Statistical Analysis in the
Lexis Diagram:

Age-Period-Cohort models

Version 1.1
(compiled Monday 4" April, 2011, 08:33)

Lisboa
19-21 September 2011

www.biostat.ku.dk/“bxc/APC/Lisboa.2011

Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark
& Department of Biostatistics, University of Copenhagen
bxc@steno.dk
http://www.biostat.ku.dk/ bxc/


www.biostat.ku.dk/~bxc/APC/Lisboa.2011
http://www.biostat.ku.dk/~bxc/




Contents

0.1 Program for APC-course . . . . . . . . . . . e
0.1.1 General contents . . . . . . . ...
0.1.2 Program structure . . . . . . . . . . . L L e
0.1.3 Proposed dates . . . . . . . . ..
0.1.4 Teacher . . . . . . . .

Introduction to computing and practicals

1.1 Datasets and how to access them. . . . . . . . . . . ... ... ..
1.2 R-functions . . . . . . . . . e e
1.2.1 Functions for analysis of follow-up data . . . . . ... ... ... ... ....
1.2.2  Functions for APC-analysis . . . . . . ... ... .. .
1.3 Concepts in survival and demography . . . . . .. .. ... ... oL,
1.3.1 Probability . . . . . ...
1.3.2  Statistics . . . . . . .
1.3.3 Competing risks . . . . . .. L
1.3.4 Demography . . . . . . . .
Practical exercises
2.1 Danish primeministers . . . . . . . . .. Lo
2.2 Reading and tabulating data . . . . .. ... oL oo
2.3 Ratesand survival . . . . . . . L
2.4 Ageperiodmodel . . . . ...
2.5 Age-cohort model . . . . . ...
2.6 Agedrift model . . . . ...
2.7 Age-period-cohort model . . . . . . ...
2.8 Age-period-cohort model for triangles . . . . .. ... oo oL
2.9 Using apc.fitetc. . . . . . . . . L
2.10 Lung cancer: the sex difference . . . . . . . . ... oo oL
2.11 Prediction of breast cancer rates . . . . . . . . ...

Solutions to exercises

3.1 Danish primeministers . . . . . . . . .. L
3.2 Reading and tabulating data . . . . .. ... L oo
3.3 Ratesand survival . . . . . . . .
34 Ageperiodmodel . . . ...
3.5 Age-cohort model . . . . . ...
3.6 Agedrift model . . . . . .. L
3.7 Age-period-cohort model . . . . . . ...
3.8 Age-period-cohort model for triangles . . . . .. ... oo oL
3.9 Using apc.fitetc. . . . . . . . . L

13
13
16
18
20
22
23
24
25
29
31
32



3.10 Lung cancer: the sex difference
3.11 Prediction of breast cancer rates

Bibliography



Lisboa, 19-21 September 2011 Course program 5

0.1 Program for APC-course

0.1.1 General contents

The course will give a fairly thorough introduction to follow-up data at the individual level and in
particular how these are transformed into tabular data. This is the fundamental prerequsite for
understanding the structure of tabular follow-up data (counts/person-years) and the use of
APC-models for this type of data.

The so-called identifiability probelem in APC-models will be rigorously shown to be a
prametrization problem, and various options for necessary assumptions will be treated, an the
basic mathematics (linear algebra) for dealing with them will be covered.

All will be illustrated thoroughly with examples.

I would be useful if local data from Portugal could be provided for exercises too.

0.1.2 Program structure

The daily program will have one lecture and one practical each morning and each afternoon.
Lectures will be between 45 and 90 minutes; normally with one or two breaks.
The practicals will follow the lecture to fill the 3-hour slot. Sometimes we may need to push
over some of the practical computing to take a bit of the beginning of the next slot.

Day 1
Morning Overview of follow-up data.
Likelihood for follow-up data. Poisson likelihood. Relation to Cox partial
likelihood.

Lexis diagrams. Tabular data in the Lexis diagram.
Lexis triangles
Afternoon Poisson models for tabular data.
Splines and other parametic smoothers.
Relation to factor models.

Day 2
Morning Age-Period and Age-Cohort models and their parametization.
Afternoon Age-Period-Cohort model.
The identifiability problem, projections and subspaces.

Day 3
Morning APC-models for different outcomes.
APC-models for different groups.
Afternoon Reporting APC-models; tabular and graphical representation.
APC-models for prevalences and other types of data.
Evaluation and wrap-up.

0.1.3 Proposed dates

Monday 19th — Wednesday 21st September 2011.
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0.1.4 Teacher

Bendix Carstensen
Senior Statistician
Steno Diabetes Center
Niels Steensens Vej 2
DK-2820 Gentofte, Denmark
tel: +45 44 43 87 38
mob: +45 30 75 87 38
fax: +45 44 43 73 13
bxc@steno.dk www.biostat.ku.dk/"bxc



Chapter 1

Introduction to computing and
practicals

1.1 Datasets and how to access them.

All the datasets for the exercises in this section are in the folder APC\data. This can be accessed
through the homepage of the course, as:

http://www.biostat.ku.dk/ bxc/APC/data.

The datasets with .txt extension are plain text files where variable names are found in the first
line. Such datasets can be read into R with the command read.table, and into SAS by using in
%read_table macro supplied in the APC\sas\sasmacro folder. This can be accessed through the
homepage of the course, as:

http://www.biostat.ku.dk/ bxc/APC/sas/sasmacro.

1.2 R-functions

All the relevant functions for this course (and several more) are supplied in the R-package Epi. In
the APC\R\1library folder is a folder called Epi. This folder (and all its subfolders) should be
copied to c:\Program Files\R\rw1081\library, where all the other R-packages are. It is then
accessibile in R by specifying:

> library( Epi )
> 1s("package:Epi")

The latter command will list the names of all the functions available in the Epi package.

1.2.1 Functions for analysis of follow-up data

The functin Lexis sets up a datastructure suitable for analysis of rates. A large array of functions
are attcahed to it. Use the help page to find them. plot.Lexis draws follow-up data in a Lexis
diagram.

A function Lexis.diagram is a stand-alone function to draw Lexis diagrams.

1.2.2 Functions for APC-analysis

Age-period-cohort models can be fitted by the function apc.fit. The resulting estimates can be
plotted using apc.plot, apc.lines, and more control of the display can be obtained by
apc.frame.
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1.3 Concepts in survival and demography

This section briefly summarizes relations between various quantities used in analysis of follow-up
studies. They are used all the time in the analysis and reporting of results. Hence it is important
to be familiar with all of them and the relation between them.

1.3.1 Probability
Survival function:

S(t) = P {survival at least till ¢}
= P{T'>t}=1-P{T <t} =1-F(t)

Conditional survival function:
S(tltentry) = P {survival at least till ¢| alive at tentry }
= 5()/S(tentry)
Cumulative distribution function of death times (cumualtive risk):
F(t) = P{death before t}
P{T <t} =1-5(t)

Density function of death times:

F(t+h)—F(t
f(#) = lim P{death in (¢,t+ h)} /h = lim (t+h) ®) =F'(t)
h—0 h—0 h
Intensity:
At) = }Lir%P {event in (¢,t + h] | alive at t} /h
%
~ lim F(t+h)—-F@t)  f(t)
I S(t)h S
— lim S(t+h)—S(t) B dlog S(t)
0 S(t)h B dt
The intensity is also known as the hazard function, hazard rate, rate, mortality /morbidity
rate.
Relationships between terms:
dlog S(t)
——— = At
gr (t)
)

S(t) = exp <— /O t)\(u) du> = exp(—A(t))

The quantity A(t) = fg A(s)ds is called the integrated intensity or the cumulative rate. It
is not an intensity, it is dimensionless.
AE) = — dlog(S(t) _ _S8'(H) _ F'(t) _ f(t)
B dt St 1-F(t) St
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The cumulative risk of an event (to time t) is:
t
F(t) = P {Event before time t} = / Muw)S(u)du=1—8()=1—e 2"
0

For small |z| (< 0.05), we have that 1 — e~ ~ z, so for small values of the integrated
intensity:
Cumulative risk to time ¢t ~ A(t) = Cumulative rate

1.3.2 Statistics

Likelihood from one person:
The likelihood from a number of small pieces of follow-up from one individual is a product
of conditional probabilities:
P {event at t4]entry at to} = P {event at 4] alive at t3} x
P {survive (to,t3)| alive at to} x
P {survive (t1,t2)| alive at £} x
P {survive (tg,t1)| alive at o}
Each term in this expression corresponds to one empirical rate’
(d,y) = (#deaths, #risk time), i.e. the data obtained from the follow-up of one person in

the interval of length y. Each person can contribute many empirical rates, most with d = 0;
d can only be 1 for the last empirical rate for a person.

Log-likelihood for one empirical rate (d, y):
L(N) = dlog(N\) — My

This is under the assumption that the underlying rate (\) is constant over the interval that
the empirical rate refers to.

Log-likelihood for several persons. Adding log-likelihoods from a group of persons (only
contributions with identical rates) gives:

Dlog(\) — \Y,
where Y is the total follow-up time, and D is the total number of failures.
Note: The Poisson log-likelihood for an observation D with mean \Y is:
Dlog(A\Y) — A\Y = Dlog(\) + Dlog(Y) — AY

The term D log(Y) does not involve the parameter A, so the likelihood for an observed rate
can be maximized by pretending that the no. of cases D is Poisson with mean \Y. But this
does not imply that D follows a Poisson-distribution. It is entirely a likelihood based
computational convenience. Anything that is not likelihood based is not justified.

A linear model for the log-rate, log(A) = X/ implies that
AY = exp(log(A) +log(Y)) = exp(X 3 + log(Y))

Therefore, in order to get a linear model for A we must require that log(Y’) appear as a
variable in the model for D ~ (AY’) with the regression coefficient fixed to 1, a so-called
offset-term in the linear predictor.

!This is a concept coined by BxC, and so is not necessarily generally recognized.
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1.3.3 Competing risks
Competing risks: If there is more than one, say 3, causes of death, occurring with

(cause-specific) rates A1, A2, A3, that is:

Ae(a) = lim P {death from cause c in (a,a + h] | alive at a} /h, ¢=1,2,3

h—0

The survival function is then:
S(a) = exp (— / () + Ao () + Ag(w) du>
0

because you have to escape any cause of death. The probability of dying from cause 1
before age a (the cause-specific cumulative risk) is:

P {dead from cause 1 at a} = /a A1(u)S(u)du # 1 — exp (— /a A1(u) du)
0 0

The term exp(— [ A1(u) du) is sometimes referred to as the “cause-specific survival”, but it
does not have any probabilistic interpretation in the real world. It is the survival under the
assumption that only cause 1 existed an that the mortality rate from this cause was the
same as when the other causes were present too.

Together with the survival function, the cause-specific cumulative risks represent a
classification of the population at any time in those alive and those dead from causes 1,2
and 3 respectively:

1=5(a)+ /Oa A1(uw)S(u) du + /Oa A2(u)S(u) du + /Oa Az(w)S(u)du, Va

Subdistribution hazard Fine and Gray defined models for the socalled subdistribution hazard.
Recall the relationship between between the hazard (A) and the cumulative risk (F'):

_ dlog(S(a)) _ dlog(1 — F(a))
da da

Aa)

When more competing causes of death are present the Fine and Gray idea is to use this
tranformation to the cause-specific cumulative risk for cause 1, say:

f(a) = dlog(ld—aFl(a))

This is what is called the subdistribution hazard, it depends on the survival function S,
which depends on all the cause-specific hazards:

Fi(a) = P {dead from cause 1 at a} = / A1 (u)S(u) du
0

The subdistribution hazard is merely a transformation of the cause-specific cumulative risks.
Namely the same transformation which in the single-cause case transforms the cumulative
risk to the hazard.
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1.3.4 Demography

Expected residual lifetime: The expected lifetime (at birth) is simply the variable age (a)
integrated with respect to the distribution of age at death:

EL:/OOOaf(a)da

where f is the density of the distribution of lifetimes.

The relation between the density f and the survival function S is f(a) = —5'(a), and so
integration by parts gives:

EL = /000 a(—S5'(a)) da = — [aS(a)KO + /000 S(a)da

The first of the resulting terms is 0 because S(a) is 0 at the upper limit and a by definition
is 0 at the lower limit.

Hence the expected lifetime can be computed as the integral of the survival function.

The expected residual lifetime at age a is calculated as the integral of the conditional
survival function for a person aged a:

FL(a) = / ~ S(u)/S(a) du

Lifetime lost due to a disease is the difference between the expected residual lifetime for a
diseased person and a non-diseased (well) person at the same age. So all that is needed is
a(n estimate of the) survival function in each of the two groups.

LL(Q) = / SWell(u)/SWell(a) - SDiseased (u)/SDiseased (a) du

Note that the definition of the survival function for a non-diseased person requires a
decision as to whether one will consider non-diseased persons immune to the disease in
question or not. That is whether we will include the possibility of a well person getting ill
and subsequently die. This does not show up in the formulae, but is a practical
consideration to have in mind when devising an estimate of Swel-

Lifetime lost by cause of death is using the fact that the difference between the survival
probabilities is the same as the difference between the death probabilities. If several causes
of death (3, say) are considered then:

S(a) =1 — P {dead from cause 1 at a}
— P {dead from cause 2 at a}
— P {dead from cause 3 at a}

and hence:

Swell (@) — Sbiseased (@) = P {dead from cause 1 at a|Diseased}
+ P {dead from cause 2 at a|Diseased}
+ P {dead from cause 3 at a|Diseased}
— P {dead from cause 1 at a|Well}
— P {dead from cause 2 at a|Well}
— P {dead from cause 3 at a|Well}
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So we can conveniently define the lifetime lost due to cause 2, say, by:

o0
LLs(a) = / P {dead from cause 2 at u|Diseased & alive at a}
a

—P {dead from cause 2 at u|Well & alive at a} du

These will have the property that their sum is the years of life lost due to total mortality
differences:

LL(a) = LL;(a) + LLy(a) 4+ LL3(a)

The term in the integral are computed as (see the section on competing risks):

P {dead from cause 2 at u|Diseased & alive at a} = / A2, Dis (%) Spis () / Spis(a) dz
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Practical exercises

2.1 Danish primeministers

The following table shows all Danish prime ministers in office since the war. They are ordered by
the period in office, hence some appear twice. Entry end exit refer to the office of prime minister.

A missing date of death means that the person was alive at the end of 2008.

Name Birth Death Entry Exit

Vilhelm Buhl 16/10/1881  18/12/1954  05/05/1945  07/11/1945
Knud Kristensen 26/10/1880  29/09/1962  07/11/1945  13/11/1947
Hans Hedtoft 21/04/1903  29/01/1955  13/11/1947  30/10/1950
Erik Eriksen 20/11/1902  07/10/1972  30/10/1950  30,/09/1953
Hans Hedtoft 21/04/1903  29/01/1955  30/09/1953  29/01/1955
H C Hansen 08/11/1906  19/02/1960  01/02/1955  19/02/1960
Viggo Kampmann 21/07/1910  03/06/1976  21/02/1960  03/09/1962
Jens Otto Kragh 15/09/1014  22/06/1978  03/09/1962  02/02/1968
Hilmar Baunsgaard 26/02/1920  30/06/1989  02/02/1968  11/10/1971
Jens Otto Kragh 15/09/1914  22/06/1978  11/10/1971  05/10/1972
Anker Jorgensen 13/07/1922 . 05/10/1972  19/12/1973
Poul Hartling 14/08/1914  30/04/2000 19/12/1973  13/02/1975
Anker Jorgensen 13/07/1922 . 13/02/1975  10/09/1982
Poul Schliiter 03/04/1929 10/09/1982  25/01/1993
Poul Nyrup Rasmussen 15/06/1943 25/01/1993  27/11/2001
Anders Fogh Rasmussen  26/01/1953 27/11/2001  31/12/2007

The data in the table can be fould in the file pm-dk.txt.

> st <- read.table( "../data/pm-dk.txt", header=T, as.is=T,
+ na.strings="." )

> st

> str( st )

1. Draw a Lexis diagram with life-lines of the persons.

> # Change the character variables with dates to fractional calendar
> # years
> for( i in 2:5 ) st <- cal.yr( st, format="jd/Jm/%Y" )
> # Attach the data for those still alive

> st$fail <- !is.na(st$death)
> st[!st$fail, "death"] <- 2009
> st
> attach( st )

13
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> # Lexis object

> L <- Lexis( entry = list(per=birth),

+ exit = list(per=death, age=death-birth),

+ exit.status=fail,

+ data=st )

> # Plot Lexis diagram

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, xaxt="n" ) # Omit x-labels
> plot( L, x1im=c(1945,2010), ylim=c(32,88), 1lwd=3, las=1,

+ grid=0:20+%5, col="black", xlab = "Calendar time", ylab="Age" )
> points( L, pch=c(NA,16) [L$lex.Xst+1] )

> #put names of the prime ministers on the plot

> text( death, death-birth, Name, adj=c(1.05,-0.05), cex=0.7 )

> par( xaxt="s" )

> axis( side=1, at=seq(1950,2010,10) ) # x-labels at nice places

2. Mark with a different color the periods where they have been in office.

> # New Lexis object describing periods in an office
> # and lines added to a picture

> in_office <- c( rep(FALSE,nrow(st)-1),TRUE )

> st <- cbind( st, in_office )

> Lo <- Lexis( entry = list(per=entry),

+ exit = list(per=exit, age=exit-birth),
+ exit.status=in_office,

+ data = st )

> lines( Lo, 1wd=3, las=1, col="red" )

> # the same may be plotted using command segments

> box()

> segments( birth, 0, death, death-birth, lwd=2 )

> segments( entry, entry-birth, exit, exit-birth, lwd=4, col="red" )

3. Draw the line representing age 50 years.

> abline( h=50 )

4. How many 50th birthdays have been celebrated in office since the war?

> age_entry <- Lo$age

> age_exit <- Lo$age + Lo$lex.dur

> n_birthday <- sum( ( age_entry<50 ) & ( age_exit>50 ) )
> n_birthday

5. Draw the line representing 2 October 1972. (Why just that?)

> abline( v=cal.yr( "2/10/1972", format="jd/km/%Y" ) )

6. How many present and former prime ministes were alive at 31st December 20087

alive <- (L$death >=2004)

n_alive <- sum( alive )

n_alive

#Anker Jorgensen - 1 person has got 2 lex.id's
levels( as.factor( subset( L$Name, alive==T ) ) )

vV VVVyV

7. Which period(s) since the war has seen the maximal number of former post-war prime
ministers alive?

# New lexis object - since entry to the office to the death

Ln <- Lexis( entry=list(per=entry), exit=list(per=death,age=death-entry),
exit.status=fail, data=st )

ny <- 2008-1945

n_alive <- vector( "numeric", ny )

for (i in 1:ny)

{

alive <- ( (Ln$death >=(1944+i))&(Ln$entry<=(1944+1i)) )

n_alive[i] <- nlevels( as.factor( subset( Ln$Name, alive==T ) ) )

}

plot( n_alive~seq(1945, (1945+ny-1),1), type="1", xlab="Calendar year",
ylab = "Maximal numbers of former prime ministers alive" )

+V++++VVYV+Vy
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8.

