observed variation in age-specific rates is entirely consistent with such influences, the 
curves of age-specific incidence rates against the date of observation (equivalent to Figure 1) would 
be parallel. If we denote by Yap the logarithm of the age-specific incidence rate for the ath age 
group measured during the pth observation period, then this parallelism may be expressed 
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Table 1, Age-specific incidence rates (per lO0,OOO person-years observation) 
of bladder cancer for males in the region of Birmingham (U.K.), during the 
period 1960-1976. Numbers of cases on which rates are based are in 
parentheses. (Source: Cancer Incidence in Five Continents:-'* Vol. 1-Vol. 4) 

Age/period 19S1962 1963-1966 1968-1972 1973-1976 

2529 
30-34 
3539 
4&44 
45-49 
50-54 
5559 
&64 
65-69 
7&74 
7579 

0-42 (2) 031 (2) 
0.00 (0) 0.65 (4) 
2.06 (11) 1.21 (8) 
1.62 (8) 4.03 (28) 
9.40 (48) 7-02 (45) 

13.90 (67) 1665 (108) 
24.25 (102) 29.15 (171) 
44.50 (141) 5051 (253) 
6047 (135) 66.97 (226) 
94.84 (150) 95.73 (210) 

116.08 (116) 118.16 (159) 

0.55 (5) 
1.73 (14) 
4.02 (31) 
6-74 (55) 

14.95 (126) 
25.73 (199) 
41-06 (309) 
71.39 (469) 

100.69 (514) 
141.96 (450) 
15419 (276) 

1.10 (9) 
1.15 (8) 
2.49 (16) 
5.29 (33) 

16.80 (107) 
24.41 (164) 
44.81 (245) 
7025 (372) 

101.97 (440) 
142.70 (420) 
174.42 (270) 

060-64 

40-44 

35-39 
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Figure 1. Incidence of bladder cancer in males in the region of Birmingham (U.K.) against central date of each period of 
observation. Rates are plotted using a logarithmic scale. The quasi parallelism of the age-specific curves constitutes the 

empirical basis for the models discussed in this paper (source: see Table 1) 

mathematically by the relationship 

Thus, rather then displaying the A x P logarithmic-rates, Yap, the data may be reported in terms of 
the A parameters, a,, which describe the relationship between age and incidence, and the P 
parameters, B p ,  which describe the temporal relationship. It may be easier to think about the 
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relationship set out in equation (1) in terms of the incidence rates themselves rather than their 
logarithms. We denote these by pap  and use a prime notation to denote antilogarithms, so that 
p a p  = Y',,,,. Then equation (1) can be re-expressed as 

That is, the age-specific rates can be represented by products of A parameters describing the 
dependence upon age, a;, and P parameters describing their dependence upon period of 
observation, &. 

Earlier we introduced the term period effect in a descriptive sense. However, the term effect is 
widely used by statisticians in a quantitative sense to describe parameters of models such as (1) and 
(2). Thus, a, and 8, would be termed (additive) age effects and period effects, respectively. It may be 
difficult to think in terms of an additive model for the logarithms of rates, and in general we prefer 
the form (2) in which the parameters should be termed multiplicative effects. Unless otherwise 
specified, we shall use the terms age effects and period effects to represent the multiplicative 
parameters, a; and Fp, respectively. 

Of course, the relationship (1) will never hold exactly, but it may hold sufficiently closely to 
provide a useful description of the data. In these circumstances, equation (1) (or, equivalently (2)) 
provides a statistical model for expected rates; the discrepancies between the rates observed and 
their expected values being regarded as random fluctuations. 

With a model such as (1) or (2), a statistical analysis proceeds in two stages. First, by a process of 
estimation of the values of the parameters of the model, a, and @, here, which give rise to expected 
incidence rates which are as close as possible in some sense to the observed rates, and secondly by a 
process of criticism in which the discrepancies between observed and expected rates are examined 
to determine whether the model describes the data adequately. In the remainder of this section, we 
consider the estimation of the parameters a,, and 8, of the age-period model. The next section is 
dedicated to model criticism. 

The detailed theory of estimation of parameters for best fit of the model need not concern us 
here. It falls within the theory of generalized linear models as described by Nelder and 
Wedderb~rn,'~ reviewed and extended by McCullagh and Nelder.I4 There are, however, two 
aspects of this problem which are of practical relevance and warrant some discussion. The first of 
these is the criteria we use to assess the overall goodness-of-fit of the model. One set of parameter 
values might give a very good fit in certain cells of the table, but may perform less well in others. On 
the other hand, a different set of parameter values might correct these discrepancies, but at some 
cost in terms of the fit to the remaining cells. The choice depends upon the predominant reasons for 
discrepancy between the observed rates and those predicted by the model. Often the dominant 
reason for fluctuation of observed rates is the natural fluctuation of numerators, which vary 
according to the well-known Poisson law. It is then appropriate to give less weight to poor 
prediction of observed rates based upon small numbers of cases. With this Poisson criterion, good 
fit of the rates based on larger numerators is more important. 

Sometimes the Poisson criterion can be inappropriate. When considering a very common cancer, 
rates may be based upon such large numbers of incident cases that the variability predicted by the 
Poisson law becomes negligible for all practical purposes. In such situations, it is unlikely that the 
model may still be a useful one if the discrepancies between observed and expected rates, although 
larger than would be predicted by the Poisson law, are small enough to be considered of no 
importance or they show no systematic pattern. In these circumstances it is, perhaps, more 
appropriate to weight cells with few cases according to the Poisson assumption, but to restrict the 
weight given to cells with more substantial numerators (we shall return to this problem when 
discussing model criticism). 
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When Poisson errors are believed to predominate, the most common statistical method for 
fitting a model is that of maximum likelihood which provides a theoretical justification for the 
traditional method of indirect standardization. This is demonstrated by considering the 
multiplicative form (2) and pretending first that the a; are known. These known a; may be regarded 
as a standard set of age-specific rates and the parameters pp as relative risks expressing the ratio of 
incidence rates at period p to the standard set. In these circumstances, it can be shown that the 
method of maximum likelihood leads to thechoice of the Standardized Mortality Ratios (SMRs)as 
the best estimate of the relative risks, /Ip.” However, this argument holds equally well if we regard 
the period effects, /?’ as known and estimate the age effects, ah; we would again use SMR 
calculations. When neither set of parameters is known, a convenient method simply alternates 
between these computations until a stable solution is obtained. This was first proposed in this 
context by Mantel and Starke,I6 who termed it ‘internal indirect standardization’, but the method 
is a special case of a general algorithm for maximum likelihood estimation of log-linear models and 
is usually termed ‘iterative proportional fitting’ (IPF) (see for instance Bishop, Fienberg and 
Holland,’ ’ Section 3-5). 

An alternative method which has been used in the past (for example, BarrettI8* 19) is based upon 
the fact that the Poisson law predicts that the variance of a logarithmically transformed rate is given 
(approximately) by the inverse of its numerator. This suggests choosing a, and /Ip to minimize a 
weighted sum of squared deviations of logarithmic rates in which each cell of the table is weighted 
by the number of observed cases upon which it is based. This leads to nearly the same estimates as 
the method of maximum likelihood and avoids iterative computation. 

Another technical problem in fitting the age-period model arises because it does not have a 
single set of best parameter values, aa and BP; they are therefore termed unidentifiable. Each set of 
expected rates, pap, which obey the model may indeed be obtained from more than one ensemble of 
parameter values, since if we add some constant, to all the abs in (l), but subtract the same constant 
from all the pPs, then the fitted logarithmic rates, Yap remain unchanged. 

A model whose parameters are unidentifiable might seem of little practical utility. However, if we 
consider two periods, p and 4, the model predicts that, for all age groups, the difference in 
logarithmetic incidence rates is constant, that is 

’. 

V a p - Y a q )  = B p - B q ,  

for all age groups. In terms of the incidence rates themselves this implies that the ratios of age- 
specific rates are also stable across age groups, that is 

P a p l P e q  = B P I B b  
for all a. Thus, the difference between f l p  and /3, is interpreted as the logarithm of the relative risk of 
period p relative to period 4. All parameterizations which lead to the same fitted rates have the same 
differences, ( f i ,  - &). Similarly the difference (a, - a*) is interpretable as the log relative risk of age 
group a relative to age group b. Such functions of the parameters are termed identifiable. Note that 
interpretations based solely on identifiable functions do not depend on any arbitrary selection of a 
specific parameterization. The model may be communicated in terms of any set of such 
comparisons. A natural choice is the P-1 first differences, (& -PI), (B3 - &), whose antilogs 
represent the relative risk of the second period relative to the first, the third period relative to the 
second and so on. This set of comparisons focuses our attention upon regular trend models in 
which the first differences are approximately constant and upon deviations from such models. The 
same technique may be used to describe the age effects. 