10.

Mark the area in the diagram with person years lived by persons aged 50 to 70 in the period
1 January 1970 through 1 January 1990.

> rect( 1970, 50, 1990, 70, 1lwd=2, border="green",col="lightgreen" )

. Mark the area for the lifetime experience of those who were between 10 and 20 years old in

1945.

> polygon( c(1955,2010,2010,1965,1955), <¢(30,85,75,30,30), 1wd=2,
border="blue", col="lightblue" )

How many prime-minister-years have been spent time in each of these sets? And in the
intersection of them?

> # Prime-minister years lived by persons

> # aged 50 to 70 in the period 1 January 1970 through 1 January 1990.
> x1 <- splitLexis( Lo ,breaks = ¢(0,50,70,100), time.scale="age" )

> x2 <- splitLexis( x1, breaks = c¢(1900,1970,1990,2010), time.scale="per" )
> summary( x2 )

> tapply( status(x2,"exit")==1, list( timeBand(x2, "age","left"),

+ timeBand (x2, "per", "left") ), sum )
> tapply( dur(x2), 1list( timeBand(x2,"age","left"),

+ timeBand (x2, "per", "left") ), sum )

> # Computing the person-years in the 1925-35 cohort

> x3 <- subset( Lo, birth>1925 & birth<=1935 )

> summary( x3 )

> dur( x3 )

> # Computing person years in the intersection

> x4 <- subset( x2 , birth>1925 & birth<=1935 )

> summary( x4 )

> dur( x4 )
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2.2 Reading and tabulating data

The following exercise is aimed at tabulating and displaying the data typically involved in
age-period-cohort analysis.

1. Read the data in the file lung5-M. txt, and print the data. What does each line refer to?

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung
> head(lung)

> attach( lung )

2. Print the no. cases in a nice tabular form, and likewise with the person-years. Is there
someything special about the last period?

> D_table_nice <- stat.table( index=1ist(A,P), sum(D), data=lung, margin=T )
> print( D_table_nice, digits=c(sum=0) )
> Y_table_nice <- stat.table( index=1ist(A,P), sum(Y), data=lung, margin=T )
> print( Y_table_nice, digits=c(sum=2) )

3. Compute the empirical rates, and print them in a table too.

R_table_nice <- stat.table( index=1ist(A,P), list(Rate=ratio(D,Y,100000)),
data=lung, margin=T )

print( R_table_nice, digits=c(sum=2) )

# another way of computation - not using Epi library

D_table <- tapply( D, 1list(A,P), sum )

Y_table <- tapply( Y, list(A,P), sum )

R_table <- D_table/Y_table*(107°5)

VVVVYV+yV

4. Make the four classical graphs of the data. Consider whether a log-scale for the y-axis is
appropriate. Think about where on the x-axis each age-class is located.

(a) Age-specific rates for each period. (Rates from the same period connected).
> rateplot( R_table, which=c("AP"), ann=TRUE )

b) Age-specific rates for each cohort. (Rates from the same cohort connected).
g
> rateplot( R_table, which=c("AC"), ann=TRUE )

(c) Rates for each age-class versus period. (Rates from the same age-class connected).
> rateplot( R_table, which=c("PA"), ann=TRUE )

(d) Rates for each age-class versus cohort. (Rates from the same age-class connected).
> rateplot( R_table, which=c("CA"), ann=TRUE )

5. How would each of these curves look if:

(a) age-specific rates did not change at all by time?

> # age-specific rates remain still the same as in period 1943
R_table_no_change <- matrix( R_table[,1], dim(R_table) [1], dim(R_table) [2] )
colnames( R_table_no_change ) <- colnames( R_table )

rownames ( R_table_no_change ) <- rownames( R_table )

R_table_no_change

par( mfrow=c(2,2) )
rateplot( R_table_no_change, log.ax="")

VV VVVy

(b) If age-specific rates were only influenced by period?

> #age-specific rates are only influence by period

> step <- 2

> change_p <- matrix(rep(seq(1,11*step,step),10),10,11,byrow=T)
> change_p

> R_table_p <- R_table_no_change+change_p

> colnames( R_table_p ) <- colnames( R_table )

> rownames( R_table_p ) <- rownames( R_table )

> R_table_p
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> par( mfrow=c(2,2) )
> rateplot( R_table_p, log.ax="" )

age-specific rates were only influenced by cohort?

#age-specific rates are only influence by cohort

nr <- nrow(R_table)

nc <- 10

p <- c¢( rep(NA,nc), R_table[,1] )

np <- length( p )

R_table_c <- cbind( p[(np-nr+1):np], pl[(np-nr):(np-1)],
pl(ap-nr-1): (np-2)]1,p[(np-nr-2) : (np-3)1,
pl(ap-nr-3): (np-4)1, pl[(np-nr-4):(np-5)17,
pl(np-nr-5) : (np-6)]1, pl(np-nr-6):(np-7)],
pl(np-nr-7): (np-8)1, pl(np-nr-8):(np-9)],
pl(ap-nr-9): (np-10)] )

colnames( R_table_c ) <- colnames( R_table )

rownames ( R_table_c ) <- rownames( R_table )

R_table_c

par( mfrow=c(2,2) )
rateplot( R_table_c, log.ax="" )

VV VVV+++++VVVYVVYVY
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2.3 Rates and survival

1. Consider the following data:

(a)

Year of birth Year of death Age at death
1994 1995

1994 2,900 500

1993 120 130

1992 50 60

1991 45 55

1990 40 40

= w N = O

Represent these data in a Lexis diagram.

> # Enter the data from the table into a matrix

> D <- matrix( ¢(2900,120,50,45,40,500,130,60,55,40), 5, 2 )

>D

> # Make a Lexis diagram and represent the numbers there

> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )

> Lexis.diagram( age=c(0,5), date=c(1991,1996), int=1, lab.int=1,

+ coh.grid=T )

> box()

> text( 1994+rep( c¢(2,4)/3, c(5,5) ),c(0:4+1/3,0:4+2/3), paste( D ) )

On the basis of these data, can you calculate the age-specific death rate for
two-year-olds (3mg) in 19947 If you can, do it. If you cannot, explain what additional
information you would need.

On the basis of these data, can you calculate the probability of surviving from age 2 to
age 3 (1¢2) in for the cohort born in 19927

If you can, do it. If you cannot, explain what additional information you would need.

2. Consider the following data:

Live births during 1991: 142,000
Number of infants born in 1991 who did not survive until the end of 1991: 2,900

Number of infants born in 1991 who survived to the end of 1991, but did not reach
their first birthday: 500

Live births during 1992: 138,000
Number of infants born in 1992 who did not survive until the end of 1992: 2,600

Number of infants born in 1992 who survived to the end of 1992, but did not reach
their first birthday: 450

Represent the data on a Lexis diagram.

# Enter the information in two data structures
B <- c(142, 138)%*1000
D <- ¢(2900, 500, 2600, 450)

# Make a Lexis diagram and represent the numbers there

par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )

Lexis.diagram( age=c(0,5), date=c(1991,1996), int=1, lab.int=1,
coh.grid=T )

text( 1991+c(2,4,5,7)/3, ¢(1,2,1,2)/3, paste( D ) )

text( 1991.5+0:1, 0, paste( B ), adj=c(0.5,-0.2), col="red" )

VV+VVvV VvVvVvyv
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(b) Calculate the infant mortality rate (IMR) for 1992 under the assumption that you were
only able to observe events occurring in 1992, and that you did not know the birth
dates of infants dying during that year.

(¢) Same as above, except that now you do know the birth dates of infants dying during
1992.

(d) Assume all data are known: Calculate the IMR.
(e) What is the IMR for the 1992 birth cohort?
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2.4 Age-period model

The following exercise is aimed at familiarizing you with the parametrization of the age-period
model. It will give you the opportunity explore how to extract and and plot parameter estimates
from models. It is based on Danish male lung cancer incidence data in 5-year classes.

1. Read the data in the file lung5-M. txt as in the tabulation exercise:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung

> attach( lung )

> table( A )

> table( P )

> tapply( Y, list(A,P), sum )

What do these tables show?

2. Fit a Poisson model with effects of age (A) and period (P) as class variables:

> ap.1 <- glm( D ~ factor(4) + factor(P) + offset(log(Y)), family=poisson )
> summary( ap.1 )

What do the parameters refer to, i.e. which ones are log-rates and which ones are
rate-ratios?

3. Fit the same model without intercept (use -1 in the model formula); call it ap.0 — we shall
refer to this subsequently. What do the parameters now refer to?

4. Fit the same model, using the period 1968-72 as the reference period, by using the relevel
command for factors to make 1968 the first level:

> ap.3 <- glm( D ~ factor(4) - 1 + relevel(factor(P),"1968") + offset(log(Y)),
+ family=poisson )

5. Extract the prameters from the model, by doing:
> ap.cf <- summary( ap.3 )$coef
6. Now plot the estimated age-specific incidence rates, remembering to annoatte them with the correct
scale. We need the first 10 parameters, with their standard errors:
> age.cf <- ap.cf[1:10,1:2]
This means that we take rows 1-10 and columns 1-2. The corresponding age classes are 40, ..., 85.

The midpoints of these age-classes are 2.5 years higher. The ages can be generated in R by saying
seq(40,85,5)+2.5.

Now put confidence limits on the curves by taking +1.96 X s.e.. The line of the estimates can be
over-drawn once more in a thicker style:

> lines( seq(40,85,5)+2.5, exp(age.cf[,1]), 1wd=3 )

7. Now for the rate-ratio-parameters, take the rest of the coefficients:
> RR.cf <- ap.cf[11:20,1:2]
But the reference group is missing, so we must stick two Os in the correct place. We use the
command rbind (row-bind):
> RR.cf <- rbind( RR.cf[1:5,], c(0,0), RR.cf[6:10,] )
Now we have the same situation as for the age-specific rates, and can plot the relative risks (relative
to 1968) in precisely the same way as for the agespecific rates.

Make a line-plot of the relative risks with confidence intervals.
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8.

10.

11.

However, the relevant parameters may also be extracted directly from the model without intercept,
using the function ci.lin (remember to read the documentation for this!)

The point is to define a contrast matriz, which multiplied to (a subset of) the parameters gives the
rates in the reference period. The log-rates in the reference period (the first level of factor (P) are
the age-parameters. The log-rates in the period labelled 1968 are these plus the period estimate
from 1968.

Now construct the following matrix and look at it:

> cm.A <- cbind( diag( nlevels( factor(4) ) ), 1)

Now look at the parameters extracted by ci.lin, using the subset= argument:
> ci.lin( ap.0, subset=c("A","1968") )

Now use the argument ctr.mat= in ci.lin to produce the rates in period 1968 and plot them on a
log-scale.

. Save the estimates of age aned period effects along with the age-points and period-points, using save

(look up the help page if you are not familiar with it. You will need these in the next exercise on the
age-cohort model.

We can also use the same machinery to extract the rate-ratios relative to 1968. The contrast matrix
to use is the difference between two: The first one is the one that extracts the rate-ratios with a
prefixed 0:

> cm.P <- rbind(0,diag( nlevels(factor(P))-1 ) )
> cm.P
> ci.lin( ap.0, subset="P", ctr.mat=cm.P )

In order to subtract the value corresponding to 1968, we must subtract a 11 x 10 matrix, that just
selects the 1968 column:

> cm.Pref <- cm.P * 0
> cm.Pref[,5] <- 1
> cm.Pref

The contrast matrix to use is the difference between these two:

> cm.P - cm.Pref
> ci.lin( ap.0, subset="P", ctr.mat=cm.P-cm.Pref )

Use the Exp=TRUE argument to get the rate-ratios and plot these with confidence intervals on a
log-scale.

For the real nerds: Plot the rates and the rate ratios beside each other, and make sure that the
physical extent of the units on both the z-axis and the y-axis are the same.

Hint: You may want to use par (mar=c(0,0,0,0), oma=), the function layout as well as the
xaxs="i" argument to plot.
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2.5 Age-cohort model

This exercise is aimed at familiarizing you with the parametrization of the age-cohort model. It
will give you the opportunity explore how to extract and and plot parameter estimates from
models. It is parallel to the exercise on the age-period model and is therefor less detailed.

1. Read the data in the file Tung5-M.txt as in the tabulation exercise:

lung <- read.table( "../data/lung5-M.txt", header=T )
lung

attach( lung )

table( A )

table( P )

table( P-A )

VVVVVYyV

What do these tables show?

2. Fit a Poisson model with effects of age (A) and cohort (C) as class variables. You will need
to form the variable C (cohort) as P—A first.

What do the parameters refer to 7

3. Fit the same model without intercept. What do the parameters now refer to ?
(Use -1 in the model formula.)

4. Fit the same model, using the cohort 1908 as the reference cohort. What do the parameters
represent now?

(Use the relevel command for factors to make 1968 the first level.)
5. What is the range of birth dates represented in the cohort 19087

6. Extract the age-specific incidence parameters from the model and plot then against age.
Remember to annotate them with the correct units. Add 95% confidence intervals.

7. Extract the cohort-specific rate-ratio parameters and plot then against the date of birth
(cohort). Add 95% confidence intervals.

8. Now load the estimates from the age-period model, and plot the estimated age-specific rates
from the two models on top of each other.

Why are they different; in particular, why do they have different slopes?
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2.6 Age-drift model

This exercise is aimed at introducing the age-drift model and make you familiar with the two
different ways of parametrizing this model. Like the two previous exercises it is based on the male
lung cancer data.

1.

First read the data in the file lung5-M. txt and create the cohort variable:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung$C <- lung$P - lung$A

. Fit a Poisson model with effects of age as class variable and period P as continuous variable.

What do the parameters refer to ?

. Fit the same model without intercept. What do the parameters now refer to?

. Fit the same model, using the period 1968-72 as the reference period.

Now what do the parameters represent?

Fit a model with cohort as a continuous variable, using 1908 as the reference, and without
intercept. What do the resulting parameters represent?

. Compare the deviances and the slope estimates from the models with cohort drift and

period drift.

. What is the relationship between the estimated age-effects in the two models?

Verify this empirically by converting one set of age-parameters to the other.

. Plot the age-specific incidence rates from the two different models in the same panel.

The rates from the model are:
log(Aap) = ap + d(p — 1970.5)

Therefore, with an z-variable: (1943,...,1993) + 2.5, the log rate ratio relative to 1970.5
will be: A
logRR =9 xz

and the upper and lower confidence bands:
log RR = (8 £ 1.96 x s.e.(8)) x

Now extract the slope parameter, and plot the rate-ratio functions as a function of period.
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2.7 Age-period-cohort model

The following exercise is aimed at familiarizing you with the parametrization of the
age-period-cohort model and with the realtionship of the APC-model to the other model that you
have been working with, so we will refer back to those, and assume that you have the results from
them at hand.

1. Read the data in the file lung5-M. txt as in the tabulation exercise:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung
> attach( lung )

2. Fit a Poisson model with effects of age (A), period (P) and cohort (C) as class variables.
Also fit a model with age alone as a class variable. Write down a scheme showing the
deviances and degrees of freedom for the 5 models you have models fitted to this dataset.

3. Compare the models that can be compared, with likelihood-ratio tetsts. You will want to
use anova (or specifically anova.glm) with the argument test="Chisq".

4. Next, fit the same model without intercept, and with the first and last period parameters
and the 1908 cohort parameter set to 0. Before you do so a few practical things must be
fixed:

You can merge the first and the last period level using the Relevel function (look at the
documentation for it).

>  lung$Pr <- Relevel( factor(lung$P), list("first-last"=c("1943","1993") ) )

You can also use this function to make the 1908 cohort the first level of the cohort factor:
>  Iung$Cr <- Relevel( factor(lung$P-lung$A), "1908" )
It is a good idea to tabulate the new factor against the old one (i.e. that variable from

which it was created) in order to meake sure that the relevelling actually is as you intended
it to be.

5. Now you can fit the model, using the factors you just defined. What do the parameters now
refer to?

6. Make a graph of the parameters. Remember to take the exponential to convert the
age-parameters to rates (and find out what the units are) and the period and cohort
parameters to rate ratios. Also use a log-scale for the y-axis. You may want to use ci.lin
to facilitate this.

7. Fit the same model, using the period 196872 as the reference period and two cohorts of
your choice as references. To decide which of the cohorts to alias it may be useful to see how
many observations there are in each:

> with( lung, table(P-4) )
> with( lung, tapply(D,list(P-A),sum) )

Having fitted the model, now what do the parameters in it represent?

8. Make a plot of these parameters.

Add the parameters from the previous parametrization to the same graph.
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2.8 Age-period-cohort model for triangles

The following exercise is aimed at showing the problems associated with age-period-cohort
modelling for triangular data.
Also you will learn how to overcome these problems by parametric modelling of the three effects.

1. Read the Danish male lung cancer data tabulated by age period and birth cohort,
lung5-Mc.txt. List the first few lines of the dataset and make sure you understand what
the variables refer to. Also define nthe synthetic cohorts as P5-A5:

> 1tri <- read.table( "../data/lung5-Mc.txt", header=T )
> 1tri$S5 <- 1tri$P5 - 1tri$As
> attach( ltri )

2. Make a Lexis diagram showing the subdivision of the follow-data. You will explore the
function Lexis.diagram.

> Lexis.diagram( age=c(40,90), date=c(1943,1998), coh.grid=TRUE )

3. Use the variables A5 and P5 to fit a traditional age-period-cohort model with synthetic
cohort defined by P5-A5:

> ms <- glm( D ~ -1 + factor(45) + factor(P5) + factor(S5) + offset(log(Y)),
family=poisson, data=ltri )
> summary( ms )$df

[1] 38 182 39

How many parameters does this model have?

4. Now try to fit the model with the “real” cohort:

> mc <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(C5) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( mc )$df

[1] 40 180 40

How many parameters does this model have?

5. Plot the parameter estimates from the two models on top of each other, with confidence
intervals. Remember to put the rigt scales on the plots.

par( mfrow=c(1,3) )
a.pt <- as.numeric( levels(factor(A5)) )
p.pt <- as.numeric( levels(factor(P5)) )
s.pt <- as.numeric( levels(factor(S5)) )
c.pt <- as.numeric( levels(factor(C5)) )
matplot( a.pt, ci.lin( ms, subset="A5", Exp=TRUE )[,5:7]/107°5,
type="1", 1lty=1, lwd=c(3,1,1), col="black",
xlab="Age", ylab="Rates", log="y" )
matlines( a.pt, ci.lin( mc, subset="A5", Exp=TRUE )[,5:7]1/1075,
type="1", 1ty=1, lwd=c(3,1,1), col="blue" )
matplot( p.pt, rbind( c(1,1,1), ci.lin( ms, subset="P5",Exp=TRUE )[,5:7] ),
type="1", 1lty=1, lwd=c(3,1,1), col="black",
xlab="Period", ylab="RR", log="y" )
matlines( p.pt, rbind( c¢(1,1,1), ci.lin( mc, subset="P5",Exp=TRUE )[,5:7] ),
type="1", 1ty=1, lwd=c(3,1,1), col="blue" )
matplot( s.pt, rbind(c(1,1,1),ci.lin( ms, subset="S5", Exp=TRUE )[,5:71),
type="1", 1lty=1, lwd=c(3,1,1), col="black",
xlab="Cohort", ylab="RR", log="y" )
matlines( c.pt, rbind(c(1,1,1),ci.lin( mc, subset="C5", Exp=TRUE )[,5:7]),
type="1", 1ty=1, lwd=c(3,1,1), col="blue" )

+V++V+V++F+HV+EV+E+RVVVVVVY
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It is seen that the confidence bands are much wider for the age and cohort effects but
narrower for the period effects.

. Now fit the model using the proper midpoints of the triangles as factor levels. How many
parameters does this model have?

> mt <- glm( D ~ -1 + factor(Ax) + factor(Px) + factor(Cx) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( mt )$df

[1] 76 144 80

. Plot the parameters from this model in three panels as for the previous two models.

> par( mfrow=c(1,3) )

> a.pt <- as.numeric( levels(factor(4x)) )

> p.pt <- as.numeric( levels(factor(Px)) )

> c.pt <- as.numeric( levels(factor(Cx)) )

> matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/1075,

+ type="1", 1lty=1, lwd=c(3,1,1), col="black",

+ xlab="Age", ylab="Rates", log="y" )

> matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
+ type="1", 1ty=1, 1lwd=c(3,1,1), col="black",

+ xlab="Period", ylab="RR", log="y" )

> matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),

+ type="1", 1lty=1, lwd=c(3,1,1), col="black",

+ xlab="Cohort", ylab="RR", log="y" )

We see that the parameters clearly do not convey a reasonable picture of the effects; som
severe indeterminacy has crept in.
. What is the residual deviance of this model?

> summary( mt )$deviance

[1] 284.7269

. The dataset also has a variable up, which indicates whether the observation comes from an
upper or lower triangle. Try to tabulate it against P5-A5-C5.

> table( up, P5-A5-S5 )

up 0
0 110
1 110

. Fit an age-period cohort model separately for the subset of the dataset from the upper
triangles and from the lowere triangles. What is the residual deviance from each of these
models and what is the sum of these. Compare to the model using the proper midpoints as
factor levels.

> m.up <- glm( D ~ -1 + factor(45) + factor(P5) + factor(S5) + offset(log(Y)),

family=poisson, data=subset(ltri,up==1) )
> summary( m.up )$deviance

[1] 150.2703

>m.lo <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=subset(ltri,up==0) )
> summary( m.lo )$deviance

[1] 134.4566
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> summary( m.lo )$deviance + summary( m.up )$deviance
[1] 284.7269
> summary( mt )$deviance

[1] 284.7269

11. Next, repeat the plots of the parameters from the model using the proper midpoints as
factor levels, but now super-posing the estimates (in different color) from each of the two
models just fitted. What goes on?

par( mfrow=c(1,3) )
a.pt <- as.numeric( levels(factor(4x)) )
p.pt <- as.numeric( levels(factor(Px)) )
c.pt <- as.numeric( levels(factor(Cx)) )
a5.pt <- as.numeric( levels(factor(A5)) )
p5.pt <- as.numeric( levels(factor(P5)) )
s5.pt <- as.numeric( levels(factor(S5)) )
matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/1075,
type="1", 1ty=1, lwd=c(2,1,1), col=gray(0.7),
xlab="Age", ylab="Rates", log="y" )
matpoints( a5.pt, ci.lin( m.up, subset="A5", Exp=TRUE )[,5:7]/107°5,
pch=c(16,3,3), col="blue" )
matpoints( a5.pt, ci.lin( m.lo, subset="A5", Exp=TRUE )[,5:71/10°5,
pch=c(16,3,3), col="red" )
matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
type="1", 1lty=1, lwd=c(2,1,1), col=gray(0.7),
xlab="Period", ylab="RR", log="y" )
matpoints( p5.pt[-1], ci.lin( m.up, subset="P5", Exp=TRUE )[,5:7],
pch=c(16,3,3), col="blue" )
matpoints( p5.pt[-1], ci.lin( m.lo, subset="P5", Exp=TRUE )[,5:7],
pch=c(16,3,3), col="red" )
matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),
type="1", 1ty=1, lwd=c(2,1,1), col=gray(0.7),
xlab="Cohort", ylab="RR", log="y" )
matpoints( s5.pt[-1], ci.lin( m.up, subset="S5", Exp=TRUE )[,5:7],
pch=c(16,3,3), col="blue" )
matpoints( s5.pt[-1], ci.lin( m.lo, subset="S5", Exp=TRUE )[,5:7],
pch=c(16,3,3), col="red" )
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The model fitted with the “correct” factor levels is actually two different models. This is
because observations in upper triangles are modelled by one set of the parameters, and
those in lower triangel by another set of parameters.

Because of the ordering of the levels, the parametrization is different, but that is all.

There is no way out of the squeeze, except by resorting to parametric models for the actual
underlying scales, abandoning the factor modelling.

12. Load the splines package and fit a model using the correct midpoints of the triangles as
quantitative variables in restricted cubic splines, using the function ns:

> library( splines )

> mspl <- glm( D ~ -1 + ns(Ax,df=7,intercept=T)

+ + ns(Px,df=6,intercept=F)

+ + ns(Cx,df=6,intercept=F) + offset(log(Y)),
+ family=poisson, data=ltri )

> summary( mspl )

Call:

glm(formula = D ~ -1 + ns(Ax, df = 7, intercept = T) + ns(Px,
df = 6, intercept = F) + ns(Cx, df = 6, intercept = F) +
offset(log(Y)), family = poisson, data = 1ltri)

Deviance Residuals:
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Min 1Q Median 3Q Max
-3.72761 -0.88692 -0.01217 0.93283 3.47380

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>lzl)

ns(Ax, df = 7, intercept = T)1 -8.08248 0.09584 -84.329 < 2e-16
ns(Ax, df = 7, intercept = T)2 -8.81421 0.11261 -78.271 < 2e-16
ns(Ax, df = 7, intercept = T)3 -8.20301 0.11520 -71.209 < 2e-16
ns(Ax, df = 7, intercept = T)4 -7.90599 0.11814 -66.921 < 2e-16
ns(Ax, df = 7, intercept = T)5 -3.98298 0.08558 -46.540 < 2e-16
ns(Ax, df = 7, intercept = T)6 -21.35542 0.24841 -85.967 < 2e-16
ns(Ax, df = 7, intercept = T)7 0.70588 0.05540 12.741 < 2e-16
ns(Px, df = 6, intercept = F)1 0.59989 0.03777 15.883 < 2e-16
ns(Px, df = 6, intercept = F)2  0.94029 0.04319 21.771 < 2e-16
ns(Px, df = 6, intercept = F)3 1.18582 0.04354 27.237 < 2e-16
ns(Px, df = 6, intercept = F)4 1.22421 0.04204 29.122 < 2e-16
ns(Px, df = 6, intercept = F)5 1.46929 0.08247 17.816 < 2e-16
ns(Px, df = 6, intercept = F)6 1.07376 0.04202 25.555 < 2e-16
ns(Cx, df = 6, intercept = F)1 1.57834 0.10334 15.273 < 2e-16
ns(Cx, df = 6, intercept = F)2 1.60219 0.11202 14.303 < 2e-16
ns(Cx, df = 6, intercept = F)3 1.37407 0.10178 13.500 < 2e-16
ns(Cx, df = 6, intercept = F)4 1.03167 0.07211 14.306 < 2e-16
ns(Cx, df = 6, intercept = F)5 1.19310 0.21716 5.494 3.93e-08
ns(Cx, df = 6, intercept = F)6 NA NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.0037e+08 on 220 degrees of freedom
Residual deviance: 4.3344e+02 on 202 degrees of freedom
AIC: 2026.7

Number of Fisher Scoring iterations: 4

> summary( mt )$deviance - summary( mspl )$deviance
[1] -148.7082

> summary( mt )$df - summary( mspl )$df

[1] 58 -58 61

13. How do the deviances compare?

14. Make a prediction of the terms, using predict.glm using the argument type="terms".
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2.9 Using apc.fit etc.

This exercise is aimed at introducing the functions for fitting and plotting the results from
age-period-cohort models: apc.fit apc.plot apc.lines and apc.frame.
1. Read the testis cancer data and collapse the cases over the histological subtypes:

> th <- read.table( "../data/testis-hist.txt", header=T )
> str( th )

Knowing the names of the variables in the dataset, you collapse over the histological
subtypes. You may want to use the function aggregate; note that there is no need to

tabulate by cohort, because even for the triangular data the relationship ¢ = p — a holds.

Note that the original data had three subtypes of testis cancer, so while it is OK to sum the
number of cases (D), risk time should not be aggregated across histological subtypes — this

is aggregation within subsets of the Lexis diagram.

2. Present the rates in 5-year age and period classes from age 15 to age 59 using rateplot.

Consider the function subset. To this end you must make a table, for example using
something like:

> with( tc, tapply( D, list(floor(A/5)*5+2.5,
+ floor((P-1943)/5)*5+1945.5), sum ) )

— assuming your aggregated data is in the data frame tc. and a similar construction for

the risk time.

3. Fit an age-period-cohort model to the data using the machinery implemented in apc.fit.
The function returns a fitted model and a parametrization, hence you must choose how to

parametrize it, in this case "ACP" with all the drift included in the cohort effect and the

reference cohort being 1918.

> tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,10), parm="ACP", ref.c=1918 )
Can any of the effects be omitted from the model?

4. Plot the estimates using the apc.plot function:

> apc.plot( tapc, ci=TRUE )

5. Now explore in more depth the cohort effect by increasing the number of parameters used

for it:

> tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,20),
+ parm="ACP", ref.c=1918, scale=10"5 )
> fp <- apc.plot( tapc, ci=TRUE )

Do the extra parameters for the cohort effect have any influence on the model fit?

6. Explore the effect of using the residual method instead, and over-plot the estimates from

this method on the existing plot!:

!Unfortunately there is a fatal bug in apc.fit when fitting the period residuals to the age-cohort model — it does
not crash but simply fit a totally meaningless model. There is a fix for this in the version 1.0.11 of the Epi package

which is available at the course homepage
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. The standard display is not very pretty — it gives an overview, but certainly not anything

worth publishing, hence a bit of handwork is needed. Use the apc.frame for this, and create
a nicer plot of the estimates from the residual model. You may not agree with all the
parameters suggested here:

> par( mar=c(3,4,1,4), mgp=c(3,1,0)/1.7, las=1 )

> fp <- apc.frame( a.lab=seq(20,60,10),

+ a.tic=seq(10,60,5),

+ cp.lab=seq(1900,2000,20),

+ cp.tic=seq(1885,2000,5),

+ r.lab=c(c(1,2,5)/10,1,2,5,10),

+ r.tic=c(1:9/10,1:10),

+ gap=8,

+ rr.ref=1)

> apc.lines( tapc, ci=TRUE, col="blue", frame.par=fp )
> apc.lines( tac.p, ci=TRUE, col="red", frame.par=fp )

. Try to repeat the exercise using period as the primary timescale, and add this to the plot as

well.

What is revealed by looking at the data this way?
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2.10 Lung cancer: the sex difference

The purpose of this exercise to analyse lung cancer incidence rates in Danish men and women and
make comparisons of the effects between the two.

1.

Read the lung cancer dataset from the

> lung <- read.table("../data/apc-Lung.txt", header=T )
> str( lung )
> summary( lung )

These data are tabulated by sex, age, period and cohort in 1-year classes, i.e. each
observation corresponds to a triangle in the Lexis diagram.

. The variables A, P and C are the left endpoints of the tabulation intervals. In order to be

able to properly analyse data, compute the correct midpoints for each of the triangles.

. Produce a suitable overview of the rates using the rateplot on suitably grouped rates.

Make the plots separately for men and women.

. Fit an age-period-cohort model for male and female rates separately. Plot them in separate

displays using apc.plot. Use apc.frame to set up a display that will accomodate plotting
of both sets of estimates.

. Can you find a way of estimating the ratios of rates and the ratios of RRs between the two

sexes (including confidence intervals for them) using only the apc objects for males and
females separately.

. Use the function ns (from the splines package) to create model matrices describing age,

period and cohort effects respectively. Then use the function detrend to remove intercept
and trend from the cohort and period terms.

Fit the age-period-cohort model with these terms separately for each sex, for example by
introducing an interaction between sex and all the variables (remember that sex must be a
factor for this to be meaningful).

. Are there any of the effects that possibly could be assumed to be similar between males and

females?

. Fit a model where the period effect is assumed to be identical between males and females

and plot the resulting fit for the male/female rate-ratios, and comment on this.
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2.11 Prediction of breast cancer rates

1. Read the breast cancer data from the text file and take a look at it for example by:
> breast <- read.table("../data/breast.txt", header=T )

> str( breast )
> summary( breast )

These data are tabulated be age, period and cohort, i.e. each observation correspond to a
triangle in the Lexis diagram.

2. The variables A, P and C are the left endpoints of the tabulation intervals. In order to be
able to proper analyse data, compute the correct midpoints for each of the triangles.

3. Produce a suitable overview of the rates using the rateplot on suitably grouped rates.

4. Fit the age-period-cohort model with natural splines and plot it in a age-period-cohort
display. Adjust the display to proper quality using apc.frame.

5. Based on the model fitted, make a prediction of future rates of breast cancer:

e at year 2020.
e in the 1960 generation.
Use extensions of the estimated period and cohort effects through the last point and a point
30 years earlier. Try also to see how using a distance of 40 and 20 years work too.
As a start, add the prediction of the period and cohort effects to the plot of the effects.
You will need to look into the single components of the apc object from apc.fit, and you

should take a look at the function approx for linear interpolation.

6. Now use predictions of the period- and cohort effects based on the 30-year differences to
make predictions of cross-sectional rates in 2020 and of the (longitudinal) rates in the 1960
cohort.

Most likely you will need to compute extrapolated values for the period- and cohort-effects
anew.

Show the predicted rates in a plot.
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Solutions to exercises

3.1 Danish primeministers

The following table shows all Danish prime ministers in office since the war. They are ordered by
the period in office, hence some appear twice. Entry end exit refer to the office of prime minister.

A missing date of death means that the person was alive at the end of 2008.

Name Birth Death Entry Exit
Vilhelm Buhl 16/10/1881  18/12/1954  05/05/1945  07/11/1945
Knud Kristensen 26/10/1880  29/09/1962  07/11/1945  13/11/1947
Hans Hedtoft 21/04/1903  29/01/1955  13/11/1947  30/10/1950
Erik Eriksen 20/11/1902  07/10/1972  30/10/1950  30/09/1953
Hans Hedtoft 21/04/1903  29/01/1955  30/09/1953  29/01/1955
H C Hansen 08/11/1906  19/02/1960 01/02/1955  19/02/1960
Viggo Kampmann 21/07/1910 03/06/1976  21/02/1960  03/09/1962
Jens Otto Kragh 15/09/1914  22/06/1978  03/09/1962  02/02/1968
Hilmar Baunsgaard 26/02/1920  30/06/1989  02/02/1968  11/10/1971
Jens Otto Kragh 15/09/1914  22/06/1978  11/10/1971  05/10/1972
Anker Jorgensen 13/07/1922 . 05/10/1972  19/12/1973
Poul Hartling 14/08/1914  30/04/2000 19/12/1973  13/02/1975
Anker Jorgensen 13/07/1922 13/02/1975  10/09/1982
Poul Schliiter 03/04/1929 10/09/1982  25/01/1993
Poul Nyrup Rasmussen 15/06/1943 25/01/1993  27/11/2001
Anders Fogh Rasmussen  26/01/1953 27/11/2001  05/04/2009
Lars Lokke Rasmussen 15/05/1964 05/04/2009  04/03/2010
The data in the table can be fould in the file pm-dk.txt.