It is usual to choose some parameterization which leaves the as looking rather like logarithms of 
age-specific incidence rates, and the f i s  looking like log-SMRs (relative risks). In this way, by taking 
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Table 11. Bladder cancer incidence in the region of Birmingham. 
Age (aa) and period (BP) parameters estimated from the rates of 
Table I using the iterative proportional fitting (IPF) procedure. 
The scales for the multiplicative effects were chosen to facilitate 

interpretation 

Additive effects Multiplicative effects 
Age a, a: x 100,Ooo 

25-29 - 12.31 0.45 
30-34 - 11.58 0-7 1 
35-39 - 10.90 1.85 
40-44 - 10.28 3.43 
45-49 - 9.32 8.97 
50-54 - 8.80 15.12 
55-59 - 8.26 25.94 
6&64 - 7.73 43.99 
6569 - 7.39 6 1.62 
70-74 - 7-04 87-88 
75-79 - 6.87 103.43 

196Ck1962 0.00 
1963-1966 0.09 
1968-1972 0.49 
1973-1976 0.50 

100.0 
109.2 
162.4 
165.4 

antilogs, the estimates of a: and & look like numbers we are well accustomed to in epidemiology. The 
simplest way in which this can be done is to adopt a parameterization in which one of the Bs, usually 
pl, is taken as zero; this is equivalent to displaying the results in terms of the differences 8, - pl. 
With this convention, a; are the (fitted) age-specific rates for period 1, and pp are the (fitted) relative 
risks of each period relative to period 1. This method leads to the simplest interpretation. The main 
rival method centres the period effects, pp, around zero (so that their antilogs, pp, are arranged 
around 1). Centring can be achieved by adding a constant to all the /Is such that their mean becomes 
zero and subtracting the same constant from all the as. Again this has the effect of making, the a: 
look like age-specific rates, and the pp look like SMRs, but they are not simply interpretable as such. 
Except for considerations of mathematical symmetry, the only motivation for this latter procedure 
is to preserve some analogy with the traditional technique of calculating SMRs using the marginal 
age-specific rates as standard (that is as estimates of a:). However, Mantel and Starke16 showed 
that this procedure is not to be recommended since the marginal age-specific rates may badly 
misrepresent the time age gradient and do not, in general, form an appropriate base for 
comparisons. 

The estimated parameter values for the data of Table I were calculated using the IPF method 
and are shown in Table 11. It can be seen that the period effects, p,, confirm and quantify the 
impression of Figure 1 that there is a rather sharp increase in incidence between the second and 
third period. 

It must be stressed that however we choose to communicate the model, the degree to which the 
analysis reproduces an accurate representation of the observed data depends upon whether the 
model does indeed fit our data. If not, then any parameterization is worthless. The next section is 
dedicated to the process of model criticism-the examination of the fit of the model. 
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ASSESSING THE FIT OF THE MODEL 

The process of model criticism involves an examination of the discrepancies between the observed 
rates and the rates predicted by the best fit model. The differences between the observed log-rates, 
Yap, and the fitted log-rates fap:should be standardized to take account of the Poisson variability of 
the numerators. These quantities are called standardized residuals. Writing Dap,  for the observed 
number of cases in age group a at period p ,  and 6ap for the corresponding expected number 
obtained by multiplying the corresponding person-years observation by the fitted rate, three 
alternative definitions for the standardized residuals are widely used: 

{i) a log-residual: 

Sbi) = ( Y a p  - p a p )  J D a p  

(ii) a chi-residual: 

(iii) the deviance residual: 

with the sign of (Yap - fop). 

For most purposes, these three definitions are equivalent. If any of the cells have no observed 
cases, the observed rate is zero, so that we cannot calculate its logarithm, Yap. In these 
circumstances, (3a) and ( 3 4  break down and for this reason one might prefer to use (3b). These 
definitions of standardized residuals are closely related to our discussion, in the second section, of 
the choice of criterion for best model used for the purpose of estimation of parameters. The method 
of maximum likelihood minimizes the total sum of the squared deviance residuals, S$, over all cells 
of the tables (this is termed the deviance). The method of weighted least-squares minimizes the sum 
of squares of S$’. 

The decision as to the acceptability of the model depends first upon whether the residual 
variability is small enough to be of little practical importance. There can be no general rules on this 
point. If the residual variability is not negligible, it may be for any of three reasons: 

(i) there may be widespread deviationsfrom model assumptions which exhibit no discernable 
pat tern, 

(ii) there may be a few isolated cells with very large residuals, or 
(iii) the residuals may exhibit a systematic pattern, for example, consistent underestimation of 

rates in one corner of the table. 

If the first reason is the cause of our problems we have no further use of models- there is no 
option, but to present all the cells of the table in as clear a manner as is possible. Of course, it may be 
that the reason for the difficulty is simply poor quality of the basic data either in respect of 
numerators or denominators of rates. The second type of important deviation, if not attributable to 
simple transcribing errors, would indicate careful enquiry as to possible causes. For the 
presentation of data, it will often be acceptable to refit the model omitting aberrant cells, and report 
the observed (and expected) rates for them separately. If the residuals exhibit some clear pattern, 
however, this should indicate that some alternative model may provide a better data description. 
We shall discuss one special case in more detail in the next section and shall return to the general 
issue of interaction between age and period effects later. If, after examining the residuals, we are 
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Table 111. Standardized residuals (chi-residuals) from the age-period 
model for the data of Table I 

Age/period 1960-1962 1963-1966 1968-1972 197S1976 

2529 
3&34 
3539 
4cM4 
45-49 
5&54 
51-59 
60-64 
65-69 
7&74 
75-79 

- 009 

0.36 

0.32 

- 

-2.18 

- 0.69 
- 0.69 

0-13 
- 0.22 

0-93 
1.24 

- 0.65 
- 0.37 
- 1.46 

0.38 

0.08 
0.37 
0.79 

- 007 
- 0.04 

0.56 

- 2.25 

- 0.63 
1.50 
1.63 
1.41 
0.28 
0.66 

- 0.45 
- 0.02 

0.14 
-0.12 
- 1.43 

1.18 
- 0.06 
- 0.82 
- 0.41 

1.29 

0.68 

0-18 

0.32 

-0.31 

- 0-68 

- 0.38 

reassured that the age-period model gives a good description of the data, then it is reasonable to 
proceed to test the statistical significance of the period effects. 

Table 111 shows the standardized residuals (method (3b)). They are not larger than expected; the 
deviance is 41.17, and the corresponding degrees of freedom are 10 x 3 = 30. This value 
corresponds to a value of P, about 0-10 on the chi-squared distribution and hence is not unduly 
large. 

When examining the standardized residuals for isolated aberrant cells we may assume that, if the 
model were true, the standardized residuals would be approximately normally distributed with 
zero mean and standard deviation, ,/{ (A - 1) (P - l)/(AP)}, in this case 0.91. Probability plotting 
methods can be used, but usually tables of the expected extreme range are sufficient. For example, 
the expected extreme values of 44 residuals with zero mean and standard deviation 091 
are f 2 1  x 0.91 = f 1.9. Table IV reveals no systematic pattern nor does it contain aberrant 
values. In fact all but two residuals lay within the expected range. 

If we conclude by this process of criticism that the ageperiod model with Poisson errors is an 
adequate description of our data, then it is appropriate to test the statistical significance of the 
period effect. To do this, we fit the model which omits period effects: the null hypothesis states that 
the same age-specific rates apply at all periods. This may be carried out by simply pooling the data 
over periods and calculating the marginal age-specific rates; these estimate the age effects, a;, under 
the null hypothesis. We then calculate the deviance test of the overall fit of this age-only model; the 
difference between this test statistic and that for the age-period model provides a test for the 
significance of the period effects. If there were no period effect, then this difference would be 
distributed as chi-squared with (P - 1) degrees of freedom. For the data of Table I, we have: 

Model Chi-squared d.f. 

Age 309.69 33 
Age-period 36.27 30 

Difference 273.42 3 

Clearly, in this case, there is no doubt as to the significance of this period effect! Note, however, 
that this test, on (P - 1) degrees of freedom, is a test for any difference between the P periods and is 
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not especially sensitive to smoothly increasing or decreasing trends. We shall discuss this problem 
in the section on regular trends. 

Before leaving the topic of examination of residuals, we should consider what might be done if 
the standardized residuals are larger than expected but do not exhibit any systematic pattern. As we 
stated earlier, this can occur when some rates are based on large numbers of cases such that even 
small and unimportant residuals are large in comparison with Poisson variability and in such 
situations we use unweighted least-squares backed up by analysis of variance. The model is fitted by 
minimizing a weighted sum of squared residuals, that is 

L l , p w , p (  y a p  - p a p ) z & p  (4) 

where the weights, wQP, are given by 

WOP = (l/B,,+aZ)-’. 

Note that a’ is an unknown constant representing the squaredcoefficient of variation of the rates 
over and above their Poisson variability. This constant must be estimated from the table, and this is 
achieved by an iterative method which adjusts a2 at each step until the residual weighted sum of 
squares is equal to its degrees of freedom. Details of the iterative method and of the modifications 
necessary for testing hypotheses are given by Breslow.” However, such procedures are largely 
untried in practice, and in our experience are seldom necessary. Further discussion of the extra- 
Poisson variability is given in McCullagh and Nelder.14 

Often the examination of residuals shows clearly that the model is systematically misleading. 
Then, the analysis of residuals can be instructive in suggesting alternative models. In the next 
section, we consider the most important simple alternative model for the age-period model. 

ESTIMATION OF COHORT EFFECTS: THE AGE-COHORT MODEL 

Table IV shows deaths from bladder cancer and corresponding mortality rates for Italian males in 
the period 1955 to 1979. By contrast to the Birmingham bladder cancer incidence data, an attempt 
to fit the age-period models is not very successful. The global deviance chi-squared test of fit of the 
age-period model yields deviance = 455 on 40 degrees of freedom; highly significant indeed. 

Table V examines the residuals for this model in more detail. Looking carefully at this table, it 
can be seen that there is a systematic pattern in the residuals; there is a tendency for ratios of 
observed to expected mortality rates to decrease regularly along diagonals running downwards 
from left to right across the table. The explanation for this becomes apparent when one asks what 
cells along a diagonal have in common; the answer is a high proportion of the same people! Since 
the periods are spaced by five years, and the age groups also spaced by five years, on average the 
people studied in age group a at period p will be in age group (a + 1) when their mortality is studied 
at period (p + 1). Note that the identification of the diagonals of a table with birth cohorts is only 
possible for tables in which the grouping interval is equal on both sides (5 years in our example). 
Note also that the identification is only approximate. We shall discuss problems related to this 
approximation in our second paper.* 

This pattern in the residuals therefore indicates that a rather different sort of time effect has been 
observed. Rather than rates being affected equally across all age groups at a specified period, we 
may consider influences which affect rates in a specified generation or birth cohort equally 
throughout life. Such effects are known as cohort effects, and the model which describes time trends 
in these terms is known as the ag-hort model. The model is easier to understand if we rewrite the 
table of rates corresponding to Table IV with each diagonal as a column. This is shown in Table VI; 
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Table IV. Age-specific mortality rates (per 100,OOO person-years observation) of bladder cancer in 
Italian males during the period 1955-1979. Numerators are in parentheses. (Source of data: WHO 

mortality database) 

Agelperiod 1955-1959 1960-1964 1965-1969 1970-1974 1975-1979 

25-29 
30-34 
35-39 
40-44 
4-9 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 

003 (3) 
0.17 (16) 
032 (24) 
1.04 (79) 
2.86 (234) 
6.64 (458) 

12.71 (720) 
20.1 1 (890) 
24.40 (891) 
32.81 (920) 
45.54 (831) 

003 (3) 
0.18 (17) 
0.31 (29) 
1.05 (76) 
2.52 (185) 
7.03 (552) 

13.39 (867) 
23.98 (1230) 
33.16 (1266) 
42.31 (1243) 
47.94 (937) 

0.01 (1) 
0.12 (11) 
0.35 (33) 
091  (82) 
2.61 (183) 
6.43 (450) 

14.59 (1069) 
2669 (1550) 
42.12 (1829) 
52.87 (1584) 
62-05 (1285) 

0-04 (4) 
0.08 (8) 
0.42 (39) 
1.04 (95) 
3.04 (267) 
646 (431) 

14.64 (974) 
27.55 (1840) 
47.77 (2395) 
66.01 (2292) 
84.65 (1787) 

012 (12) 
0.09 (8) 
0.32 (30) 
1.27 (115) 
3.16 (285) 
8.47 (723) 

16.38 (1004) 
28.53 (1811) 
50.37 (3028) 
74.64 (3176) 

104.21 (2659) 

Table V. Chi-residuals from the age-period model for the mortality rates of Table IV. Most 
residuals are more extreme than expected and decrease regularly along diagonals running 

downwards from left to right 

Age/ period 1955-1959 1960-1964 1965-1969 1970-1974 1975-1979 

25-29 
30-34 
35-39 
40-44 
4-9 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 

-0.17 
2.44 
1.31 
2.87 
5.17 
5.77 
5.52 
3.05 

- 4.87 
- 5-47 
- 2.96 

- 0.40 
2.10 
042 
1.46 
0.70 
4.00 
2.99 
4,26 

- 046 
- 2.91 
- 6.38 

- 1.67 
- 026 

0-24 
- 1.21 
- 1.00 
- 1.71 

0.88 
2.69 
2.83 

- 079 
- 3.95 

- 0-48 
- 1.65 

047 
- 1.40 
- 1.04 
- 4.56 
- 3.53 
- 1.86 

2.37 
2.8 1 
2.38 

2.3 1 
- 1.78 
- 1.85 
- 0.64 
- 2.45 
- 1.82 
- 3.83 
- 5.46 
- 1.02 

3.47 
7.49 

columns represent cohorts of individuals born within a period surrounding some central date and 
rows again refer to age groups. 

Table VI represents the data as a series of longitudinal studies rather than, as in Table IV, a series 
of cross-sectional studies. This longitudinal view of the data is also emphasized in Figure 2, which 
plots, again on a logarithmic scale, mortality rates against age for each birth cohort. 

We are struck by the parallelism of these curves, indicating that, on the logarithmic scale, the 
differences in age-specific mortality between any pair of birth cohorts is approximately constant 
throughout life. Again we could not expect real data to yield exactly parallel curves but 
nevertheless the age cohort model can provide a useful description of the data. If we denote the 
logarithm of the mcidence or mortality rate for cohort c at  age a by Y,,, then the age cohort model 
implies that 

Y, = a,+y,. (6) 
As before, a, measure age effects but now y E  measure cohort effects. By taking antilogs, this can 
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n j  
0.01 , . . , . . . . . ~ 

25 35 45 55 65 75 
AGE 

Figure 2. Mortality rates of bladder cancer in Italian males. Each curve in this graph represents a longitudinal series of rates; 
it depicts the evolution of mortality within a birth cohort. Rates are plotted using a logarithmic scale. Note again the quasi 

parallelism of the cohort curves (source: see Table IV) 

also be written as a multiplicative model for the rates, pac, that is 

Pac = ab Y:. (7) 
Once we have rearranged the data of Table IV into the form of Table VI, there is no essential 

difference between fitting the age-cohort model and the procedures discussed in the second section. 
When errors are assumed to obey the Poisson law, the iterative SMR calculations, or equivalently 
the IPF, again yield the best fitting model. 

The same problems of parameterization apply here as in the age-period model and it is again 
conventional to adopt a representation in which the parameters a: look like age-specific rates and 
the parameter 7: look like relative risks. Again there are three main approaches. If we fix one of the 
y E  at zero then the a: are indeed fitted age-specific rates for this reference cohort and the remaining 
y: are relative risks of each cohort relative to the reference cohort. However, in this case it is often 
not very satisfactory to choose the first or last cohort as reference, since, these are represented by 
only one cell each and risk is not estimated as reliably as for the central cohorts. One of the cohorts 
with most complete data should be used. The second strategy of choosing the 7:s to have zero mean 
might be adopted. Just as before, however, they are then not directly interpretable as relative risks 
although the ratio of y c / y d  still gives the relative risk of cohort c relative to cohort d. The third 
approach is again to focus attention on regular trend by reporting the first differences ( y z  - y1 ), 
( y 3  - y z )  whose antilogs give the relative risks between adjacent cohorts. 

For the data of Table IV, the age-cohort model is a much better fit than the age-period model 
the global deviance chi-squared test gives 36.3 (on 30 degrees of freedom; not significant, P N 0.20). 
Notice, however, that the considerable improvement in fit is accompanied by a loss of 10 degrees of 
freedom. This reflects the fact that the Table VI has 15 columns rather than the 5 columns of 
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Table VII. Age (ae) and cohort (ye)  parameters estimated from 
the rates of Table VI using the IPF procedure. The scales for the 
multiplicative effects were chosen to facilitate interpretation. 
The estimates shown in parentheses are based on considerably 

less data than the other estimates 

Additive effects Multiplicative effects 
Age a, a: x 100,OOO 

25-29 - 15.36 0.02 
30-34 - 13'88 0.09 
3 s 3 9  - 12-89 0-25 
4 w  - 11.79 0.76 
45-49 - 10.73 2.19 
50-54 - 9.77 5.70 
55-59 - 8.99 12-49 
60-64 - 8.34 23.93 
65-69 - 7.77 42.05 
70-74 - 7.31 6695 
75-79 - 6.87 103.64 

Cohort Yc 

1880 - 0.822 44.0 
1885 - 0743 47.6 
1890 - 0.502 60.5 
1895 -0.216 80.6 
1900 O W 0  100.0 
1905 0 1  12 11  1.9 
1910 0.171 118.6 
1915 0-165 117-9 
1920 0.224 125-1 
1925 0.359 143.2 
1930 0.362 143.6 
1935 0492 163.6 
1940 0.104 11  1.0 
1945 (0.1 32) (114.1) 
1950 (1.693) (543.6) 

Table IV, so that the age-cohort model requires 10 more parameters than the age-period model. 
This fact is often forgotten; in comparing the fit of age-period and age-cohort models, we are not 
comparing models of equal complexity and it is perhaps not surprising that theage-cohort model is 
often a better fit. For example, since the external cohorts are observed only at one age group each, 
the model must fit these cells perfectly. Likewise, the adjacent cohorts include data on only two age 
groups each,and the fit will usually be very good. For these data, however, the improvement in fit of 
the age-cohort model is very considerable indeed (deviance = 36.3 rather than 455) and there is no 
question that it justifies the extra parameters. 