> st <- read.table( "../data/pm-dk.txt", header=T, as.is=T,

+ na.strings="." )

> st

Name birth death entry exit

1 Vilhelm Buhl 16/10/1881 18/12/1954 05/05/1945 07/11/1945

2 Knud Kristensen 26/10/1880 29/09/1962 07/11/1945 13/11/1947

3 Hans Hedtoft 21/04/1903 29/01/1955 13/11/1947 30/10/1950

4 Erik Eriksen 20/11/1902 07/10/1972 30/10/1950 30/09/1953

5 Hans Hedtoft 21/04/1903 29/01/1955 30/09/1953 29/01/1955

6 H C Hansen 08/11/1906 19/02/1960 01/02/1955 19/02/1960

7 Viggo Kampmann 21/07/1910 03/06/1976 21/02/1960 03/09/1962

8 Jens Otto Krag 15/09/1914 22/06/1978 03/09/1962 18/02/1968

9 Hilmar Baunsgaard 26/02/1920 30/06/1989 18/02/1968 09/10/1971

33
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10 Jens Otto Krag 15/09/1914 22/06/1978 09/10/1971 05/10/1972
11 Anker Jgrgensen 13/07/1922 <NA> 05/10/1972 18/12/1973
12 Poul Hartling 14/08/1914 30/04/2000 18/12/1973 13/02/1975
13 Anker Jgrgensen 13/07/1922 <NA> 13/02/1975 10/09/1982

14 Poul Schliiter 03/04/1929
15 Poul Nyrup Rasmussen 15/06/1943
16 Anders Fogh Rasmussen 26/01/1953
17 Lars Lgkke Rasmussen 15/05/1964

<NA> 10/09/1982 25/01/1993
<NA> 25/01/1993 27/11/2001
<NA> 27/11/2001 05/04/2009
<NA> 05/04/2009 <NA>

> str( st )
17 obs. of

'data.frame': 5 variables:

$ Name : chr "Vilhelm Buhl" "Knud Kristensen" "Hans Hedtoft" "Erik Eriksen"
$ birth: chr "16/10/1881" "26/10/1880" "21/04/1903" "20/11/1902"
$ death: chr "18/12/1954" "29/09/1962" "29/01/1955" "07/10/1972"
$ entry: chr "05/05/1945" "07/11/1945" "13/11/1947" "30/10/1950"
$ exit : chr "07/11/1945" "13/11/1947" "30/10/1950" "30/09/1953"
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Figure 3.1: Lexis diagram of life lines of all post-war Danish prime ministers, from 30 years of age.

1. Draw a Lexis diagram with life-lines of the persons.



Age-Period-Cohort models

>
>
>
>
>
>
>
>

OO ~NOOOd WN -

10
11
12
13
14
15
16
17

VVVVV+VVV+Y++VVY

# Change the character variables with dates to fractional calendar
# years

for( i in 2:5 ) st[,i] <- cal.yr( as.Date( st[,i], format="}d//im/%Y" ) )
st$exit [nrow(st)] <- cal.yr(Sys.Date())

# Attach the data for those still alive
st$fail <- !is.na(st$death)

st[!st$fail, "death"] <- cal.yr(Sys.Date())
st

Name birth death entry exit fail

Vilhelm Buhl 1881.792 1954.961 1945.340 1945.849 TRUE

Knud Kristensen 1880.820 1962.742 1945.849 1947.864 TRUE

Hans Hedtoft 1903.300 1955.076 1947.864 1950.827 TRUE

Erik Eriksen 1902.884 1972.765 1950.827 1953.745 TRUE

Hans Hedtoft 1903.300 1955.076 1953.745 1955.076 TRUE

H C Hansen 1906.851 1960.133 1955.084 1960.133 TRUE

Viggo Kampmann 1910.550 1976.420 1960.138 1962.671 TRUE

Jens Otto Krag 1914.704 1978.471 1962.671 1968.130 TRUE
Hilmar Baunsgaard 1920.152 1989.493 1968.130 1971.769 TRUE
Jens Otto Krag 1914.704 1978.471 1971.769 1972.760 TRUE

Anker Jgrgensen 1922.528 2011.172 1972.760 1973.962 FALSE

Poul Hartling 1914.616 2000.327 1973.962 1975.117 TRUE

Anker Jgrgensen 1922.528 2011.172 1975.117 1982.690 FALSE

Poul Schliiter 1929.253 2011.172 1982.690 1993.066 FALSE

Poul Nyrup Rasmussen 1943.451 2011.172 1993.066 2001.904 FALSE
Anders Fogh Rasmussen 1953.069 2011.172 2001.904 2009.258 FALSE
Lars Lgkke Rasmussen 1964.368 2011.172 2009.258 2011.172 FALSE

attach( st )
# Lexis object
L <- Lexis( entry = list(per=birth),
exit = list(per=death,age=death-birth),
exit.status = fail,
data = st )
# Plot Lexis diagram
par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, xaxt="n" ) # Omit x-labels

plot( L, x1im=c(1945,2010), ylim=c(32,88), 1lwd=3, las=1,grid=0:20%5, col="black",

xlab="Calendar time", ylab="Age" )

points( L, pch=c(NA,16) [L$lex.Xst+1] )

#put names of the prime ministers on the plot

text ( death, death-birth, Name, adj=c(1.05,-0.05), cex=0.7 )
par( xaxt="s" )

axis( side=1, at=seq(1950,2010,10) ) # x-labels at nice places

2. Mark with a different color the periods where they have been in office.

>
>
>
>
>
+
+
+
>
>
>
>
>

# New Lexis object describing periods in an office
# and lines added to a picture
in_office <- c¢( rep(FALSE,nrow(st)-1), TRUE )
st <- cbind( st, in_office )
Lo <- Lexis( entry = list(per=entry),
exit = list(per=exit,age=exit-birth),
exit.status = in_office,
data = st )
lines( Lo, 1wd=3, las=1, col="red" )
# the same may be plotted using command segments
box ()
segments( birth, 0, death, death-birth, lwd=2 )
segments( entry, entry-birth, exit, exit-birth, lwd=4, col="red" )

3. Draw the line representing age 50 years.

>

abline( h=50 )

4. How many 50th birthdays have been celebrated in office since the war?

>
>
>
>

age_entry <- Lo$age

age_exit <- Lo$age+Lo$lex.dur

n_birthday<- sum( ( age_entry<50) & ( age_exit>50 ) )
n_birthday
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. Draw the line representing 2 October 1972. (Why just that?)
> abline( v=cal.yr( "2/10/1972", format="%d/%m/%Y" ) )

. How many present and former prime ministes were alive at 31st December 20087

> alive <- (L$death >=2004)
> n_alive <- sum(alive)
> n_alive

[1] 6

> #Anker Jorgensen - 1 person has got 2 lex.id's
> levels( as.factor( subset( L$Name,alive==T ) ) )

[1] "Anders Fogh Rasmussen" "Anker Jgrgensen" "Lars Lgkke Rasmussen"
[4] "Poul Nyrup Rasmussen" "Poul Schliiter"

. Which period(s) since the war has seen the maximal number of former post-war prime
ministers alive?

> # New lexis object - since entry to the office to the death

> Ln <- Lexis( entry=list(per=entry), exit=list(per=death,age=death-entry),
+ exit.status=fail, data=st )

> ny <- 2008-1945

> n_alive <- vector( "numeric", ny )

> for (i in 1:ny)

+ 1

+ alive <- ( (Ln$death >=(1944+i)) & (Ln$entry<=(1944+i)) )

+ n_alivel[i] <- nlevels( as.factor( subset( Ln$Name, alive==T ) ) )

+
The maximal number of former post-war prime ministres alive was 5 in 1974-1976 3.2.

. Mark the area in the diagram with person years lived by persons aged 50 to 70 in the period
1 January 1970 through 1 January 1990.

> rect( 1970, 50, 1990, 70, 1lwd=2, border="green",col="lightgreen" )

. Mark the area for the lifetime experience of those who were between 10 and 20 years old in
1945.
> polygon( c(1955,2005,2005,1965,1955), ¢(30,80,70,30,30), 1wd=2,

border="blue", col="lightblue" )
> # Now draw the Lexis diagram again on top of the shaded areas

The Lexis diagram with all the requested lines etc. is shown in figure 3.1 .

. How many prime-minister-years have been spent time in each of these sets? And in the
intersection of them?

> # Prime-minister years lived by persons

> # aged 50 to 70 in the period 1 January 1970 through 1 January 1990.

> x1 <- splitLexis ( Lo ,breaks=c(0,50,70,100), time.scale="age" )

> x2 <- splitLexis ( x1, breaks=c(1900,1970,1990,2010), time.scale="per" )
> summary( x2 )

Transitions:
To
From FALSE TRUE Records: Events: Risk time: Persons:
FALSE 26 1 27 1 65.82 17
Rates:
To

From FALSE TRUE Total
FALSE 0 0.02 0.02
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Figure 3.2: Number of former prime ministers alive.

> tapply( status(x2,"exit")==1, list( timeBand(x2,"age","left"),
+ timeBand (x2, "per", "left") ), sum )

1900 1970 1990 2010
0 0 0 0 1
50 0 0 0 NA

> tapply( dur(x2), 1list( timeBand(x2,"age","left"),
+ timeBand (x2, "per", "left") ), sum )

1900 1970 1990 2010
0 11.10198 0.1519507 2.291581 1.171800
50 13.54415 19.8480493 17.708419 NA

> # Computing the person-years in the 1925-35 cohort
> x3 <- subset( Lo , birth>1925 & birth<=1935 )
> summary( x3 )

Transitions:
To
From FALSE Records: Events: Risk time: Persons:
FALSE 1 1 0 10.38 1
Rates:
To

From FALSE Total
FALSE 0 0
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> dur( x3 )
[1] 10.37645

> # Computing person years in the intersection
> x4 <- subset( x2 , birth>1925 & birth<=1935 )
> summary( x4 )

Transitions:
To
From FALSE Records: Events: Risk time: Persons:
FALSE 2 2 0 10.38 1

Rates:
To
From FALSE Total
FALSE 0 0

> dur( x4 )
[1] 7.310062 3.066393
The number of person-years in office in ages 50-69 in the period 1979-1989 is 19.85. The

number of prime-minister-years in the 1925-35 cohort is 10.38. The intersection of the two
sets holds 7.31 person-years.



Age-Period-Cohort models Reading and tabulating data 39

3.2 Reading and tabulating data

The following exercise is aimed at tabulating and displaying the data typically involved in
age-period-cohort analysis.

1. Read the data in the file lung5-M. txt, and print the data. What does each line refer to?

First we have read the data concerning the lung cancer tabulated in 5 years wide age and
period groups. Variables in a data set represent the Age group (A), Period (P), number of
cancer cases (D) and person-years (Y). Each line represents number of cancer cases and
person-years at risk in for a specific age group and period.

> lung <- read.table( "../data/lung5-M.txt", header=T )
> head(lung)

A P D

40 1943 80 694046.
40 1948 81 754769.
40 1953 73 769440.
1958 99 749264.
40 1963 82 757240.
40 1968 97 T709558.

U WN -
S
o
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> attach( lung )

2. Print the no. cases in a nice tabular form, and likewise with the person-years. Is there
someything special about the last period?

Table D_table_nice represents number of cancer cases in a tabulater form. Similarly, table
Y_table_nice represents person-years in a tabulater form. While the person-years at risk
are constant or slightly increasing for previous periods, in the last period 1993 the
person-years and number of cases (for age groups older then 55 years and even more for men
older then 65) are slightly smaller. These were born during and before the the second-world
war.

> D_table_nice <- stat.table(index=1ist(A,P), sum(D), data=lung, margin=T )
> print( D_table_nice, digits=c(sum=0) )

______ - -_— -_— ____P__ -_— -_— [ -
A 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993 Total
40 80 81 73 99 82 97 86 90 116 149 91 1044
45 135 163 208 226 252 284 263 251 257 265 2561 2555
50 197 292 442 508 560 580 657 608 591 493 446 5374
55 261 404 596 772 1052 1075 1115 1218 1090 995 696 9274
60 213 394 577 955 1342 1682 1654 1826 1885 1497 1113 13138
65 141 273 491 868 1235 1856 2136 2231 2188 2193 1485 156097
70 110 215 300 596 976 1448 1924 2283 2293 2157 1691 13993
75 54 126 167 320 514 860 1213 1559 1824 1640 1221 9498
80 20 57 87 157 220 390 573 753 881 837 716 4691
85 7 10 23 48 72 110 176 213 307 286 262 1514
Total 1218 2015 2964 4549 6305 8382 9797 11032 11432 10512 7972 76178

> Y_table_nice<-stat.table( index=1ist(4,P), sum(Y), data=lung, margin=T )
> print( Y_table_nice, digits=c(sum=2) )

R [ R - _P _____ R

A 1943 1948 1953 1958 1963 1968 1973 1978 19

40 694046.50 754769.50 769440.67 749264.50 757240.00 709558.50 695210.17 756263.00 941402.
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45 622256.67 676718.00 738290.50 754357.67 737405.67 747054.83 697976.33 681063.83 741553.
50 538964.17 600506.33 653867.50 715819.83 733590.17 717677.33 724880.33 675371.50 659498.
55 471016.00 512338.00 571270.67 622413.33 681097.00 699103.17 683242.67 686939.50 640796.
60 403172.50 435098.33 474197.50 528106.33 573204.83 627036.33 644142.67 627509.17 630384.
65 328690.50 357694.83 386083.00 419562.00 463265.17 501020.00 548399.50 564173.50 548586.
70 230090.83 269235.83 294786.67 317388.00 341288.33 373577.00 404348.83 442925.00 458828.
75 140110.67 166641.83 195729.83 214930.33 228793.50 245932.00 268415.17 290162.33 319152.
80 67778.83 80587.00 98561.33 116116.67 125697.33 136646.17 150131.83 163433.00 175767.
85 24656.17 28463.83 34280.50 42136.33 49263 .33 56018.17 63742.67 71226.50 77621.
Total 3520782.84 3882053.48 4216508.17 4480094.99 4690845.33 4813623.50 4880490.17 4959067.33 5193590.
3. Compute the empirical rates, and print them in a table too.

Table R_table_nice represents age-specific incidence rate per 100 000 person-years in a

tabulater form. Despite the change in person-years, the age-specific rates for period 1993 do

not diverge from the rates of previous ones.

> R_table_nice <- stat.table( index=list(A,P), list(Rate=ratio(D,Y,100000)),

+ data=lung, margin=T )

> print( R_table_nice, digits=c(sum=2) )

- —_— —_— ey P____ —————————————— —_— —_—————————————

A 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993 Total
40 11.53 10.73  9.49 13.21 10.83 13.67 12.37 11.90 12.32 14.52 12.09 12.13
45 21.70 24.09 28.17 29.96 34.17 38.02 37.68 36.85 34.66 28.67 30.56 31.38
50 36.55 48.63 67.60 70.97 76.34 80.82 90.64 90.02 89.61 68.50 63.64 72.22
55 55.41 78.85 104.33 124.03 154.46 153.77 163.19 177.31 170.10 158.82 127.92 137.62
60 52.83 90.55 121.68 180.83 234.12 268.25 256.78 290.99 299.02 253.44 240.34 219.09
65 42.90 76.32 127.17 206.88 266.59 370.44 389.50 395.45 398.84 396.26 352.34 296.46
70 47.81 79.86 101.77 187.78 285.98 387.60 475.83 515.44 499.75 480.40 462.11 354.49
75 38.54 75.61 85.32 148.89 224.66 349.69 451.91 537.29 b571.51 487.43 464.42 355.83
80 29.51 70.73 88.27 135.21 175.02 285.41 381.66 460.74 501.23 426.03 426.16 317.13
85 28.39 35.13 67.09 113.92 146.15 196.36 276.11 299.05 395.51 334.99 351.16 249.26
Total 34.59 51.91 70.30 101.54 134.41 174.13 200.74 222.46 220.12 190.83 174.24 150.19

> # another way of computation - not using Epi library
> D_table <- tapply( D, list(A,P), sum )
> Y_table <- tapply( Y, list(A,P), sum )
> R_table <- D_table/Y_table*(1075)

appropriate. Think about where on the x-axis each age-class is located.

(a) Age-specific rates for each period. (Rates from the same period connected).
> rateplot( R_table, which=c("AP"), ann=TRUE )

(b) Age-specific rates for each cohort. (Rates from the same cohort connected).
> rateplot( R_table, which=c("AC"), ann=TRUE )

. Make the four classical graphs of the data. Consider whether a log-scale for the y-axis is

(c) Rates for each age-class versus period. (Rates from the same age-class connected).
> rateplot( R_table, which=c("PA"), ann=TRUE )

(d) Rates for each age-class versus cohort. (Rates from the same age-class connected).
> rateplot( R_table, which=c("CA"), ann=TRUE )

5. How would each of these curves look if:
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Figure 3.3: Four rate plots for lung cancer data. Top left: Age on x axis, the rates corresponding
to same period are connected by lines. Top right: Age on x axis, the rates corresponding to same
cohorts are connected by lines. Bottom left: Period on x axis, the rates corresponding to same age
groups are connected by lines. Bottom right: Cohort on x axis, the rates corresponding to same age

groups are connected by lines.

(a) age-specific rates did not change at all by time?

When age-specific rates did not change at all by time, the age-specific rates are
identical for all periods and cohorts. The period and cohort effects are represented by

constant horizontal lines. Fig.3.4

> # age-specific rates remain still the same as in period 1943

colnames( R_table_no_change ) <- colnames( R_table )
rownames ( R_table_no_change ) <- rownames( R_table )
R_table_no_change

1943 1948 1953 1958 1963 1968 1973 1978
40 11.52661 11.52661 11.52661 11.52661 11.52661 11.52661 11.52661 11.52661
45 21.69523 21.69523 21.69523 21.69523 21.69523 21.69523 21.69523 21.69523
50 36.55159 36.55159 36.55159 36.55159 36.55159 36.55159 36.55159 36.55159

vV VVvyVv

R_table_no_change <- matrix( R_table[,1], dim(R_table) [1], dim(R_table) [2] )



42 Reading and tabulating data Solutions to exercises

55 55.41213 55.41213 55.41213 55.41213 55.41213 55.41213 55.41213 55.41213

60 52.83098 52.83098 52.83098 52.83098 52.83098 52.83098 52.83098 52.83098

65 42.89750 42.89750 42.89750 42.89750 42.89750 42.89750 42.89750 42.89750

70 47.80721 47.80721 47.80721 47.80721 47.80721 47.80721 47.80721 47.80721

75 38.54096 38.54096 38.54096 38.54096 38.54096 38.54096 38.54096 38.54096

80 29.50774 29.50774 29.50774 29.50774 29.50774 29.50774 29.50774 29.50774

85 28.39046 28.39046 28.39046 28.39046 28.39046 28.39046 28.39046 28.39046
1983 1988 1993

40 11.52661 11.52661 11.52661

45 21.69523 21.69523 21.69523

50 36.55159 36.55159 36.55159

55 55.41213 55.41213 55.41213

60 52.83098 52.83098 52.83098

65 42.89750 42.89750 42.89750

70 47.80721 47.80721 47.80721

75 38.54096 38.54096 38.54096

80 29.50774 29.50774 29.50774

85 28.39046 28.39046 28.39046

> par( mfrow=c(2,2) )
> rateplot( R_table_no_change, log.ax="" )
(b) age-specific rates were only influenced by period?
When age-specific rates are influenced only by period, the age-specific rates are parallel
for all periods. The period effects are represented by parallel lines. Fig.3.5.

> #age-specific rates are only influence by period
> step <- 2
> change_p <- matrix( rep(seq(1,11*step,step),10),10,11, byrow=T )

> change_p

[,11 [,21 [,31 [,41 [,81 [,6]1 [,71 [,8]1 [,9]1 [,10]1 [,11]
[1,] 1 3 5 7 9 11 13 15 17 19 21
[2,] 1 3 5 7 9 11 13 15 17 19 21
[3,] 1 3 5 7 9 11 13 15 17 19 21
[4,] 1 3 5 7 9 11 13 15 17 19 21
[5,] 1 3 5 7 9 11 13 15 17 19 21
[6,] 1 3 5 7 9 11 13 15 17 19 21
[7,1 1 3 5 7 9 11 13 15 17 19 21
[8,] 1 3 5 7 9 11 13 15 17 19 21
[9,] 1 3 5 7 11 13 15 17 19 21
[10,] 1 3 5 7 9 11 13 15 17 19 21

> R_table_p <- R_table_no_change + change_p

> colnames( R_table_p ) <- colnames( R_table )
> rownames ( R_table_p ) <- rownames( R_table )
> R_table_p

1943 1948 1953 1958 1963 1968 1973 1978
40 12.52661 14.52661 16.52661 18.52661 20.52661 22.52661 24.52661 26.52661
45 22.69523 24.69523 26.69523 28.69523 30.69523 32.69523 34.69523 36.69523
50 37.55159 39.55159 41.55159 43.55159 45.55159 47.55159 49.55159 51.55159
55 56.41213 58.41213 60.41213 62.41213 64.41213 66.41213 68.41213 70.41213
60 53.83098 55.83098 57.83098 59.83098 61.83098 63.83098 65.83098 67.83098
65 43.89750 45.89750 47.89750 49.89750 51.89750 53.89750 55.89750 57.89750
70 48.80721 50.80721 52.80721 54.80721 56.80721 58.80721 60.80721 62.80721
75 39.54096 41.54096 43.54096 45.54096 47.54096 49.54096 51.54096 53.54096
80 30.50774 32.50774 34.50774 36.50774 38.50774 40.50774 42.50774 44.50774
85 29.39046 31.39046 33.39046 35.39046 37.39046 39.39046 41.39046 43.39046
1983 1988 1993
40 28.52661 30.52661 32.52661
45 38.69523 40.69523 42.69523
50 53.55159 55.55159 57.55159
55 72.41213 74.41213 76.41213
60 69.83098 71.83098 73.83098
65 59.89750 61.89750 63.89750
70 64.80721 66.80721 68.80721
75 55.54096 57.54096 59.54096
80 46.50774 48.50774 50.50774
85 45.39046 47.39046 49.39046

> par( mfrow=c(2,2) )
> rateplot( R_table_p, log.ax="" )
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Figure 3.4: Four rate plots for data with no period and cohort effect.

1980

1990

T T T T T
1860 1880 1900 1920 1940

Date of birth

Top left: Age on x axis,

the rates corresponding to same period are connected by lines. Top right: Age on x axis, the rates
corresponding to same cohorts are connected by lines. Bottom left: Period on x axis, the rates
corresponding to same age groups are connected by lines. Bottom right: Cohort on z axis, the rates
corresponding to same age groups are connected by lines.

(c) age-specific rates were only influenced by cohort?

The situation when age-specific rates are influenced only by cohort is demonstrated at

Fig.3.6

nc <- 10

np <- length( p )

)

V++++VVVVVvy

p <- c¢( rep(NA,nc ), R_table[,1] )

#age-specific rates are only influence by cohort
nr <- nrow( R_table )

R_table_c <- cbind(p[(np-nr+1) :np],p[(np-nr): (np-1)]1,p[(np-nr-1): (np-2)1],
pl(ap-nr-2): (np-3)1,p[(np-nr-3) : (np-4)1,p[(np-nr-4) : (np-5)1,

plL(ap-nr-5): (ap-6)1,p[(np-nr-6) : (np-7)1,p[(np-nr-7) : (np-8)1,

pl(ap-nr-8): (np-9)1,p[(np-nr-9) : (np-10)]

colnames( R_table_c ) <- colnames( R_table )
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Figure 3.5: Four rate plots for data with an effect of period. Top left: Age on x axis, the rates cor-
responding to same period are connected by lines. Top right: Age on x axis, the rates corresponding
to same cohorts are connected by lines. Bottom left: Period on x axis, the rates corresponding to
same age groups are connected by lines. Bottom right: Cohort on x axis, the rates corresponding
to same age groups are connected by lines.

> rownames( R_table_c ) <- rownames( R_table )

> R_table_c

1943 1948 1953 1958 1963 1968 1973 1978
40 11.52661 NA NA NA NA NA NA NA
45 21.69523 11.52661 NA NA NA NA NA NA
50 36.55159 21.69523 11.52661 NA NA NA NA NA
55 55.41213 36.55159 21.69523 11.52661 NA NA NA NA
60 52.83098 55.41213 36.55159 21.69523 11.52661 NA NA NA
65 42.89750 52.83098 55.41213 36.55159 21.69523 11.52661 NA NA
70 47.80721 42.89750 52.83098 55.41213 36.55159 21.69523 11.52661 NA

75 38.54096 47.80721 42.89750 52.83098 55.41213 36.55159 21.69523 11.52661

80 29.50774 38.54096 47.80721 42.89750 52.83098 55.41213 36.55159 21.69523

85 28.39046 29.50774 38.54096 47.80721 42.89750 52.83098 55.41213 36.55159
1983 1988 1993

40 NA NA NA
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Rates

Rates

45 NA NA NA
50 NA NA NA
55 NA NA NA
60 NA NA NA
65 NA NA NA
70 NA NA NA
75 NA NA NA
80 11.52661 NA NA

85 21.69523 11.52661  NA

> par( mfrow=c(2,2) )
> rateplot( R_table_c, log.ax="" )
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Figure 3.6: Four rate plots for data with an effect of cohort. Top left: Age on x axis, the rates cor-
responding to same period are connected by lines. Top right: Age on x axis, the rates corresponding
to same cohorts are connected by lines. Bottom left: Period on x axis, the rates corresponding to
same age groups are connected by lines. Bottom right: Cohort on x axis, the rates corresponding
to same age groups are connected by lines.
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3.3 Rates and survival

1. Consider the following data:

Year of birth Year of death Age at death
1994 1995

1994 2,900 500

1993 120 130

1992 50 60

1991 45 55

1990 40 40

=W N = O

(a) Represent these data in a Lexis diagram.

40

40

55

45

60

Age

50

130

120

500

2900

T T T T
1991 1992 1993 1994 1995 1996
Calendar time

Figure 3.7: Deaths in age classes 0—4 for the birth cohorts 1990-94, and in age class 0 for the
cohorts 1991 and 1992. Fictitious data.

The given data are shown in the Lexis-diagram in figure 3.7(left). Note that the deaths
given are only for one age class for each cohort, so there is no period with complete
death count.
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(b)

On the basis of these data, can you calculate the age-specific death rate for
two-year-olds (1mg) in 19947 If you can, do it. If you cannot, explain what additional
information you would need.

In order to be able to do so one would need the total number of deaths among all
two-year olds in 1994. But only the deaths in the 1992 cohort are known, not those in
the 1991 cohort. Further one would need to know the risk time in the age-class in 1994.
This could be estimated as the average of the number of 2-years olds at the beginning
and end of 1994 if these numbers were available. If the number of one-year olds at the
beginning of 1994 and the number of three-year olds at the end of 1994 were available
a more sophisticated estimate of the risk time would be available.

On the basis of these data, can you calculate the probability of surviving from age 2 to
age 3 (1¢2) in for the cohort born in 19927

If you can, do it. If you cannot, explain what additional information you would need.
It is not possible to compute the probability of surviving from age 2 to age 3 in the
1992 cohort, because the number in this cohort that reach the age of 2 is not known.
This number would be the denominator in the fraction estimating the probability
where the numerator would be the number of deaths, 50 + 60 = 110.

2. Consider the following data:

Live births during 1991: 142,000
Number of infants born in 1991 who did not survive until the end of 1991: 2,900

Number of infants born in 1991 who survived to the end of 1991, but did not reach
their first birthday: 500

Live births during 1992: 138,000
Number of infants born in 1992 who did not survive until the end of 1992: 2,600

Number of infants born in 1992 who survived to the end of 1992, but did not reach
their first birthday: 450

The data are represented on a Lexis diagram at figure 3.7 (right).

Calculate the infant mortality rate (IMR) for 1992 under the assumption that you were
only able to observe events occurring in 1992, and that you did not know the birth
dates of infants dying during that year.

The infant mortality rate given that we only observe events during 1992, would have to
be computed on the assumption that birth rates were constant, i.e. the number of
births in 1991 and 1992 were the same. We would then observe the one-year survival
probability to be (500 + 2600)/138000 = 0.02246377, and hence the IMR to be

—log(1 — 0.02246377) = 0.22720.

Alternatively we could argue that out of the initial 138000, 3100 dies, so a fair bet on
the risk time is 138000 — 3100/2 = 136450, so the rate is estimated as

3100/136450 = 0.022719

Same as above, except that now you do know the birth dates of infants dying during
1992.

If we know the birth date of those dying during 1992 we get extra information that
enables us to produce a better estimate of the risk time. If we assume that births occur
uniformly over the year, the 138000 — 2600 = 135400 survivors of the 1992 cohort
contribute on average 1/2 person-year. Assuming the 2600 deaths occur uniformly over
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Age
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Figure 3.8: Deaths in the cohorts 1991 and 1992. Fictitious data.

the triangle, these will contribute 1/3 person-year each!. By the same token the 500
deaths in the upper triangle also contribute 1/3 person year each. In order to get the
contribution from those surviving through the upper triangle we must again invoke the
assumption of constancy of birth and death rates and assume that 135400 0-year olds
are alive at the beginning of 1992, so 134900 survive, contributiong 134900/2 person
years. Thus the total risk time is:

135400/2 4 2600/3 + 134900/2 + 500/3 = 136183.3

giving an estimate of the infant mortality rate of 3100/136183.3 = 0.022763.
(d) Assume all data are known: Calculate the IMR.

If we assume all numbers are known, the last calculation must be updated with the
correct number of O-year olds at the beginning of 1992, 142000 — 2900 = 139100, giving
138600 survivors in the upper triangle:

135400/2 + 2600/3 + 138600/2 + 500/3 = 138033.3

! 5::01 [272a da dp = f;:olaz dp=1/3
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giving an estimate of the infant mortality rate of 3100/138033.3 = 0.022458.

Thus we see that the annual variation in birth rates far outweighs the differenecs
between the various methodological approaches.

(e) What is the IMR for the 1992 birth cohort?
For the 1992 birth cohort we have two ways of proceeding;:

e 2600 + 450 = 3050 out of 138000 die, thus the one-year survival probability is
3050/138000 = 0.022101 and hence the infant mortality rate
—log(1 — 0.022101) = 0.022349.

e The person-years can be calculated using the same arguments as above:
(138000 — 2600)/2 + 2600/3 + (138000 — 2600 — 450)/2 + 450/3 = 136191.7

so the rate is estimated as 3050/136191.7 = 0.022395.



50 Age-period model

Solutions to exercises

3.4 Age-period model

The following exercise is aimed at familiarizing you with the parametrization of the age-period
model. It will give you the opportunity explore how to extract and and plot parameter estimates

from models.

1. Read the data in the file Tung5-M.txt as in the tabulation exercise:

> lung <- read.table( "../data/lung5-M.txt", header=T )

> head(lung)

A P D

40 1943 80 694046.
40 1948 81 754769.
40 1953 73 769440.
40 1958 99 749264.
40 1963 82 757240.
40 1968 97 T709558.

OO WN -
oo NOIO =

> attach( lung )
> table( A )

A
40 45 50 55 60 65 70 75 80 85
11 11 11 11 11 11 11 11 11 11

> table( P )

P

1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993
10

i0 10 10 10 10 10

10

10

10

10

The tables here shows the extent of the data aling the age and period axes, whereas the
next table shows the persons years. It is more conveniently rescaled to person-millenia,

rounded to one decimal:

> round( tapply( Y, list(A,P), sum )/1000, 1 )

1943 1948 1953 1958 1963

40 694.0 754.8 769.4 749.3 757.2
45 622.3 676.7 738.3 754.4 737.4
50 539.0 600.5 653.9 715.8 733.6
55 471.0 512.3 571.3 622.4 681.1
60 403.2 435.1 474.2 528.1 573.2
65 328.7 357.7 386.1 419.6 463.3
70 230.1 269.2 294.8 317.4 341.3
75 140.1 166.6 195.7 214.9 228.8
80 67.8 80.6 98.6 116.1 125.7
85 24.7 28.5 34.3 42.1 49.3

1968
709.6
TAT.
717.
699.
627.
501.
373.
245.
136.

56.

DOOOMOO N+

o
[o)
w

1973
695.
698.
724.
683.
644 .
548.
404.
268.
150.

2
0
9
2
1
4
3
4
1

7

1978

756.
681.
675.
686.
627.
564.
442,
290.
163.

71

3
1
4
9
5
2
9
2
4

.2

1983

941.
741.
659.
640.
630.
548.
458.
319.
175.

TT.

4
6
5
8
4
6
8
2
8
6

1993

753.
821.
700.
544 .
463.
421.
365.
262.
168.
4.

DO VWOWUl- = OPO

2. We fit a Poisson model with effects of age (A) and period (P) as class variables:

> ap.1 <- glm( D ~ factor(4) + factor(P) + offset(log(Y)), family=poisson )

> summary( ap.1 )

Call:

glm(formula = D ~ factor(A) + factor(P) + offset(log(Y)), family = poisson)

Deviance Residuals:
Min 1Q Median

3Q

-10.400 -3.728 -0.984 3.685

Coefficients:

Estimate Std. Error z value Pr(>|zl)
0.04192 -246.71

(Intercept) -10.34235

Max
11.203

<2e-16
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factor(A)45 0.95258 0.03673 25.93 <2e-16
factor(A)50 1.78237 0.03383 52.69 <2e-16
factor(A)55 2.41412 0.03265 73.94 <2e-16
factor(A)60 2.86259 0.03216 89.01 <2e-16
factor(A)65 3.15159 0.03201 98.47 <2e-16
factor(A)70 3.31784 0.03209 103.40 <2e-16
factor(A)75 3.30980 0.03261 101.50 <2e-16
factor(4)80 3.17640 0.03423 92.81 <2e-16
factor(A)85 2.90983 0.04024 72.32 <2e-16
factor(P)1948  0.39206 0.03629 10.80 <2e-16
factor(P)1953  0.67592 0.03404 19.86 <2e-16
factor(P)1958 1.01434 0.03226 31.44 <2e-16
factor(P) 1963 1.26666 0.03130 40.47 <2e-16
factor(P)1968 1.48717 0.03067 48.49 <2e-16
factor(P)1973 1.59239 0.03039 52.40 <2e-16
factor(P)1978 1.67994 0.03020 55.62 <2e-16
factor(P)1983 1.69902 0.03015 56.35 <2e-16
factor(P)1988 1.59958 0.03028 52.83 <2e-16
factor(P)1993 1.52558 0.03078 49.57 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 71776.2 on 109 degrees of freedom
Residual deviance: 2723.5 on 90 degrees of freedom
AIC: 3620.5

Number of Fisher Scoring iterations: 5

The parameters in this model are: intercept: the log-rate in the refence category, which in
this model is the first age-category (40: 40-44 years), and the first period (1943: 1943-47),
— namely the ones not mentioned in the output from the model. All other parameters are
log-rate-ratios relative to this reference category.