Parameter estimates using the method of maximum likelihood based upon Poisson deviations 
are shown in Table VII. The reference cohort is taken as the 1900 birth cohort - the first cohort to 
be observed throughout the full 25 years of study. Note also that the estimates of the relative risks 
for the two last cohorts are shown in parentheses, reflecting the fact (which we have already 
discussed) that these are based on considerably less data and are, therefore, less reliably estimated. 
This is particularly the case for the last cohorts which are only observed during the youngest age 
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groups so that y14 and y1 are both estimated from only 12 deaths each. This fact is also frequently 
lost sight of when considering the age-cohort model and it is frequently found that plots of the 
cohort effects, y E ,  show extremely large fluctuations for the latest cohorts, and to a lesser extent, for 
the earliest cohorts. It is easy to be impressed by such, often artifactual, suggestions. We can guard 
against this danger by also estimating the standard errors of the parameter estimates as measures of 
the reliability of estimation. Note that this problem does not arise in the interpretation of period 
effects, which are all estimated with approximately equal reliability. 

REGULAR TRENDS: THE LOG-LINEAR DRIFT MODEL 

In the previous section we showed a data set which was well fitted by the age-cohort model but not 
by the ageperiod model. We shall discuss the analysis of data sets which are not well described by 
either model in paper 11.’ In this section we consider the interesting phenomenon of a data set 
described equally well by both models. 

Table VIII shows mortality from lung cancer in females in Belgium during the period 1955 to 
1978, and Table IX shows deviance chi-squared tests for the age only, the age-period and the 
agesohort models. 

At first sight, the results of Table IX seem paradoxical. Comparison of the age only and 
age-period models indicates a highly significant period effect, while comparison of the age onIy 
and age-mhort models indicates a highly significant cohort effect. Yet, both ageperiod and 
age-cohort models fit the data very well, with chi-squares very close to their expected values (the 
corresponding degrees of freedom). The only possible resolution of this paradox is that there must 
be some temporal variation of rates which does not distinguish between period and cohort 
influences, that is, a variation over time which could be predicted either by the ageperiod model or 
by the age-cohort model. This is indeed the case, and we introduce the term ‘drift’ to describe such 
variation. 

In Table X we examine the estimated additive period effects, p p ,  of the age-period model and the 
estimated cohort effects, y E ,  of the age-cohort model and these indicate empirically the nature of 
drift; both models show mortality increasing almost monotonically at an average rate of about 10 
per cent per five-year period (or cohort). This suggests a log-linear trend model; for the 
age-period model it predicts that the logarithmic age-specific rates, Yap,  may be represented by 

yo, = a, + 6,(P - P o )  (8) 

where po is the reference period and 6, is the (constant) change in log-rates from one period to the 
next. Similarly, a log-linear version of the age-cohort model is 

Y,, = a, + 6,(c - c o )  (9) 

where co is the reference cohort. In (8) a, are the fitted age-specific rates in the reference period, 
while in (9), a, are the fitted age-specific rates for the reference cohort. 

We shall not discuss here the technicalities of fitting either of these models. It is sufficient for our 
purpose to note that we can do so by means of a suitable computer program, using either least- 
squares or maximum likelihood. Here the latter is more appropriate, and when we fit these models 
we obtain an interesting result; the likelihood ratio chi-squares assessing the fit of each of these 
models are equal; 42-06 on 43 degrees of freedom. This reflects the fact that the fitted rates are 
identical: the two models give identical predictions. Also, in both cases the estimate of the linear 
trend coefficient, &, is the same, 0.1025, so that 8’ = 1.11. 
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Table VIII. Age-specific mortality rates (per 100,OOO person-years observation) of lung cancer in Belgian 
females during the period 1955-1978. Numerators are shown in parentheses. (Source of data: WHO 

mortality database) 

Agefperiod 1955-1959 1960-1964 1965-1969 1970-1974 1975-1978 

25-29 
30-34 
35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 

~~ 

0.19 (3) 
0-66 (11) 
0-78 (11) 
2.67 (36) 
4-84 (77) 
6-60 (106) 

10.36 (157) 
14.76 (193) 
20.53 (219) 
26.24 (223) 
33.47 (198) 

0.13 (2) 
098 (16) 
1.32 (22) 
3.16 (44) 
5.60 (74) 
8.50 (131) 

12.00 (184) 
1637 (232) 
22.60 (267) 
27.70 (250) 
33.61 (214) 

050 (7) 
0.72 (11) 
1.47 (24) 
2-53 (42) 
493 (68) 
7.65 (99) 

12.68 (189) 
18.00 (262) 
24.90 (323) 
3047 (308) 
36.77 (253) 

019 (3) 
0.71 (10) 
1.64 (25) 
338 (53) 
6.05 (99) 

10.59 (142) 
14.34 (180) 
17.60 (249) 
24.33 (325) 
36.94 (412) 
43-69 (338) 

0.70 (10) 

1.32 (15) 
3.93 (48) 
6.83 (88) 

1042 (134) 
17.95 (177) 
23.91 (239) 
32.70 (343) 
38.47 (358) 
45.20 (312) 

057 (7) 

Table IX. Lung cancer mortality in Belgian females (data 
of Table VIII): goodness of fit of various log-linear models 

Degrees of 
Model Deviance freedom p-value 

- Age 196.3 44 
Age + period 38.2 40 0 5  
Age + cohort 29.5 30 0.5 
Age +drift 42,l 43 0 5  

Table X. Lung cancer mortality in Belgian females. Additive effects, deviances (dev) and 
degrees of freedom (d.f.) for the age-period and age-cohort models estimated using the IPF 

procedure 

Age + period Age +cohort 
(deviance = 38-2, d.f. = 40) (deviance = 29.5, d.f. = 30) 

Age Qa period B, Age Qa Cohort Y, 

25-29 - 12.82 1955-1959 04XKI 25-29 - 13.54 1880 -0.331 
30-34 -12-01 1960-1964 0.107 30-34 -1242 1885 -0318 
35-39 -11-43 1965-1969 0162 35-39 - 11.85 1890 -0231 
4044 -10.58 1970-1974 0.278 40-44 -1092 1895 -0105 
45-49 -9.99 1975-1978 0423 45-49 -1022 1900 0000 
50-54 - 9.55 50-54 -9.66 1905 0055 
55-59 - 9.12 55-59 -9.14 1910 0.203 
60-64 - 8.83 6@64 -8.73 1915 0.33 1 
65-69 - 8.50 65-69 -8.29 1920 0.470 
70-74 - 8.25 70-74 -7.94 1925 0484 
75-79 - 8.07 75-79 -7.67 1930 0.655 

1935 0.740 
1940 0717 
1945 0361 
1950 1.664 
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Taking antilogs of (8) and (9) gives the multiplicative models for the ratios themselves. That is, 
for the age-period model 

p UP = a: ( ~ ; ) ( P - P o )  (10) 

and, for the age-cohort model 
p; = ( ~ ~ , ) ( C - C O ) .  

Thus, 6; is the relative risk between adjacent periods and 8, is the relative risk between adjacent 
cohorts. 

Does this mean, then, that the two models (8) and (9) are the same? Unfortunately it does not; 
they merely make the same predictions for rates. This may be demonstrated by first considering the 
case where the log-linear age-period model (8) is known to hold. That is 

y a p  = au + B,(P -Po)-  

However, from the structure of the table, the logarithmic-rate corresponding to age group a and 
period p may also be indexed by a and cohort c in the longitudinal table, where c = A - a  + p. This 
in turn means that p = c + a - A, and we may substitute this value for p in the age-period model 
and obtain 

Y, = a , , + 6 , ( c + a - A - p , ) .  

The term in parentheses is linear in c so that the model may also be written as an age-cohort 
model, but, and this is important, the term also includes a. Further rearrangement of the expression 
gives 

Y, = [a,, + 6,(a - a o ) ]  + b,(c - co) 

where co = A - a. + p o .  Thus, although we started from a firm assumption of the age-period 
model, we find that it may be written as an age-cohort model, but the age-cohort model shows a 
different (incorrect) age relationship for the rates. The age gradient is enhanced by c5; per age 
interval. 

We can also apply the same argument in reverse; starting from a firm assumption that the log- 
linear age-cohort model, (9), holds we find it equivalent to an age-period model with an identical 
linear trend parameter, 6, but with an incorrect age relationship. In this case, the age gradient is 
attenuated by 6, per age interval. 

Table XI shows the estimated age relationship according to which of the log-linear models, (8) or 
(9), we fit. The reference period for the age-period model is period 1 (1955-1959), while the 
reference cohort for the age-cohort model is cohort 5 (1900 birth cohort). We are not surprised by 
now that the values of a,, differ between the age-period and age-cohort models- these will depend 
on the choice of reference period or cohort as explained in earlier sections. However, now even the 
difference between adjacent parameters depend on which model is adopted. This demonstrates the 
algebra above; the fitted age gradient depends upon the model assumed, but we have seen that there 
is no information within the data to allow us to discriminate between the models; we do not know 
which model is true. Indeed, the position is even more difficult since both types of influence may 
operate simultaneously, and this problem is the subject of our second paper.’ 

We suggest, therefore, the term ‘drift parameter’ for the coefficient, 6, of the log-linear trend 
model, since it is free of any connection with either the age-period or the age-cohort model 
specifically. When a,, are estimated from the age-period model (8) we suggest they should be 
reported as an estimate of the ‘cross-sectional’age curve, while if (9) is used, a,, would be referred to 
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Table XI. Lung cancer mortality in Belgian 
females. Additive age effects for the two age- 
drift models. Both models yield a deviance of 
42.1 on 43 degrees of freedom and an estimated 

drift S of 0103 

Age Period drift Cohort drift 
class model model 

2 5 2 9  
3&34 
35-39 
40-44 
45-49 
5&54 
5 5 5 9  
&64 
65-69 
70-74 
7 5 7 9  

- 12.83 
- 12.02 
- 11.44 
- 1059 
- 10.00 
- 9.56 
- 9.14 
- 8.84 
- 8.52 
- 8.26 
- 8.08 

- 13.45 
- 12.53 
- 11.85 
- 1090 
- 1020 
- 9.66 
- 9.14 
- 9.74 
- 8.31 
- 7.96 
- 7.67 

as the 'longitudinal' age curve, although strictly it only approximates the curve which would be 
obtained from longitudinal studies. 

DISCUSSION 

In this paper we have introduced the age-period and the age-cohort models. We have discussed the 
problem of identifiability arising because the same fitted rates are predicted by many different sets 
of parameter values. In the third and fourth sections we showed that these problems may be 
resolved fairly easily by choosing a conventional way of writing the model (a parameterization) in 
which the parameters have simple interpretations in terms of relative risks, taking one period or 
cohort as reference. In the last section we encountered the phenomenon of 'drift', which leads to a 
much more difficult identifiability problem. We shall deal with this in our second paper.' 

It is, perhaps, surprising that the age-drift model has received little or no attention in the 
literature. Frequently analyses start with either an age-period or an age-cohort model. We 
recommend that this model should always be the next possibility considered after the model of no 
temporal variation (the age-only model). As we have seen, drift is regular trend which cannot be 
ascribed to either period or cohort influences, and it is only when we observe irregular or sudden 
changes that we must consider age-period or age-cohort models. 

If there is a sudden change in all age groups simultaneously, then the age-period model will 
describe data well. Such changes might occur in mortality rates, for example as a result of an 
advance in treatment which benefits all age groups equally, or as a result of the introduction of a 
screening programme which is equally applied and equally effective over all age groups. For 
incidence rates, the same pattern might occur if there is some change in population exposure to a 
late-stage carcinogen, again affecting all age groups equally, or (more 1ikely)as a result of changes in 
the completeness of registration. The sudden increase of incidence of bladder cancer in the region 
of Birmingham (Table I) is a consequence of an artifact of registration. In this instance, so-called 
benign papillomas of the bladder were not registered as bladder cancer cases until the start of the 
third period of observation (see Cancer Incidence in Fiue Continents". ' I ) .  However, changes in 
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disease classification will result in a time effect only if the induced percentage variation of rates does 
not depend upon age. 

Most causes of cancer require prolonged exposure, determined by an aspect of life-style, such as 
occupation or smoking habits, which is fixed very early in adult life. In these cases, a change in 
population exposure is more likely to manifest many years subsequently and will not occur 
simultaneously in all age groups; certain generations or cohorts will have greater exposure than 
others and the age-cohort model will provide a better description of the data. 

It is important to recognize, however, that both models represent rather simplistic modes of action 
of risk factors on disease. The age-period model will only fit the data if the external influence 
changes all age-specific mortality rates by the same multiplicative factor. If a factor operating at or 
near the time of death operates differentially in different age groups (that is, there is an age-period 
interaction) then the age-cohort model may give a better fit. Thus, we should be careful to avoid 
over-interpretation of the better fit of the age-cohort model, which often arises out of its greater 
complexity; it has more parameters simply because there are more diagonals in the table than there 
are columns. There is a further reason why age-cohort models should be interpreted with great 
care. Strictly, cohort parameters describe relative risks for the diagonals of a table. The extent to 
which cohort parameters measure cohort relative risks depends on how closely diagonal rates 
reflect the actual cohort rates. There is at least one instance in which rates on a diagonal may differ 
appreciably from the true cohort rates. We show in our second paper* that amarked dip in the birth 
rates (like those due in some countries to the World Wars) can produce on its own a cohort effect. 

In our second paper’ we discuss analyses in which neither ageperiod nor age-cohort models 
provide an adequate fit to the data. Often such tables are analysed using the full age-period-cohort 
model and in this more complex model it is doubly important to be wary against fallacious 
interpretations. 

Finally, we shall make a few observations concerning computer software for fitting the models 
we describe in these papers. For the method of weighted least-squares, any general linear model 
program may be used, for example those in BMDP or SAS packages. The most convenient general 
purpose program for all methods, including maximum likelihood under Poisson assumption, is 
GLIM.I3 The experienced user may readily carry out the residual analyses we have suggested with 
this program, and Breslow” has shown it may be used when the residual errors are more dispersed 
than would be expected from the Poisson assumption. 
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SUMMARY 
Our first paper reviewed methods for modelling variation in cancer incidence and mortality rates in terms of 
either period effects or cohort effects in the general multiplicative risk model. There we drew attention to the 
difficulty of attributing regular trends to either period or cohort influences. In this paper we turn to the more 
realistic problem in which neither period nor cohort effects alone lead to an adequate description of the data. 
We describe the age-period+ohort model and show how its ambiguities surrounding regular trends 
‘intensify’. We recommend methods for presenting the results of analyses based upon this model which 
minimize the serious risk of misleading implications and critically review previous suggestions. The 
discussion is illustrated by an analysis of breast cancer mortality in Japan with special reference to the 
phenomenon of ‘Clemmesen’s hook’. 
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INTRODUCTION 

In our first paper’ we described an approach to the analysis of data on the variation of cancer 
incidence or mortality with time. This approach is in the main stream of modern methodology in 
chronic disease epidemiology, being based upon the proportional hazards model. This is an 
empirically based general model which, in its simplest form, holds that the ratios of age-specific 
rates between two groups of individuals with different exposures to carcinogenic influences are 
constant for all age groups. This general model underpins traditional methods of age standardiz- 
ation2 as well as relative risk analyses in age-matched caseecontrol ~ t u d i e s . ~  

We described two different models for variation over time, the age-period model and the 
ageecohort model. These models predict constant ratios of age-specific rates 

(i) between different periods, that is the calendar periods during which the incidence (or 
mortality) rates were observed, or 

(ii) between different cohorts, that is longitudinally observed groups of people born within 
specific periods. 

Cross-sectional tables of rates by age and calendar period allow us to fit the former (age-period) 
model precisely and the latter (age-cohort) model to a close approximation, at  least when the data 
are grouped with almost equal time intervals on both age and calendar period axes (say 5 years). 
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AGE+DRIFT A+P- 3 
A(P-11-1 

AGE+COHORT AGE + PER I00 
(A-1)(P-2) (A- 1) (P-1) 

Figure 1. Logical order in which to consider models with at most one type of temporal variation. The formula on the 
second line of a box gives the number of degrees of freedom for a table with A age classes and P time periods 

Finally, we considered the problem posed by a specific type of regular trend in which the ratio of 
age-specific rates between two adjacent time periods is not only constant across age groups, but is 
constant for any pair of adjacent time periods. We showed this model to be indistinguishable from 
the equivalent regular age-cohort trend model in which the relative risk between adjacent birth 
cohorts is constant. The models are indistinguishable, in the sense that either may generate 
identical predictions for the data using the same trend parameter-the relative risk between 
adjacent periods or cohorts. However, in so doing, the models must adopt different age curves so 
that if the relationship between age and incidence or mortality rates were known then the models 
would be distinguishable. In the absence of such knowledge, however, the models ?.re equivalent 
and we introduced the term drift to describe this regular trend, unattributable to specifically period 
or cohort influences. 

We also introduced the terms cross-sectional and longitudinal age curves for the age 
relationships estimated by the age-period and age-cohort versions, respectively, of the regular drift 
model. It follows directly from our remarks of the previous paragraph that, in the absence of extra 
information allowing us to determine which model is true, we are likewise unable to decide which of 
these represents the true age curve. This fundamental difficulty is central to understanding the 
problems of interpretation with the more complex models described in this paper. 

Figure 1 illustrates the logical order in which to consider the models we have encountered so far. 
The first model is the null hypothesis of no temporal variation, while the second model is the model 
of regular drift unattributable to period or cohort influences. Only if this model does not 
adequately describe the data are we justified in considering either specifically age-period or 
age-cohort models. 