3. The same model is now fitted without intercept:

> ap.0 <- glm( D ~ -1 + factor(A) + factor(P) + offset(log(Y)), family=poisson )
> summary( ap.0 )

Call:
glm(formula = D ~ -1 + factor(A) + factor(P) + offset(log(Y)),
family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max
-10.400 -3.728 -0.984 3.685 11.203

Coefficients:
Estimate Std. Error z value Pr(>lzl)

factor(A)40 -10.34235 0.04192 -246.71 <2e-16
factor(A)45 -9.38977 0.03454 -271.89 <2e-16
factor(A)50 -8.55998 0.03145 -272.17 <2e-16
factor(A)55 -7.92822 0.03020 -262.48 <2e-16
factor(A)60 -7.47976 0.02970 -251.83 <2e-16
factor(A)65 -7.19075 0.02956 -243.26 <2e-16
factor(A)70 -7.02451 0.02970 -236.53 <2e-16
factor(A)75 -7.03255 0.03031 -232.05 <2e-16
factor(A)80 -7.16595 0.03209 -223.33 <2e-16
factor(A)85 -7.43252 0.03847 -193.22 <2e-16
factor(P)1948  0.39206 0.03629 10.80 <2e-16
factor(P)1953 0.67592 0.03404 19.86 <2e-16
factor(P)1958 1.01434 0.03226 31.44 <2e-16
factor(P)1963 1.26666 0.03130 40.47 <2e-16
factor(P) 1968 1.48717 0.03067 48.49 <2e-16
factor(P)1973 1.59239 0.03039 52.40 <2e-16
factor(P)1978 1.67994 0.03020 55.62 <2e-16
factor(P)1983 1.69902 0.03015 56.35 <2e-16
factor(P)1988 1.59958 0.03028 52.83 <2e-16
factor(P)1993 1.52558 0.03078 49.57 <2e-16
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.0037e+08 on 110 degrees of freedom
Residual deviance: 2.7235e+03 on 90 degrees of freedom
AIC: 3620.5

Number of Fisher Scoring iterations: 5

The age-parameters now refer to log-rates as estimated in the reference period, 1943.
. Now we fit the same model, using the period 1968-72 as the reference period, by using the
relevel command for factors to make 1968 the first level:

> ap.2 <- glm( D ~ factor(4) - 1 + relevel(factor(P),"1968") + offset(log(Y)),
+ family=poisson )

. Extract the parameters from the model, by doing:

> ( ap.cf <- summary( ap.2 )$coef )

Estimate Std. Error z value Pr(>lzl)
factor(A)40 -8.85517346 0.03267181 -271.034040 0.000000e+00
factor(A)45 =7.90259321 0.02232327 -354.007042 0.000000e+00
factor(A)50 =7.07280223 0.01707967 -414.106430 0.000000e+00
factor(A)55 -6.44104968 0.01455119 -442.647633 0.000000e+00
factor (A)60 -5.99258631 0.01342462 -446.387795 0.000000e+00
factor(A)65 -5.70357953 0.01312796 -434.460586 0.000000e+00
factor(A)70 -5.53733722 0.01337568 -413.985515 0.000000e+00
factor(A)75 -5.54537497 0.01462008 -379.298646 0.000000e+00
factor(A)80 -5.67877130 0.01794833 -316.395572 0.000000e+00
factor(A)85 -5.94534410 0.02775505 -214.207677 0.000000e+00
relevel (factor(P), "1968")1943 -1.48717439 0.03066768 -48.493215 0.000000e+00
relevel (factor(P), "1968")1948 -1.09511737 0.02481363 -44.133706 0.000000e+00
relevel (factor(P), "1968")1953 -0.81125051 0.02137233 -37.957983 0.000000e+00
relevel (factor(P), "1968")1958 -0.47283820 0.01841692 -25.674120 2.274664e-145
relevel (factor(P), "1968")1963 -0.22051337 0.01667114 -13.227249 6.108232e-40
relevel (factor(P), "1968")1973 0.10521650 0.01487968 7.071155 1.536496e-12
relevel (factor(P), "1968")1978 0.19276119 0.01449332 13.300001 2.314659e-40
relevel (factor(P), "1968")1983 0.21184343 0.01438727 14.724363 4.496857e-49
relevel (factor(P), "1968")1988 0.11240928 0.01465483 7.670458 1.713837e-14
relevel (factor(P), "1968")1993 0.03840264 0.01565559 2.452966 1.416836e-02

. We plot the estimated age-specific incidence rates, we need the first 10 parameters, with
their standard errors:

> age.cf <- ap.cf[1:10,1:2]

This means that we take rows 1-10 and columns 1-2. The corresponding age classes are
40, ...,85. The midpoints of these age-classes are 2.5 years higher. The ages can be
generated in R by saying seq(40,85,5)+2.5. So we can make the plot in increasing detail:
> par( mfrow=c(1,3) )

> am <- seq(40,85,5)+2.5

> plot( am, age.cf[,1] )

> plot( am, exp(age.cf[,1]), log="y" )
> plot( am, exp(age.cf[,1]), type="1", log="y" )

If we want to put confidence limits on we just take £1.96 X s.e. on the log-scale. And the
s.e.s are in column 2 of age.cf. Lines are added to a plot by the command lines, or all is
made in one go using matplot

> matplot( am, cbind( exp(age.cf[,1]),

+ exp(age.cf[,1]-1.96%age.cf[,2]),

+ exp(age.cf[,1]+1.96*age.cf[,2]) ),
+ type="1", log="y", lwd=c(3,1,1), lty=1, col="black" )
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Figure 3.9: Three versions of the plot of the age-specific rates.

The specification of 1ty= and col= is necessary in matplot, because these otherwise cycles

through linetypes and colours, whcih is not desired here.

> ( RR.cf <- ap.cf[11:20,1:2] )

relevel (factor (P),
relevel (factor (P),
relevel (factor (P),
relevel (factor (P),
relevel (factor(P),
relevel (factor (P),
relevel (factor (P),
relevel (factor (P),
relevel (factor (P),
relevel (factor (P),

"1968")1943
"1968") 1948
"1968") 1953
"1968")1958
"1968")1963
"1968")1973
"1968")1978
"1968")1983
"1968")1988
"1968") 1993

-1

[eNeoNeoNeoNe]

Estimate

.48717439
-1.
-0.
.47283820
-0.
.10521650
.19276119
.21184343
.11240928
.03840264

09511737
81125051

22051337

Std. Error
0.03066768
0.02481363
0.02137233
0.01841692
0.01667114
0.01487968
0.01449332
0.01438727
0.01465483
0.01565559

. Now for the rate-ratio-parameters, take the rest of the coefficients:

But the reference group is missing, so we must stick two Os in the correct place. We use the
command rbind (row-bind):

> RR.cf <- rbind( RR.cf[1:5,], c(0,0), RR.cf[6:10,] )

> RR.cf

relevel (factor(P),
relevel (factor (P),
relevel (factor (P),
relevel (factor (P),
relevel (factor (P),

relevel (factor (P),
relevel (factor (P),
relevel (factor (P),
relevel (factor (P),
relevel (factor (P),

"1968")1943
"1968") 1948
"1968") 1953
"1968") 1958
"1968") 1963

"1968")1973
"1968")1978
"1968")1983
"1968")1988
"1968")1993

-1
-1

[eNeoNeoNe)

Estimate

.48717439
.09511737
-0.
-0.
-0.
.00000000
.10521650
.19276119
.21184343
.11240928
.03840264

81125051
47283820
22051337

Std. Error
0.03066768
0.02481363
0.02137233
0.01841692
0.01667114
0.00000000
0.01487968
0.01449332
0.01438727
0.01465483
0.01565559

Now we have the same situation as for the age-specific rates, and can plot the relative risks
(relative to 1968) in precisely the same way as for the age-specific rates:
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chind(exp(age.cf[, 1]), exp(age.cf[, 1] - 1.96 * age.cf, 2]),

exp(age.cff, 1] + 1.96 * age.cf, 2]))

> matplot( as.numeric(levels(factor(P)))+2.5,

+ cbind( exp(RR.cf[,1]),

+ exp(RR.cf[,1]-1.96*RR.cf[,2]),

+ exp(RR.cf[,1]+1.96%RR.cf[,2]) ),

+ type="1", log="y", lwd=c(3,1,1), lty=1, col="black" )

These rate-ratios are presented beside the corresponding age-specific rates.
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Figure 3.10: Age-specific rates and rate-ratios relative to the period 1968—72.

. The relevant parameters may also be extracted directly from the model without intercept,

using the function ci.lin which allows selection of a subset of the parameters either by
using numbers in the sequence or using character strings through grep. Linear functions of
selected parameter are computed using a contrast matriz, which is multiplied to the selected
parameters.

If we want log-rates in the reference period (the first level of factor (P) are the
age-parameters. The log-rates in the period labelled 1968 are these plus the period estimate
from 1968, so to illustrate the workings of the subsetting we select the relevant parameters
and just disply these.

> ci.lin( ap.0, subset=c("A","1968") )

Estimate StdErr z P 2.5% 97.5%
factor(A)40 -10.342348 0.04192098 -246.71054 0 -10.424511 -10.260184
factor(A)45 -9.389768 0.03453519 -271.88982 0 -9.457455 -9.322080
factor(A)50 -8.559977 0.03145070 -272.17123 0 -8.621619 -8.498334
factor(A)55 =7.928224 0.03020492 -262.48125 0 -7.987425 -7.869024
factor(A)60 =7.479761 0.02970184 -251.82817 0 -7.537975 -7.421546
factor(A)65 -7.190754 0.02956000 -243.25964 0 -7.248690 -7.132817
factor(A)70 -7.024512 0.02969777 -236.53331 0 -7.082718 -6.966305
factor(A)75 -7.032549 0.03030666 -232.04631 0 -7.091949 -6.973149
factor(A)80 -7.165946 0.03208700 -223.32863 0 -7.228835 -7.103056
factor(A)85 -7.432518 0.03846618 -193.22216 0 -7.507911 -7.357126
factor(P)1968 1.487174 0.03066768 48.49322 0 1.427067 1.547282

Since we often need rates as the exponentila of the parameters, there is a Exp= argument
that gives these too (with c.i.):
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> ci.lin( ap.0, subset=c("A","1968"), Exp=TRUE )

Estimate StdErr z P exp(Est.) 2.5%
factor(A)40 -10.342348 0.04192098 -246.71054 0 3.223854e-05 2.969561e-05
factor(A)45 -9.389768 0.03453519 -271.88982 0 8.357488e-05 7.810509e-05
factor(A)50 -8.559977 0.03145070 -272.17123 0 1.916238e-04 1.801683e-04
factor(A)55 =7.928224 0.03020492 -262.48125 0 3.604259e-04 3.397078e-04
factor(A)60 =7.479761 0.02970184 -251.82817 0 5.643925e-04 5.324747e-04
factor(A)65 =7.190754 0.02956000 -243.25964 0 7.535208e-04 7.111050e-04
factor(A)70 =7.024512 0.02969777 -236.53331 0 8.898020e-04 8.394882e-04
factor(A)75 -7.032549 0.03030666 -232.04631 0 8.826786e-04 8.317744e-04
factor(A)80 -7.165946 0.03208700 -223.32863 0 7.724481e-04 7.253654e-04
factor(A)85 -7.432518 0.03846618 -193.22216 0 5.916955e-04 5.487263e-04
factor(P)1968 1.487174 0.03066768 48.49322 0 4.424576e+00 4.166460e+00

97.5%
factor(A)40  3.499924e-05
factor(A)45 8.942772e-05
factor(A)50 2.038076e-04
factor(A)55  3.824076e-04
factor(A)60  5.982235e-04
factor(A)65  7.984666e-04
factor(A)70  9.431313e-04
factor(A)75 9.366982e-04
factor(A)80  8.225870e-04
factor(A)85  6.380294e-04
factor(P)1968 4.698682e+00

To get the linear combination of parameters we want we construct the contrast matrix
needed to provide the estimates if premultiplied to the selected subset of parameters.

> ( cm.A <- cbind( diag( nlevels( factor(4) ) ), 1) )

[,11 [,21 [,3]1 [,41 C,81 (.61 C,71 [,81 [,91 [,10] [,11]

[1,] 1
[2,]
[3,]
[4,]
[5,]
(6,]
[7,]
(s,]
[9.1]
[10,]

[eNoNeoNoNeoNoNoNoNe]

Using the argument ctr.mat= in ci.lin to produce the rates in period 1968 we can plot
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them on a log-scale (note we select only the columns with rates and ci.s:

> arates <- ci.lin( ap.0, subset=c("A","1968"), ctr.mat=cm.A, Exp=TRUE )[,5:7]

> matplot( as.numeric( levels( factor(4d) ) )+2.5, arates,

+ log="y", type="1", lwd=c(3,1,1), col="black", 1ty=1 )

The rates extracted this way is in the left panel of figure 3.11.

. Using the same machinery to extract the rate-ratios relative to 1968, we construct the
contrast matrix to extract the difference between the RRs with the first period as reference
and the RR at 1968; this is the differnece between two metrices: The first one is the one
that extracts the rate-ratios with a prefixed 0:

> cm.P <- rbind(0,diag( nlevels(factor(P))-1 ) )
> cm.P

[,11 [,21 [,3] [,4] [,5] [,6] [,71 [,8] [,9]1 [,10]
0 0 0 0 0 0 0 0 0 0

S wWN -

] 1 0 0 0 0 0 0 0 0 0
] 0 1 0 0 0 0 0 0 0 0
] 0 0 1 0 0 0 0 0 0 0
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10.

11.

[5,] 0 0 0 1 0 0 0 0 0 0
[6,] 0 0 0 0 1 0 0 0 0 0
[7,] 0 0 0 0 0 1 0 0 0 0
[s,] 0 0 0 0 0 0 1 0 0 0
[9,] 0 0 0 0 0 0 0 1 0 0
[10,] 0 0 0 0 0 0 0 0 1 0
[11,] 0 0 0 0 0 0 0 0 0 1

The second is the matrix with 1s in the column corresponding to 1968.

cm.Pref <- cm.P * 0

wh.col <- grep( "1968", levels(factor(P)) ) -1
cm.Pref[,wh.col] <- 1

cm.Pref

vV VVvyv

[,11 [,21 [,3] [,4] [,5] [,6] [,71 [,8] [,9] [,10]

[1,] 0 0 0 0 1 0 0 0 0 0
[2,] 0 0 0 0 1 0 0 0 0 0
[3,] 0 0 0 0 1 0 0 0 0 0
[4,] 0 0 0 0 1 0 0 0 0 0
[5,] 0 0 0 0 1 0 0 0 0 0
[6,] 0 0 0 0 1 0 0 0 0 0
[7,] 0 0 0 0 1 0 0 0 0 0
[8,] 0 0 0 0 1 0 0 0 0 0
[9,] 0 0 0 0 1 0 0 0 0 0
[10,] 0 0 0 0 1 0 0 0 0 0
[11,] 0 0 0 0 1 0 0 0 0 0

The contrast matrix to use is the difference between these two, and can therefore be directly
plotted:

> cm.P - cm.Pref

[,11 [,21 [,3] [,4] [,5] [,6] [,71 [,8] [,9]1 [,10]

[1,] 0 0 0 o -1 0 0 0 0 0
[2,] 1 0 0 o -1 0 0 0 0 0
[3,1 0 1 0 o -1 0 0 0 0 0
[4,] 0 0 1 o -1 0 0 0 0 0
[5,] 0 0 0 1 -1 0 0 0 0 0
[6,] 0 0 0 0 0 0 0 0 0 0
[7,1 0 0 0 o -1 1 0 0 0 0
[8,] 0 0 0 o -1 0 1 0 0 0
[9,] 0 0 0 o -1 0 0 1 0 0
[10,] 0 0 0 o -1 0 0 0 1 0
[11,] 0 0 0 o -1 0 0 0 0 1

> RRO <- ci.lin( ap.0, subset="P", ctr.mat=cm.P-cm.Pref, Exp=TRUE )[,5:7]
> matplot( as.numeric(levels(factor(P)))+2.5, RRO,
+ type="1", log="y", lwd=c(3,1,1), lty=1, col="black" )

These RRs are plotted alongside the estimated rates in figure 3.11.

The estimates are saved along with the computed mipoints:

> age.pt <- as.numeric(levels(factor(4)))+2.5

> RR.pt <- as.numeric(levels(factor(P)))+2.5

> save( age.pt, arates,

+ RR.pt, RRO, file="../data/age-per-est.Rdata" )

If we want to plot the rates and the rate ratios beside each other, and make sure that the
physical extent of the units on both the z-axis and the y-axis are the same, we first
determine the relative extent of the z-axes for the two plots:

> alim <- range( A ) + ¢(0,5)
> plim <- range( P ) + c(0,5)



Age-Period-Cohort models Age-period model 57

1le-03 2e-03

arates

5e-04

2e-04

N
R
o
S
[ce)
®
©
Q4
o
@
4
<
3
N ]
T T T T <] T T T T T
50 60 70 80 1950 1960 1970 1980 1990
as.numeric(levels(factor(A))) + 2.5 as.numeric(levels(factor(P))) + 2.5

Figure 3.11: Age-specific rates and rate-ratios relative to the period 1968-72, extracted using ci.lin.

We then use these to determine the relative width of the two panels, using the layout
function, and subsequenty adjust the y-axis of the RR-plot to the same physical extent as
the rate axis (note that the par ("usr") returns the log;, of the limits for logaritmic axes):

>
>
>
>
>
>
>
>
+
+
>
>
+
+
>
>
>
>

# Compute limits explicitly
rlim <- range(arates*10°5)%c(1/1.05,1.05)
RR1im <- 107 (logl10(rlim)-ceiling(mean(log10(rlim))))
# Determin reltive width of plots
layout ( rbind( c(1,2) ), widths=c(diff(alim),diff(plim)) )
# No space on the sides of the plots, only outer space
par( mar=c(4,0,1,0), oma=c(0,4,0,4), mgp=c(3,1,0)/1.5, las=1 )
matplot( as.numeric(levels(factor(4)))+2.5, arates*1075,
type="1", lwd=c(3,1,1), 1lty=1, col="black",
log="y", xaxs="i", xlim=alim, xlab="Age", ylim=rlim )
mtext ( "Male lung cancer per 100,000", las=0, side=2, outer=T, line=2.5 )
matplot( as.numeric(levels(factor(P)))+2.5, RRO,
type="1", lwd=c(3,1,1), 1lty=1, col="black",
log="y", xlab="Period of follow-up", xlim=plim, yaxt="n", ylim=RRlim, ylab="" )
abline( h=1 )
points( 1968+2.5, 1, pch=1, 1wd=3 )
axis( side=4 )
mtext( "Rate ratio", side=4, outer=T, las=0, line=2.5 )

The resulting plot is in figure 3.14
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Figure 3.12: Age-specific rates and rate-ratios relative to the period 1968-72, extracted using ci.lin,
and plotted with scales with physically equal scaling.

3.5 Age-cohort model
This exercise is parallel to the exercise on the age-period model.

1. First we read the data in the file lung5-M.txt and create the cohort variable:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung$C <- lung$P - lung$A

> attach( lung )

> table( C )

C

1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918 1923 1928 1933
1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5
1938 1943 1948 1953
4 3 2 1

It is clear from these tables that the data layout is by age and period, since the outer
cohorts are more scarcely represented.

2. We fit a Poisson model with effects of age (A) and cohort (C) as class variables:

> ac.1 <- glm( D ~ factor(4) + factor(C) + offset(log(Y)), family=poisson )
> summary( ac.1 )

Call:
glm(formula = D ~ factor(A) + factor(C) + offset(log(Y)), family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max
-7.2822 -2.0274 0.3573 2.0545 5.2834

Coefficients:
Estimate Std. Error z value Pr(>lzl|)
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(Intercept) -11.83501 0.38038 -31.114 < 2e-16
factor(A)45 0.96843 0.03800 25.487 < 2e-16
factor(A)50 1.83467 0.03591 51.087 < 2e-16
factor(A)55 2.51168 0.03508 71.595 < 2e-16
factor(A)60 3.02924 0.03476 87.147 < 2e-16
factor(A)65 3.40740 0.03471 98.156 < 2e-16
factor(A)70 3.67325 0.03487 105.335 < 2e-16
factor(A)75 3.78630 0.03545 106.819 < 2e-16
factor(A)80 3.78402 0.03704 102.165 < 2e-16
factor(A)85 3.66814 0.04280 85.703 < 2e-16
factor(C)1863  0.01046 0.42031 0.025 0.980152
factor(C)1868 0.51345 0.38845 1.322 0.186240
factor(C)1873  0.82684 0.38231 2.163 0.030560
factor(C)1878  1.05336 0.38054 2.768 0.005639
factor(C)1883  1.41904 0.37972  3.737 0.000186
factor(C)1888  1.91197 0.37927 5.041 4.63e-07
factor(C)1893  2.28073 0.37909 6.016 1.78e-09
factor(C)1898 2.55794 0.37900 6.749 1.49e-11
factor(C)1903 2.76315 0.37895  7.292 3.06e-13
factor(C)1908 2.83415 0.37894  7.479 7.48e-14
factor(C)1913  2.81410 0.37901  7.425 1.13e-13
factor(C)1918  2.86228 0.37902 7.552 4.30e-14
factor(C)1923 2.91551 0.37906  7.691 1.45e-14
factor(C)1928 2.86546 0.37917  7.557 4.12e-14
factor(C)1933 2.86314 0.37936  7.547 4.44e-14
factor(C)1938  2.72290 0.37983 7.169 7.57e-13
factor(C)1943  2.68759 0.38066 7.060 1.66e-12
factor(C)1948  2.85099 0.38263 7.451 9.27e-14
factor(C)1953  2.81411 0.39456 7.132 9.87e-13

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 71776.18 on 109 degrees of freedom
Residual deviance: 829.63 on 81 degrees of freedom
AIC: 1744.7

Number of Fisher Scoring iterations: 4

The parameters in this model are: intercept: the log-rate in the refence category for age
(40:40-44), in the reference cohort which in this model is the first cohort (1858 = 1943 — 85
which comprises persons born 5 years on either side of this, i.e. in the years 1853-1862 —
but not all persons borm in this interval). Note however that there are no observations in
the dataset in this category; it is actually a prediction purely outside the dataset. The rest
of the parameters are log-rate-ratios relative to thsi category.

3. We now fit the model without intercept,

4. and with 1908 as the reference:

> ac.2 <- glm( D ~ factor(4) - 1 + relevel(factor(C),"1908") + offset(log(Y)),
+ family=poisson )

The age-parameters now represent the estimated age-specific log-incidence rates from the
1908 cohort.

5. The range of birth dates represented in the cohort 1908 is from 1.1.1903-31.12.1912. Only
those born on 1.1.1908 are not represented in any other cohort. Hence the name “synthetic”
cohort.

6. We now extract the age-specific incidence rates with 95% c.i.s from the model using ci.lin:
> age.cf <- ci.lin( ac.2, subset="A", Exp=TRUE)[,5:7]

> matplot( as.numeric(levels(factor(4)))+2.5, age.cf,
+ log="y", type="1", 1ty=1, lwd=c(3,1,1), col="black" )
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7. Simuilarly we extract the cohort-specific rate-ratio parameters, but we recall that the 1908
cohiort is missing from the estimates:
> RR.cf <- ci.lin( ac.2, subset="C", Exp=TRUE )[,5:7]
> wh <- grep( "1908", levels(factor(C)) ) - 1
> RR.cf <- rbind( RR.cf[1:wh,], c(1,1,1), RR.cf[-(1:wh),] )
> RR.cf
exp(Est.) 2.5% 97.5%
relevel (factor(C), "1908")1858 0.05876855 0.02796331 0.12350977
relevel (factor(C), "1908")1863 0.05938629 0.04146987 0.08504321
relevel(factor(C), "1908")1868 0.09820451 0.08277938 0.11650395
relevel(factor(C), "1908")1873 0.13435012 0.12110391 0.14904520
relevel(factor(C), "1908")1878 0.16850582 0.15647290 0.18146408
relevel (factor(C), "1908")1883 0.24290000 0.22987080 0.25666770
relevel (factor(C), "1908")1888 0.39765267 0.38150319 0.41448578
relevel(factor(C), "1908")1893 0.57498146 0.55558344 0.59505676
relevel(factor(C), "1908")1898 0.75865134 0.73613440 0.78185703
relevel(factor(C), "1908")1903 0.93146302 0.90603144 0.95760844
1.00000000 1.00000000 1.00000000
relevel (factor(C), "1908")1913 0.98015018 0.95413843 1.00687107
relevel(factor(C), "1908")1918 1.02853256 1.00032662 1.05753381
relevel(factor(C), "1908")1923 1.08476601 1.05335624 1.11711238
relevel(factor(C), "1908")1928 1.03180855 0.99700213 1.06783011
relevel (factor(C), "1908")1933 1.02941676 0.98736788 1.07325636
relevel (factor(C), "1908")1938 0.89472043 0.84629736 0.94591416
relevel (factor(C), "1908")1943 0.86367228 0.80177907 0.93034332
relevel(factor(C), "1908")1948 1.01698726 0.91442192 1.13105675
relevel(factor(C), "1908")1953 0.98016430 0.78931406 1.21716072
> matplot( as.numeric(levels(factor(C))), RR.cf,
+ type="1", log="y", lwd=c(3,1,1), lty=1, col="black" )
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Figure 3.13: Age-specific rates and rate-ratios relative to the cohort 1908.

We could of course do as in the precvious exercise and combine the two plots in one which is

properly scales on both axes:

> alim <- range( A ) + ¢(0,5)
> clim <- range( C ) + c(-2.5,2.5)
> # Compute limits explicitly

> rlim <- range(age.cf*10°5)*c(1/1.05,1.05)
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RR1lim <- 10~ (log10(rlim)-ceiling(mean(log10(rlim)))) / 2
# Determin reltive width of plots
layout ( rbind( c(1,2) ), widths=c(diff(alim),diff(clim)) )
# No space on the sides of the plots, only outer space
par( mar=c(4,0,1,0), oma=c(0,4,0,4), mgp=c(3,1,0)/1.5, las=1 )
matplot ( as.numeric(levels(factor(4)))+2.5, age.cf*1075,
type="1", lwd=c(3,1,1), 1lty=1, col="black",
log="y", xaxs="i", xlim=alim, xlab="Age", ylim=rlim )
mtext ( "Male lung cancer per 100,000", las=0, side=2, outer=T, line=2.5 )
matplot( as.numeric(levels(factor(C))), RR.cf,
type="1", lwd=c(3,1,1), 1lty=1, col="black",
log="y", xlab="Date of birth", xlim=clim, yaxt="n", ylim=RRlim, ylab="" )
abline( h=1 )
points( 1908, 1, pch=1, lwd=3 )
axis( side=4 )
mtext( "Rate ratio", side=4, outer=T, las=0, line=2.5 )
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The resulting plot is in figure 77
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Figure 3.14: Age-specific rates and rate-ratios relative to the period 1968-72, extracted from the
age-cohort model. Note the axes with physically equal scaling.

8. Now we load the estimates from the age-period model, and plot the estimated age-specific
rates from the two models on top of each other. First

load( file = "../data/age-per-est.Rdata" )
matplot( as.numeric(levels(factor(4)))+2.5, age.cf,

log="y", type="1", 1lty=1, lwd=c(3,1,1), col="black" )
matlines( age.pt, arates,

type="1", 1ty=1, lwd=c(3,1,1), col="blue" )

+ VvV +VvyVv

The difference between the curves in figure 3.15, comes from the fact that the rates are
increasing by time. The estimates from the age-cohort model refer to rates in a “true”
cohort, whereas those from the age-period model refers to cross-sectional rates, where
succcesively older persons are from successively older cohorts (i.e. where rates were lower
overall).
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Figure 3.15: Age-specific rates from the age-cohort model (black) and from the age-period model
(blue).

3.6 Age-drift model

This exercise is aimed at introducing the age-drift model and make you familiar with the two
different ways of parametrizing this model. Like the two previous exercises it is based on the male
lung cancer data.

1. First we read the data in the file lung5-M. txt and create the cohort variable:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung$C <- lung$P - lung$A

> attach( lung )

> table( C )

C
1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918 1923 1928 1933
1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5
1938 1943 1948 1953
4 3 2 1
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3. We fit the model to have age-parameters that refer to the period 1968-72. The midpoint of
this period is 1970.5 (periods are coded by their left endpoint, so we need to add 2.5 years
to 1968 to get the midpoint).

> mp <- glm( D ~ -1 + factor(4) + I(P-1970.5) + offset( log(Y) ),
family=poisson, data=lung )
> c1.11n( mp )[,1:2]

Estimate StdErr
factor(A)40 -9.05098276 0.0309680655
factor(A)45 -8.10126627 0.0198136394
factor (A)50 -7.25742965 0.0136740899
factor(A)55 -6.61045586 0.0104218606
factor(A)60 -6.15631240 0.0087801489
factor(A)65 -5.87004530 0.0082214194
factor(A)70 -5.70814910 0.0085601026
factor(A)75 -5.71952829 0.0103703662
factor (A)80 -5.85585022 0.0147011698
factor(A)85 -6.12052787 0.0257736805
I(P - 1970.5) 0.02330670 0.0002569689

The parameters now represent the log-rates in each of the age-classes at 1970.5, i.e. in the
period 1968-72. The period-paramter is the the annual change in log-rates.

4. We now fit the same model, but with cohort as the continuous variable, centered around
1908:

> mc <- glm( D ~ -1 + factor(4d) + I(C-1908) + offset( log(Y) ),
family=poisson, data=lung )
> c1.11n( mc )[,1:2]

Estimate StdErr
factor(A)40 -9.57538357 0.0317010811
factor(A)45 -8.50913356 0.0205578133
factor(A)50 -7.54876343 0.0142616192
factor(A)55 -6.78525612 0.0107586856
factor(A)60 -6.21457915 0.0088754237
factor(A)65 -5.81177854 0.0081553406
factor(A)70 -5.53334883 0.0084736086
factor(A)75 -5.42819451 0.0104021596
factor(A)80 -5.44798293 0.0148625870
factor(A)85 -5.59612707 0.0259850279
I(C - 1908) 0.02330670 0.0002569689

5. We see that the estimated slope (the drfit!) is exactly the same as in the period-model, but
the age-estimates are not.

Moreover the two are really the same model just parametrized differently; the residual
deviances are the same:

> ¢( summary( mp )$deviance,
+ summary( mc )$deviance )

[1] 6417.381 6417.381

6. If we write how the cohort model is parametrized we have:

log(\ap) = aa+ B(c—1908)
= aq+ B(p—a—1908)
= [0+ B(62.5 — a)] + B(p — 1970.5)
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The expression in the square brackets are the age-parameters in the age-period model.
Hence, the age parameters are linked by a simple linear relation, which is easily verified
empirically:

> ap <- ci.lin( mp )[1:10,1]

> ac <- ci.lin( mc )[1:10,1]

> c.sl <- ci.lin( mc )[11,1]

> a.pt <- seq(40,85,5)

> cbind( ap, ac + c.s1*(62.5-a.pt) )

ap
factor(A)40 -9.050983 -9.050983
factor(A)45 -8.101266 -8.101266
factor(A)50 -7.257430 -7.257430
factor(A)55 -6.610456 -6.610456
factor(A)60 -6.156312 -6.156312
factor(A)65 -5.870045 -5.870045
factor(A)70 -5.708149 -5.708149
factor(A)75 -5.719528 -5.719528
factor(A)80 -5.855850 -5.855850
factor(A)85 -6.120528 -6.120528

. > matplot( a.pt + 2.5, cbind( ci.lin( mp, subset="A", Exp=TRUE )[,5:7],

+ ci.lin( mc, subset="A", Exp=TRUE )[,5:7] ) * 1075,
+ log="y", xlab="Age", ylab="Lung cancer incidence rates / 100,000",
+ type="1", 1lty=1, lwd=c(3,1,1), col=rep(gray(c(0.2,0.7)),each=3) )

. The relative risks are from the model:

log(Aap) = ayp + d(p — 1970.5)
Therefore, with an x-variable: (1943,...,1993) + 2.5, the relative risk will be:
RR=§xzx
and the upper and lower confidence bands:
RR = (6 +£1.96 x s.e.()) x

We can find the estimated RRs with confidence intervals using a suitable 1-column contrast
matrix. We of course need a separate one for period and cohort since these cover different
time-spans:

> p.pt <- seq(min(P),max(P),,10)+2.5

> c.pt <- seq(min(C),max(C),,10)

> ctr.p <- cbind( p.pt - 1970.5 )

> ctr.c <- cbind( c.pt - 1908 )

> matplot( c.pt, ci.lin( mc, subset="C", ctr.mat=ctr.c, Exp=TRUE )[,5:7],
+ log="y", xlab="Calendar time", ylab="Rate ratio", x1im=c(1850,2000),
+ type="1", lty=1, lwd=c(3,1,1), col=gray(0.2) )

> matlines( p.pt, ci.lin( mp, subset="P", ctr.mat=ctr.p, Exp=TRUE )[,5:7],
+ type="1", 1ty=1, lwd=c(3,1,1), col=gray(0.7) )

> abline(h=1)

> points( ¢(1908,1970.5), c(1,1), pch=16 )

The effect of time (the drift) is the same for the two parametrizations, but the age-specific
rates refer either to cross-sectional rates (period drift) or longitudinal rates (cohort drift).
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Figure 3.16: Age-specific rates from the age-drift model (left) and the rate-ratios as esimated under
the two diffferent parametrizations.

3.7 Age-period-cohort model

We will need the results from the age-period, the age-cohort and the age-drift models in this
exercise so we briefly fit these models afte we have read data.

. Read the data in the file lung5-M.txt as in the tabulation exercise:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> str( lung )

'data.frame': 110 obs. of 4 variables:
$ A: int 40 40 40 40 40 40 40 40 40 40 ...

$ P: int 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 ...
$ D: int 80 81 73 99 82 97 86 90 116 149 ...

$ Y: num 694047 754770 769441 749265 757240 ...