In our first paper' we also discussed the assessment of the goodness-of-fit of models and showed 
how the change in a global measurement of goodness-of-fit (or badness-of-fit, deviance) may be 
used to construct statistical significance tests. Thus, comparison of model (2) with model (1) 
provides a one-degree of freedom test for trend (drift). Comparison of model (3A) with model (2) 
provides a (P - 2) degree-of-freedom test for irregular trends incidence (death) attributable to 
period while comparison of models (3B) and (2) provides a (C - 2) degree-of-freedom test for 
irregular cohort effects. Note that models (3A) and (3B) may not be compared directly in this way 
and it is not possible to construct a formal test of whether the age-cohort model is significantly 
better than the age-period model. 
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Table I. Age-specific mortality rates (per 100,OOO person-years observation) of breast cancer in Japan, 
during the period 1955-1979. Numbers of cases on which rates are based are in parentheses (source: 

WHO mortality data base). 

Age/period 1955-1959 1960-1964 1965-1969 1970- 1974 1975-1979 

25-29 
30-34 
35-39 
4u-44 
45-49 
50-54 
55-59 
6 W  
65-69 
70-74 
75-79 

044 
1.69 
4-0 1 
659 
8.5 1 

1049 
11.36 
12.03 
12-55 
1581 
17.97 

0.38 
1 -69 
3.90 
6.57 
9.6 1 

1080 
11.51 
10.67 
12.03 
13.87 
15.62 

046 
1.75 
4.1 1 
6.8 1 
9.96 

12.36 
12.98 
12-67 
12-10 
12-65 
15.83 

0.55 
2.3 1 
444 
7-79 

11-68 
14-59 
1497 
14.46 
13.81 
1400 
15.7 1 

(127) 
(509) 
(923) 

(1497) 
(1987) 
(2079) 
(1 828) 
( 1549) 
(1 140) 
(900) 
(644) 

0.68 
2.52 
4.80 
8.27 

12.51 
16-56 
17-79 
16.42 
1646 
15.60 
16.52 

( 179) 
(588) 
1056) 

(1716) 
(2398) 
(2794) 
(2465) 
(1962) 
(1683) 
(1162) 
(865) 

deviance=940 d.f .=44 

AGE+ DRIFT  
deviance.298 d.f .=43 

AGE+ PERIOD 

AGE* COHORT+PERIOD 
deviancet31 d. f .=27 

Figure 2. Deviances obtained from fitting various multiplicative models to the data of Table I. Numbers in the connecting 
arrows give the loss of degrees of freedom (d.f.) 

In this paper we consider the case where neither the age-period nor the age-cohort model 
provides an adequate fit to the observed table of rates. 

THE AGE-PERIOD-COHORT MODEL 

Table I shows mortality from breast cancer in Japan during the period 1955-1979, and the upper 
section of Figure 2 shows the results of fitting the four models of Figure 1. 

In this case the fit of the models is measured using a deviance or likelihood-ratio criterion which 
assesses the deviations between observed and fitted rates relative to Poisson variability expected on 
the basis of the numerators of the observed rates (see paper I, third section).' If any model gives a 
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true description of the underlying rates, the corresponding deviance should be distributed as chi- 
squared with the appropriate degrees of freedom. 

It can be seen that although the age-cohort model is clearly the best of those considered it does 
not fit the data adequately; a value of chi-squared of 81 on 30 degrees of freedom is highly 
significant. 

This suggests that the model to consider next is one in which both cohort and period effects are 
included; this is the age-period<ohort model which has received much attention in recent 
Iiterature. As for the ageperiod and age-cohort models, it may be written either as a model for the 
log-rates in which the effects of age, period and cohort combine additively, or as a model for 
the rates themselves in which the effects combine multiplicatively. That is, writing Yup for the 
logarithms of the rates, the age-period-cohort model is 

yo, = a u  + 8, + Y c ,  

c = A - a + p .  
(1) 

Here, as in our first paper,' c indexes diagonals of age x period table, which approximate to 
birth cohorts. 

Writing, pap for the untransformed rates and a;, & and y: for the antilogs of the corresponding 
parameters, the multiplicative form of the model is 

(2) 

so that age-specific rates, u:, are multiplied by factors Fp corresponding to the calendar period of 
incidence or death, and by factors 7: corresponding to the birth cohort of individuals affected. 

This model may be fitted to the data either by weighted least-squares or by Poisson maximum 
likelihood. In these papers the latter method has been used throughout. When fitted to the data of 
Table I, model (1) gives a deviance of 30.7 on 27 degrees of freedom, which is consistent with chance 
(Poisson) fluctuations (P N 0-28). Figure 2 shows the sequence of models leading to this final, 
acceptable model. By comparing models 3B and 4 we conclude that, after adjusting for period 
effects, cohort effects are statistically significant (deviance = 172, on 13 degrees of freedom). 
Likewise, comparing models 3A and 4 we see that, after adjusting for cohort effects, the effect of 
calendar period is significant (deviance = 50, on 3 degrees of freedom). Note that the degrees of 
freedom for each of these tests mirrors the value for the test corresponding to the opposite corners 
connecting models 2, 3A, 3B and 4. These tests are the corresponding crude tests. For example, 
comparison of 3A and 2 tests for cohort effects but does not adjust for period effects. 

Exactly as the adjusted tests, (3A - 2) and (3B - 2), test for attributable cohort and period effects, 
respectively (that is effects over and above regular drift), so do the corresponding tests based upon 
the full age-periodxohort model. The impossibility of ascribing drift to either specifically period 
or specifically cohort influences must and does persist. This in turn presents us with serious 
problems in displaying and interpreting the estimates of the model parameters. We shall discuss 
this issue in the next section. 

P u p  = a: B', Y: 

MEASURING AGE, PERIOD AND COHORT EFFECTS 

The fundamental problem in interpreting parameter estimates from the age-periodxohort model, 
(1) or (2), is that there is no single unique solution; indeed there are infinitely We have 
already encountered this in our first paper,' in which we demonstrated that the period drift and the 
cohort drift models lead to identical fitted rates. Thus there are clearly limitations to the 
interpretation of such data. We must examine what the infinitely many possible solutions have in 
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Table 11. Three sets of age, period and cohort effects that give identical best fitting expected rates for Table I 

Age a: x 100OOO 
25-29 0.55 
3Ck34 2.14 
35-39 4.30 
40-44 6.84 
4549 9.30 
5Ck54 11.00 
5@59 11.23 
6G64 10.38 
65-69 9.85 
70-74 9.46 
75-79 9.43 

Period Fb x 100 
1955-1959 100.0 
196Ck1964 1062 

197Ck1974 147.2 
1965-1969 121.3 

0.38 
1.58 
3.38 
571 
8.25 

10.37 
11.23 
1 1.02 
11.11  
11.33 
11.99 

100.0 
100.0 
107.5 
123.0 

0.27 
1.17 
2-66 
477 
7.32 
9.76 

11.23 
11-70 
12.52 
13.56 
15.24 

100.0 
94.2 
95.4 

102.7 
1975-1978 173.9 136.8 107.6 

Cohort 7: x 100 
1880 190.3 
1885 162.0 
1890 133.9 
1895 113.6 
1900 100.0 
1905 963 
1910 94.2 
1915 92.7 
1920 90.3 
1925 84.9 
1930 
1935 
1940 
1945 
1950 

77.4 
69.3 
67.1 
67.8 
71.4 

149.7 
135.3 
118-7 
107.0 
100.0 
102.3 
106.2 
11  1.0 
114.8 
114.6 
11  1.0 
1053 
108.4 
116.3 
130.1 

117.8 
1130 
105.3 
100.8 
100.0 
108.6 
119.7 
132.9 
145.9 
154.7 
1591 
160,6 
175.2 
199.6 
237.1 

common with one another, for it is this we may interpret. Although this is obvious, it seems to have 
largely escaped attention in the (futile) search for a mathematical ‘solution’ to the ‘problem’ of 
identifiability. Such attempts can only invite conclusions unsupported by the data. The model as 
specified has more parameters than may be estimated from the data. We might attempt to proceed, 
as previously, to find a parameterization which has a: representing fitted age-specific rates by 
choosing one reference period and setting the corresponding Fb to 1, and a reference cohort so that 
one y: is also taken as 1. This would leave as unknown A age parameters, (P - 1) period parameters 
and (C - 1) cohort parameters. Unfortunately, however, this does not work; there is no unique 
solution. Table I1 displays three possible sets of parameter estimates and it may be verified easily 
that each set gives an identical prediction for the observed table. In this table the reference period 
and cohort are p = 1 and c = 5, respectively. 

These solutions are chosen to illustrate how the unwary could be led to unjustified conclusions. 
Incidentally, they are not too different from age relationships observed for breast cancer cross- 
sectionally in different countries. In the first solution the period effects show a strong increase from 
the first period onwards, while the cohort effects show a reverse gradient. In this solution the age 
curve is unusual, with rates increasing until 55-59 and thereafter decreasing. In the second solution, 
there is an upward trend with calendar period but a U-shaped cohort curve with a minimal risk for 
the 1900 cohort. The age curve shows the phenomenon of Clemmesen’s hook; rates increase to a 
maximum at 50-54 then fall back slightly before continuing their upward trend from the age of 65 
onwards. Finally, the last solution yields U-shaped period and cohort curves but, compared to the 
previous parameterization, a more pronounced increase over successive cohorts from 1900 
onwards. This solution, has no Clemmensen’s hook, the age curve being uniformly increasing. 

The reason for these seemingly paradoxical results lies with the problem of drift, which, as we 
showed earlier, is not specifically attributable either to period or cohort effects and is described by 
a single parameter in addition to the age parameter, aa. Adoption of the age-period model adds 
(P - 2) extra parameters expressing irregular period effects (see Figure 2). Likewise, adoption of the 
ageecohort model adds (C - 2) parameters to the regular age-drift model. Finally, the 
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age-period-cohort model includes: (i) drift, (ii) non-drift period effects and (iii) non-drift cohort 
effects, that is 1 + (P - 2) + (C - 2) parameters in addition to the age-curve parameters. Table 11, 
however, purports to estimate (P - 1) period effects and (C - 1) cohort effects which include two 
parameters for period drift and cohort drift. We already know that the data are not capable of 
distinguishing between these two effects and it is not surprising that we get into difficulty when 
trying to estimate two indistinguishable parameters! 

To clarify the position, let us look more closely at such an attempt when there are no non-drift 
period or cohort effects. As in our first paper’ we shall wirte 6, and 6, for the parameters of 
perioddrift and cohortdrift, respectively. Thus, without non-drift effects, the age-period-cohort 
model for the logarithms of the rates is 

‘Rp = ‘R + P ( P  - Po)  + 6c(c - ‘0) (3) 
where p o ,  co are reference period and cohort, respectively. Thus, the antilogs of 6, and 6,, 
Sl, and 6; are the relative risks between adjacent periods and adjacent cohorts, respectively 
(constant across age). 

As previously, however, the cohort passing through age group a at period p is totally determined 
by a and p according to the relationship c = A - a + p ,  or equivalently by p = c + a - A. We can 
substitute either of these expressions for c or for p in (3) and obtain, respectively: 

‘ R p  = aU-6C(a -ao )+ (6 ,+6c~(P-po )  (4) 

Yup = au+6,(a-ao)+(6,+S,)(c-c,) (5 )  

which is the age + period-drift model, with drift parameter 6 = (6,+ aC), and: 

which is the age + cohortdrift model, again with drift parameter 6. 
This corresponds to the problem we first discussed in the fifth section of our first paper.’ Not 

only are the (age + period-drift) and (age + cohort-drift) models indistinguishable from each 
other, they are also indistinguishable from any (age + period-drift + cohortdrift) model in which 
the net drift, 6 = (a,+ dC), is held constant. It is only this net drift which can be estimated using only 
the data in the age x period table of rates. 

Are, then, all such models identical? Again unfortunately not - they differ in the age curves which 
must be assumed to represent the observed data, as may be seen by comparing (4) and (5). To 
identify the true age curve we therefore need to partition the net drift between age and cohort 
influences, and this we cannot do, at least without further information or assumptions. 

In our first paper’ we suggested the term cross-sectional age curve for the age effects estimated 
when fitting the age-period model and longitudinal age curve for the age effects estimated when 
fitting the age-cohort model. Inspection of (4) shows that the cross-sectional age curve differs in 
gradient from the true age curve by (minus) the cohort drift, 6,. Likewise, the longitudinal age curve 
differs in gradient from the true age curve by the period drift, 6,. 

We now return to the results of Table 11. These represent various parameterizations of the full 
age-period-cohortmodel. This differs from the model discussed above only in that it also includes 
non-drift period effects and non-drift cohort effects. The difficulties concerning drift remain; the 
three solutions displayed all show the same net drift, but differ according to how it is partitioned 
between period and cohort components. Thus, the three sets of parameters all predict identical 
fitted rates, but suggest different age relationships. In the first parameterization there is a strong 
positive period drift, a strong negative cohort drift and an inverted U age curve. The other two 
solutions have milder period drift compensated for by an equal increase in the cohort drift. This 
transfer is matched by an increase in the age gradient. Note again that the transfer of drift onto the 
age curve causes the shape of the curve to change, in particular local extrema may be induced or 
erased. 
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How then can we present the parameters of the age-period-cohort model? It is our belief that 
any parameterization in a form such as we used in Table I1 runs the risk of over-interpretation and 
should be avoided, unless extra information has effectively resolved the partition of drift between 
period and cohort influences. However carefully one might deal with the problem in the text of a 
paper, the selection of one arbitrary parameterization for a table or a graphical display can be 
grossly misleading. It would seem wiser to report the net drift as some overall summary of the 
relative risks betwen adjacent intervals, and to report only non-drift period or cohort effects. This 
has been suggested recently by Holford.’ 

Three methods have been proposed for presentation of period or cohort effect. We shall describe 
these methods in relation to period effects, but the same considerations apply for cohort effects. We 
start from one arbitrary parameterization, say any one of the columns in Table 11. If these 
parameters are B,, then we may de-trend them by adding in a log-linear drift term to give new 
parameters 

B,* = 8, + S ( P  - P o )  

where we choose S so that the resultant flf are free of drift. However, this raises a question as to how 
we define /3,* as being free of drift. Holford’ suggests to interpret this such that the linear regression 
line of the parameters Sf against the periods, p, has zero slope. This has the advantage that 
the resulting are identifiable, that is do not depend on the repartition of drift. An even 
simpler alternative is based upon drift being defined as the average of the successive first 
differences, (B2 - pl), ( B 3  - p2). This leads to a choice of S such that /?: = 8;; the period 
curve is restrained to return to the same level as it commenced. Since period 1 is usually taken as 
reference, so that p: = 0, this leads also to taking /?; = 0 which is in computational terms very 
straightforward. However, it must be kept in mind that the proper interpretation of such 
bf is not straightforward. For instance, p,* obtained by the latter method should be 
interpreted as: a,* = (b, - 8,) - ( p  - l)(flp-jl l) /(P- 1). The third method derives from a 
consideration of what it is that defines non-drift period effects. Non-drift effects operate in 
such a way that the relative risks between adjacent periods are not identical. Non-drift effects 
are, therefore, expressible as contrasts between such relative risks. Perhaps the simplest such 
contrast would be the ratio of two adjacent relative risks (see Figure 3): 

. . .  b/p2 pk/p3 

p2/pI ’ p3/p2 
Note that in Table I1 these contrasts are identical in all the parameterizations. For example, 

so that the relative risk of period 3 versus period 2 is 8 per cent higher than that of period 2 
versus period 1.  This may be thought of as a measure of acceleration of period trend during 
the time around period 2. On the logarithmic scale, these contrasts are the ‘second differences’: 
( p 3  - f i 2 )  - (B2 - p,) = f i3 - 2pz +PI ,  p4 - 2p3 + p2 ,  which are well-known measures of curvature. 
Zero value indicates that the log-risk versus calendar time curve is locally a straight line, while 
positive or negative values indicate convex or concave relationships, respectively. 

Figure 3 shows graphically the identifiable second differences parameter estimates for our breast 
cancer example. While such contrasts are unfamiliar in epidemiology, they have the important 
property of representing characteristics specifically attributable to age, period or cohort without 
any arbitrary repartition of drift components. Undoubtedly there are other possibilities for 
presentation of the identifiable information which might be helpful. In our example the second 
differences show two irregularities in the birth cohort effects, indicating sudden changes in the 
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Figure 3. Mortality from breast cancer in Japan: estimates of the identifiable non-drift effects 

cohort trend around 1900 and around 1935, and also the distinctive dip in the age curve around 
menopause, which, depending upon the partition of drift, may manifest itself as Clemmesen's hook. 

These second differences have the important practical advantage that the value taken is affected 
by only neighbouring data. For example, the second difference around period 2 is not perceptibly 
influenced by trends occurring after period 3; this is not the case for the other methods we have 
outlined. 

A NOTE O N  THE EFFECT OF GROUPING 

In these papers' we have accepted the identification of birth cohorts and diagonals of regular tables 
of vital rates. As stated earlier this is only approximate. Our first paper' draws attention to a 
consequence of the grouping, namely the spurious cohort effects which can result from a sudden 
change in birth rate. We illustrate this now. 



MODELS FOR TEMPORAL VARIATION IN CANCER RATES 477 

.- E 

.I- 

L 
0 
V c al 
0 
0 
- 

Population 
density 

High 

Age 

Figure 4. Lexis diagram 

Figure 4 is a Lexis diagram plotting calendar time against age. The horizontal and vertical lines 
represent the usual age and period grouping, and birth cohorts correspond to diagonals. Suppose, 
for the sake of our argument, that all birth cohorts after a specified date are less numerous than 
before as shown by the shadings. Clearly the mean age in a square cell affected by the change in 
birth rates will be higher that the mid-point of the age group. Such effect will not occur elsewhere. 
This shift in the mean age will result in shifted (usually increased) rates. These excessive rates, 
aligned on a diagonal, mascarade a cohort effect. 

Failure to take account of distortions due to grouping have led Boyle et a1.* and more recently 
Boyle and to a fallacious elimination of non-identifiability. Their argument requires 
access to individual records (or at least to more detailed tabulation). All arguments we presented 
earlier about identifiability depend in no way upon the degree of grouping, and it follows that finer 
grouping itself cannot resolve the non-identifiability of the model. The fallacy can be illustrated 
using again Figure 4. The diagonal lines delineate birth cohorts with grouping interval equal to that 
used for age and calendar time. Thus each age x period cell contains two triangular regions 
refering to adjacent birth cohorts. Consider cell (a, p), containing, say, cohorts c and c + 1. Boyle et 
a1.* and Boyle and 

(6) 

(7) 

suggested modelling the log-rates in these two regions by: 

Y$,) = a, + B, + yc 

y a p  - a , + B p + Y c + l .  (2) - 

By calculating rates for the 2 x A x P triangular regions it can be shown that this model is fully 
identifiable. The authors claim that the fine grouping has solved the problem, but the true source of 
the solution is the assumption that the age and period effects are identical between the opposed 
triangles of each cell. Indeed the model (6) and (7) implies that the age incidence curve is a step 
function (similarly the period trend). If this functional form may be taken as known fact, then the 
model is indeed identifiable. However what if this assumption is false (as it must be)? 

We have shown that the model in which period and cohort effects consist of equal and opposite 
drift (the EOD model, say) leads to rates which vary only with age. However, if there are no trends 
(the NT model) the rates also vary only with age at least when there is no constraint on the age 
parameters. Equations (6) and (7) imply we would be able to differentiate between these results 
since the EOD model predicts discrepancies between Y $) and Y $), while the NT model predicts 
equality. However if the age curve is not constant within cells this will also lead to discrepancies 
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between Y $ and Y $,). Thus the truth of the conclusion to which one is led by equations (6) and (7) 
depends entirely upon the validity of constant incidence rates within age groups. 

DISCUSSION 

In this final section we address the question as to whether previous claims to have ‘solved’ the 
identifiability problem have been well founded and, if not, whether these difficulties negate the 
usefulness of this approach as we already stated. It is mistaken to regard the non-identifiability of 
drift component as a problem which needs only an advance in methodology for its solution. We 
have tried to demonstrate in these papers that this is a scientific problem in which our data do not 
discriminate between different models or explanations. A good statistical analysis will not only 
summarize the data in a succint and meaningful way, but will also make clear its limitations. By 
considering the age-period-ohort model in the context of the sequence of models set out in 
Figure 2, we would hope that this is achieved. Nevertheless, the view that non-identifiability is a 
methodological problem is prevalent as illustrated by the papers discussed in the previous 
paragraph as well as by the four different approaches we shall discuss next. 

Recently, Osmond and Gardne~-’*~ introduced a mathematical constraint in the model. 
Essentially, they choose one of the infinitely many possible solutions on the ground that it has 
certain mathematical properties. Such a strategy can only be justified if the property which 
identifies the unique solution has any biological basis and no such justification has been offered. 
Their solution, is therefore, totally arbitrary. The mathematical constraint they proposed is difficult 
to explain in non-technical language, but its effect is to partition the drift between period and 
cohort curves in a ratio which depends upon the relative magnitude of non-drift effects. Thus, if the 
age-cohort model is better than the age-period model then in the age-period-cohort model drift 
will be concentrated into the cohort effects. It is interesting to speculate on likely results of the 
Osmond and Gardner method when applied to data such as those for lung cancer mortality in 
Belgian females (see Table VIII of first paper’) which is well described by the age-drift model. The 
solution obtained would, of necessity, be determined by statistically insignificant fluctuations. 
There seems no scientific reason to prefer such a solution to any other. 

Day and Charnay’ ’ considered the extra information available when analysing data from several 
cancer registries. They pointed out that, if the age effects may be assumed equal for different 
registries, then the identifiability problem is partially resolved. This assertion is undoubtedly 
accurate, but it is very doubtful whether one would be prepared to make suchpan assumption. There 
are different levels of carcinogenic exposure in different registry areas and it is quite conceivable 
that these will result in age curves of a different shape; for example, the age relationship for lung 
cancer differs markedly between persons with different smoking histories. A method which 
assumes the form of the relationship between disease rates and age to be an immutable biological 
constant unaffected by environmental exposure is unlikely to command widespread support. 

Similarly, the identifiability problem theoretically disappears if we are prepared to assume a 
precise mathematical form for the age curve (an approach similar to that suggested by Boyle et a/.,* 
and Boyle and Robertson9, lo), provided that form does not contain a log-linear component. Now, 
this mathematical function must be chosen on the ground of compelling biological evidence, 
otherwise the whole process, even if confirmed by a good fit, amounts to a complicated but still 
arbitrary repartition of drift. One such curve is the Weibull law in which incidence rates are 
proportional to the power of age so that log-rates are linearly related to the logarithm of age rather 
than to age itself. This relationship is suggested by the multi-stage model for carcinogenesis”.’ 
and by empirical evidence from animal carcinogenesis experiments. With the Weibull model, the 
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log-linear components of both cohort and period effects are identifiable. However, as already 
stressed, their identifiability depends upon the difference between the Weibull law and the log- 
linear (Gompertz) law. This difference is small and the resultant solution is unstable, the estimates 
of the newly identifiable linear components having very large variances and covariances. There is a 
further difficulty in that the empirical evidence for the Weibull law requires measurement ofage not 
from birth but from some predefined starting point. This point may be thought of as the end of a 
guarantee period during which the disease may not be detected. Unfortunately the statistical 
information for estimation of the guarantee period is very limited since it is drawn almost entirely 
from the incidence rates observed at the youngest ages which are by their very nature estimated 
from the sparsest data. The estimates obtained for the age-period-cohort model must be expected 
to be heavily dependent upon the choice of guarantee period. We must therefore conclude that this 
approach also cannot provide a satisfactory resolution of the problem. 

The last approach we consider is an extended form of age-period-cohort model, originally 
proposed by Moolgavkar, Stevens and Lee,14 and discussed in detail by James and SegaL4 In this 
extended model, the age effects are allowed to vary over calendar periods in such a manner that the 
age curve during one period, expressed as additive effects upon logarithms of rates, is a fixed 
multiple of the corresponding curve during another period. These multiples are an extra set of 
parameters over and above those required by the age-period-cohort model. Rather strangely, this 
extended form of the model does not suffer the same identifiability problems of the basic model. 
However, the model is difficult to interpret and, of course, depends upon a lack of fit of the 
age-period-cohort model. If the age-period-cohort model fits adequately then the extended model 
will degenerate to the basic form and the identifiability problem reappears. This is, therefore, not 
likely to prove a widely useful approach. 

It is clear from the above discussion that there has been no satisfactory resolution of the problem 
of identifiability of log-linear trend components in age-period-cohort models. This led Kupper et 
~ 1 . ’ ~  to conclude that, at present, such models offer little or no advantage over simple graphical 
methods. The same authors have recommended that future research efforts should be directed to 
develop and evaluate methods which bypass the identifiability problem. We would disagree with 
both statements. The simple facts of the information available and of the relationship between the 
three variables ensure that any research efforts directed at the search for this philosopher’s stone of 
modern epidemiology is both futile and pointless. It is the purpose of statistical analysis to extract 
from research data the maximum information in as parsimonious and comprehensive manner as 
possible. No sophistication of method can create information where that information is lacking 
and there can surely be no other conclusion but that the observation of incidence and mortality 
rates in populations over time does not provide sufficient information to ascribe smooth trends to 
period or cohort influences with any reliability, but this is not to deny all uses for such models. In 
replying to the remarks of Kupper e f  u1.,l5 Holford16 pointed out that there are other aspects of 
such data that can be identified, and models can still provide a more parsimonious representation 
of the data than simply graphing the full data. While this parsimony might be considered of 
dubious value given the overhead of understanding necessary for interpretation of an analysis of a 
single table, the same cannot be said of more complex analyses over numerous registries and for 
many sites. It is for that purpose that we believe that the age-cohort model will continue to be of 
some value. Further work is necessary but should be directed at finding the most comprehensible 
parameterization of the model and for presenting the statistical reliability of identifiable estimates. 
This latter problem has been largely ignored. The problem of the analysis of tables in which the 
width of observation periods and of age groups is unequal (Schifliers et ul.”) also requires further 
work, particularly as the interpretation of graphical displays is more difficult in this case. 
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Finally we should address a few words to the problem of forecasting future cancer rates. At first 
sight it might appear, since cohort risks are estimated from past observations, such forecasting is 
achievable without undue extrapolation. In recent years, there have been several attempts to use an 
ageperiod-cohort model fitted to past data to forecast rates. It should come as no surprise to a 
reader of these papers that we would in most cases doubt the wisdom of this course! Holford16 
states that, for the purpose of forecasting, the partition of drift between period and cohort 
components is irrelevant. Unfortunately this is only true if we are prepared to assume that the log- 
linear period drift which has occurred in the past will continue unchanged into the future. This is a 
strong assumption which will rarely be justified in practice. It is not possible to use the model to 
forecast under the assumption of no future period effect. It follows that forecasting is not possible 
without sufficient knowledge of the epidemiology of a given cancer and of the concomittant trends 
in population exposure to the major etiological factors to be able to resolve the underlying 
ambiguities. In certain situations this will be the case, for example for mesothelioma, but, when 
such detailed understanding is missing, we believe the place of the age-period-cohort model is in 
descriptive epidemiology. In this setting it has its place, provided the researcher is aware of the 
limits to inference from the data it is used to summarize. 
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