> m.AP <- glm( D ~ factor(A) + factor(P) + offset( log(Y) ),

+ family=poisson, data=lung )

> m.AC <- glm( D ~ factor(4) + factor(P-A) + offset( log(Y) ),

+ family=poisson, data=lung )

> m.Ad <- glm( D ~ factor(A) + P + offset( log(Y) ),

+ family=poisson, data=lung )

. We then fit the age-period-cohort model. Note that there is no such variable as the cohort

in the dataset; we have to compute this as P — A. This is best done on the fly instead of
cluttering up the dataframe with another variable. In the same go we fit the simplest model
with age alone:

> m.APC <- glm( D ~ factor(A) + factor(P) + factor(P-A) + offset( log(Y) ),

+ family=poisson, data=lung )
>m.A <- glm( D ~ factor(4d) + offset( log(Y) ),
+ family=poisson, data=lung )

. We can use anova.glm to test the different models in a sequence that gives all the valid

comparisons:
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> anova( m.A, m.Ad, m.AP, m.APC, m.AC, m.Ad, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ factor(A)
Model 2: D ~ factor(A)
Model 3: D ~ factor(A)
Model 4: D ~ factor(A)
Model 5: D ~ factor(A)
Model 6: D ~ factor(A)

Resid. Df Resid. Dev
1 100 15103.0
2 99 6417 .4
3 90 2723.5
4 72 208.5
5 81 829.6
6 99 6417 .4

The successive test refer to:

(a
(b

(d
(e

offset (log(Y))
P + offset(log(Y))

factor(P) + factor(P - A) + offset(log(Y))
factor(P - A) + offset(log(Y))

+
+
+ factor(P) + offset(log(Y))
+
+
+

P + offset(log(Y))

Df Deviance P(>|Chil)
1 8685.6 0.0
9 3693.9 0.0
18 2514.9 0.0
-9  -621.1 6.245e-128
-18 -5587.8 0.0

linear effect of period/cohort

non-linear effect of period

non-linear effect of cohort

)
)

(¢) non-linear effect of cohort (in the presence of period)
) non-linear effect of period (in the presence of cohort)
)

Clearly, with the large amounts of data that we are dealing with, all of the tests are strongly
significant, but comparing the likelihood ratio statistics there is some indication that the
period curvature (non-linear component) is stronger than the cohort one.

one, we use the Relevel function to do this:

. When we want to fit models where some of the factor levels are merged or sorted as the first

> lung$Pr <- Relevel( factor(lung$P), list("first-last"=c("1943","1993") ) )

> lung$Cr <- Relevel( factor(lung$P-Iung$d), "1908" )

We of course check that the resulst of these opertions are as we like the to be:

> with( lung, table(P,Pr) )

Pr

P first-last 1948 1953 1958 1963 1968 1973 1978 1983 1988

1943
1948
1953
1958
1963
1968
1973
1978
1983
1988
1993

10 0
10

[eNeoNoNeoNoNoNoNoNoNe]
[eNeoNeoNeoNoNeoNoNo N

[y

[eNeoNeoNeoNoNoNoNeoNoNeoNol

[

[eNeoNoNeoNoNoNoNoNoNeNol

> with( lung, table(P-A,Cr) )

Cr

[eNeoNoNoNoNoNoNoNoNoNe]

[eNeoNeoNoNoNoNoNoNoNoNol

-
[eNeoNeoNoNoNoNeoNeoNoNeo ol

[
[eNeoNeoNoNeoNoNoNoNoNo ol

-
leNeoNeoNeoNoNoNoNoNoNoNo)

e
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1883 0 0 0 0 0 0 6 0 0 0 0 0 0 0
1888 0 0 0 0 0 0 0 7 0 0 0 0 0 0
1893 0 0 0 0 0 0 0 0 8 0 0 0 0 0
1898 0 0 0 0 0 0 0 0 0 9 0 0 0 0
1903 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1908 10 0 0 0 0 0 0 0 0 0 0 0 0 0
1913 0 0 0 0 0 0 0 0 0 0 0 9 0 0
1918 0 0 0 0 0 0 0 0 0 0 0 0 8 0
1923 0 0 0 0 0 0 0 0 0 0 0 0 0 7
1928 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1933 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1938 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1943 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1948 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1953 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cr

1928 1933 1938 1943 1948 1953
1858 0 0 0 0 0 0
1863 0 0 0 0 0 0
1868 0 0 0 0 0 0
1873 0 0 0 0 0 0
1878 0 0 0 0 0 0
1883 0 0 0 0 0 0
1888 0 0 0 0 0 0
1893 0 0 0 0 0 0
1898 0 0 0 0 0 0
1903 0 0 0 0 0 0
1908 0 0 0 0 0 0
1913 0 0 0 0 0 0
1918 0 0 0 0 0 0
1923 0 0 0 0 0 0
1928 6 0 0 0 0 0
1933 0 5 0 0 0 0
1938 0 0 4 0 0 0
1943 0 0 0 3 0 0
1948 0 0 0 0 2 0
1953 0 0 0 0 0 1

> m.APC1 <- glm( D ~ -1 + factor(4) + factor(Pr) + factor(Cr) + offset( log(Y) ),

+
> m.APC1$coef

family=poisson, data=lung )

5. We can now fit the models with these factors:

factor(A)40 factor(A)45 factor(A)50 factor(A)55 factor(A)60
-9.328701115 -8.334529816 =7.454972743 -6.769070541 -6.241541847
factor(A)65 factor(A)70 factor(A)75 factor(A)80 factor(A)85
-5.849698430 -5.568204628 -5.440013453 -5.424818364 -5.526811866
factor(Pr)1948 factor(Pr)1953 factor(Pr)1958 factor (Pr)1963 factor (Pr)1968
0.095424116 0.104770778 0.200248212 0.249105289 0.311058535
factor(Pr)1973 factor(Pr)1978 factor(Pr)1983 factor(Pr)1988 factor(Cr)1858
0.295910526 0.294440825 0.249025339 0.103123244 -2.640060438
factor(Cr) 1863 factor(Cr)1868 factor(Cr)1873 factor(Cr)1878 factor(Cr)1883
-2.646673834 -2.149730193 -1.850593043 -1.645272902 -1.310031751
factor(Cr) 1888 factor(Cr)1893 factor(Cr)1898 factor(Cr)1903 factor(Cr)1913
-0.853337885 -0.520887869 -0.272223872 -0.079090672 0.005457283
factor(Cr)1918 factor(Cr)1923 factor(Cr)1928 factor(Cr)1933 factor(Cr)1938
0.088513857 0.179650494 0.165997726 0.197699170 0.089012570
factor(Cr)1943 factor(Cr)1948 factor(Cr)1953

0.086044048

0.293382042

0.307806293

The age-coefficients are log-rates (where the rates are in units person-year—!, the cohort
parameters are log-rate-ratios relative to a trend from the first to the last period.

6. We can use ci.lin to extract the parameters with confidence limits from this model:
> A.eff <- ci.lin( m.APC1, subset="A", Exp=TRUE )[,5:7]

> P.eff <- rbind( c(1,1,1),
+ ci.lin( m.APC1, subset="P", Exp=TRUE )[,5:7],
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c(1,1,1) )
ref <- match( "1908", levels( with(lung,factor(P-4)) ) )
eff <- rbind( c(1,1,1),
ci.lin( m.APC1, subset="C",
Exp=TRUE ) [,5:7] )[c(2:C.ref,1,C.ref:(nlevels(lung$Cr)-1)),]

C.
C.

+ + VvV +

In order to plot these we need the timepoints on the respective scales:
.pt <- sort( unique( lung$d ) ) + 2.5

> A
> P.pt <- sort( unique( lung$P ) ) + 2.5
> C.pt <- sort( unique( lung$P-lung$d ) )

Then we can plot the estomated effects

> par( mfrow=c(1,3), las=2 )
> matplot( A.pt, A.eff,

+ xlab="Age", ylab="Rates",

+ log="y", type="1", 1lty=1, lwd=c(3,1,1), col="black" )
> matplot( P.pt, P.eff,

+ xlab="Period", ylab="RR",

+ log="y", type="1", lty=1, lwd=c(3,1,1), col="black" )

> abline( h=1)

> matplot( C.pt, C.eff,

+ xlab="Cohort", ylab="RR",

+ log="y", type="1", 1lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1 )
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Figure 3.17: Estimates of the age-period-cohort model estimates — raw as they are.

This is is not a particularly informative plot, as the scales are all different — the rates are
between 107 and 5 x 1073, whereas the cohort RRs are between 0.05 and slightly more
than 1. So if we resacle the rate to rates per 1000, and then demand that all display have
y-axis from 0.05 to 5, we get comprable displays:
> par( mfrow=c(1,3), las=2 )
matplot( A.pt, A.eff*1000,
xlab="Age", ylab="Rates", ylim=c(0.05,5),

>
+
+ log="y", type="1", 1lty=1, lwd=c(3,1,1), col="black" )
> matplot( P.pt, P.eff,
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+ xlab="Period", ylab="RR", ylim=c(0.05,5),

+ log="y", type="1", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1)

> matplot( C.pt, C.eff,

+ xlab="Cohort", ylab="RR", ylim=c(0.05,5),

+ log="y", type="1", 1lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1 )
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Figure 3.18: Estimates of the age-period-cohort model estimates, scaled displays.

The parameters in this model represent age-specific rates, that approximates the rates in
the 1980 cohort (as predicted. .. ), cohort RRs relative to this cohort, and finally period
"residual” RRs.

But note an explicit decision has been made as to how the period residuals are defined;
namely as the deviations from the line between the periods 1943 and 1993.

7. We now fit the model with two cohorts aliased and one period as fixpoint. To decide which
of the cohort to alias (and define as the first level of the factor) we tabulate no of
observations and no of cases

> with( lung, table(P-4) )

1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918 1923 1928 1933
1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5
1938 1943 1948 1953
4 3 2 1

> with( lung, tapply(D,list(P-A),sum) )

1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918
7 30 134 371 752 1436 2822 4668 6934 9305 10873 10468 9438

1923 1928 1933 1938 1943 1948 1953

8010 5040 3036 1536 827 400 91

Rater arbitraily we decide on 1878 and 1933; the numbers of these in the cohort numbers
are computed by:
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> C.ref.pos <- with( lung, match( c("1878","1933"), levels( factor(P-4) ) ) )
> P.ref.pos <- with( lung, match( "1973", levels( factor(P) ) ) )

> lung$Cx <- Relevel( factor (lung$P-lung$4), list("first-last"=c("1878","1933") ) )
> lung$Px <- Relevel( factor(lung$P), "1973" )

With these definitions we can now fit the model with the alternative parametrization:

> m.APC2 <- glm( D ~ -1 + factor(4) + factor(Px) + factor(Cx) + offset( log(Y) ),

+
> m.APC2$coef

family=poisson, data=lung )

factor(A)40 factor(A)45 factor(A)50 factor(A)55 factor(A)60
-8.83509142 -8.00846304 -7.29644888 -6.77808959 -6.41810381
factor(A)65 factor(A)70 factor(A)75 factor(A)80 factor(A)85
-6.19380331 -6.07985243 -6.11920417 -6.27155199 -6.54108841
factor(Px) 1943 factor(Px)1948 factor(Px)1953 factor (Px)1958 factor (Px)1963
-1.30116802 -1.03820099 -0.86131141 -0.59829106 -0.38189107
factor(Px) 1968 factor(Px)1978 factor(Px)1983 factor (Px)1988 factor (Px)1993
-0.15239491 0.16607322 0.28820064 0.30984147 0.37426114
factor(Cx)1858 factor(Cx)1863 factor(Cx)1868 factor(Cx)1873 factor(Cx)1883
-0.32461587 -0.49877219 -0.16937146 -0.03777722 0.16769824
factor(Cx) 1888 factor(Cx)1893 factor(Cx)1898 factor(Cx)1903 factor (Cx)1908
0.45684919 0.62175629 0.70287737 0.72846765 0.64001541
factor(Cx)1913 factor(Cx)1918 factor(Cx)1923 factor(Cx)1928 factor(Cx)1938
0.47792978 0.39344343 0.31703715 0.13584147 -0.27622952
factor(Cx)1943 factor(Cx)1948 factor(Cx)1953
-0.44674095 -0.40694587 -0.56006454

We note that it is only the parametization that differs; the fitted model is the same:

> summary( m.APC )$deviance

[1] 208.5476

> summary( m.APC1 )$deviance

[1] 208.5476

> summary( m.APC2 )$deviance

[1] 208.5476

parameters in a slightly different way:

> A.Eff
> P.Eff
> nP <-
> P.Eff
> C.Eff

<- ci.lin( m.APC2, subset="A",
<- ci.lin( m.APC2, subset="P",
nrow(P.Eff)
<- rbind( P.Eff[1:(P.ref.pos-1),],c(1,1,1),P.Eff[P.ref.pos:nP,])
<- ci.lin( m.APC2, subset="C",Exp=TRUE )[,5:7]
nrow(C.Eff)
<- rbind(C.Eff[1:(C.ref.pos[1]-1),],

c(1,1,1),

Exp=TRUE ) [,5:7]
Exp=TRUE ) [,5:7]

C.Eff[(C.ref.pos[1]):(C.ref.pos[2]-2),],

c(1,1,1),

C.Eff[(C.ref.pos[2]-1):nC,] )

. We use the same points for the age, period and cohort as before, but now extract the

We can now plot the two sets of parameters in the same plots:

> par( mfrow=c(1,3), las=2 )
> matplot( A.pt, cbind(A.eff,A.Eff)*1000,

+ xlab="Age",
+ log_llyll,

type‘“l "

> matplot( P.pt, cbind(P.eff,P.Eff),

xlab="Period", ylab="RR",
+ 1Og—lly-ll

type=”l "

ylab="Rates", ylim=c(0.05,5),
1ty=1, lwd=c(3,1,1), col=rep(c("black", "blue"),each=3) )

ylim=c(0.05,5),
1ty=1, lwd=c(3,1,1), col=rep(c("black","blue"),each=3) )
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> abline( h=1 )

> matplot( C.pt, cbind(C.eff,C.Eff),

+ xlab="Cohort", ylab="RR", ylim=c(0.05,5),

+ log="y", type="1", 1ty=1, 1wd=c(3,1,1), col=rep(c("black","blue"),each=3) )
> abline( h=1 )

It is clear from the estimates that very different displays can be obtained from different

parametrizations.
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2.00 | 2.00 | 2.00
1.00 | 1.00 =& j f 1.00
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Figure 3.19: Estimates of the age-period-cohort model estimates, from the two different parametriza-
tions.



72  Age-period-cohort model for triangles Solutions to exercises

3.8 Age-period-cohort model for triangles

The following exercise is aimed at showing the problems associated with age-period-cohort
modelling for triangular data.
Also you will learn how to overcome these problems by parametric modelling of the three effects.

1.

Read the Danish male lung cancer data tabulated by age period and birth cohort,
lung5-Mc.txt. List the first few lines of the dataset and make sure you understand what
the variables refer to. Also define nthe synthetic cohorts as P5-A5:

> 1tri <- read.table( "../data/lung5-Mc.txt", header=T )

> 1tri$sS5 <- 1tri$P5 - 1tri$As
> attach( 1tri )

. Make a Lexis diagram showing the subdivision of the follow-data. You will explore the

function Lexis.diagram.
Try as an esoteric exercise to plot the number of cases in each of the triangles.

> Lexis.diagram( age=c(40,90), date=c(1943,1998), coh.grid=TRUE )

. Use the variables A5 and P5 to fit a traditional age-period-cohort model with synthetic

cohort defined by P5-A5:
> ms <- glm( D ~ -1 + factor(45) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=ltri )

> summary( ms )$df

[1] 38 182 39

How many parameters does this model have?

. Now try to fit the model with the “real” cohort:

> mc <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(C5) + offset(log(Y)),
family=poisson, data=ltri )
> summary( mc )$df

[11 40 180 40

How many parameters does this model have?

. Plot the parameter estimates from the two models on top of each other, with confidence

intervals. Remember to put the right scales on the plots.

par( mfrow=c(1,3) )
a.pt <- as.numeric( levels(factor(A5)) )
p.pt <- as.numeric( levels(factor(P5)) )
s.pt <- as.numeric( levels(factor(S5)) )
c.pt <- as.numeric( levels(factor(C5)) )
matplot( a.pt, ci.lin( ms, subset="A5", Exp=TRUE )[,5:7]/107°5,
type="1", 1lty=1, lwd=c(3,1,1), col="black",
xlab="Age", ylab="Rates", log="y" )
matlines( a.pt, ci.lin( mc, subset="A5", Exp=TRUE )[,5:7]1/1075,
type="1", 1ty=1, lwd=c(3,1,1), col="blue" )
matplot( p.pt, rbind( c(1,1,1), ci.lin( ms, subset="P5",Exp=TRUE )[,5:7] ),
type="1", 1lty=1, lwd=c(3,1,1), col="black",
xlab="Period", ylab="RR", log="y" )
matlines( p.pt, rbind( c¢(1,1,1), ci.lin( mc, subset="P5",Exp=TRUE )[,5:7] ),
type="1", 1ty=1, lwd=c(3,1,1), col="blue" )
matplot( s.pt, rbind(c(1,1,1),ci.lin( ms, subset="S5", Exp=TRUE )[,5:71),
type="1", 1lty=1, lwd=c(3,1,1), col="black",
xlab="Cohort", ylab="RR", log="y" )
matlines( c.pt, rbind(c(1,1,1),ci.lin( mc, subset="C5", Exp=TRUE )[,5:7]),
type="1", 1ty=1, lwd=c(3,1,1), col="blue" )

+V++V+V++F+HV+EV+E+RVVVVVY
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Figure 3.20: Lexis diagram showing the extent of the data.

It is seen that the confidence bands are much wider for the age and cohort effects but
narrower for the period effects.

6. Now fit the model using the proper midpoints of the triangles as factor levels. How many
parameters does this model have?

> mt <- glm( D © -1 + factor(Ax) + factor(Px) + factor(Cx) + offset(log(Y)),
family=poisson, data=ltri )
> summary( mt ) $df

[1] 76 144 80

7. Plot the parameters from this model in three panels as for the previous two models.
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Figure 3.21: Estimates from.
> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(4x)) )
> p.pt <- as.numeric( levels(factor(Px)) )
> c.pt <- as.numeric( levels(factor(Cx)) )
> matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/10°5,
+ type="1", 1lty=1, lwd=c(3,1,1), col="black",
+ xlab="Age", ylab="Rates", log="y" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
+ type="1", 1ty=1, 1lwd=c(3,1,1), col="black",
+ xlab="Period", ylab="RR", log="y" )
> matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),
+ type="1", 1lty=1, lwd=c(3,1,1), col="black",
+ xlab="Cohort", ylab="RR", log="y" )
We see that the parameters clearly do not convey a reasonable picture of the effects; som
severe indeterminacy has crept in.
8. What is the residual deviance of this model?
> summary( mt )$deviance
[1] 284.7269
9. The dataset also has a variable up, which indicates whether the observation comes from an

upper or lower triangle. Try to tabulate it against P5-A5-C5.

> table( up, P5-A5-S5 )

up 0
0 110
1 110
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Figure 3.22: Estimates from.

10. Fit an age-period cohort model separately for the subset of the dataset from the upper
triangles and from the lowere triangles. What is the residual deviance from each of these
models and what is the sum of these. Compare to the model using the proper midpoints as
factor levels.

> m.up <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=subset(ltri,up==1) )
> summary( m.up )$deviance

[1] 150.2703

> m.lo <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=subset(ltri,up==0) )
> summary( m.lo )$deviance
[1] 134.4566
> summary( m.lo )$deviance + summary( m.up )$deviance
[1] 284.7269
> summary( mt )$deviance
[1] 284.7269
11. Next, repeat the plots of the parameters from the model using the proper midpoints as

factor levels, but now super-posing the estimates (in different color) from each of the two
models just fitted. What goes on?
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> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(4x)) )
> p.pt <- as.numeric( levels(factor(Px)) )
> c.pt <- as.numeric( levels(factor(Cx)) )
> ab.pt <- as.numeric( levels(factor(45)) )
> p5.pt <- as.numeric( levels(factor(P5)) )
> s5.pt <- as.numeric( levels(factor(S5)) )
> matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/1075,
+ type="1", 1lty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Age", ylab="Rates", log="y" )
> matpoints( a5.pt, ci.lin( m.up, subset="A5", Exp=TRUE )[,5:7]/1075,
+ pch=c(16,3,3), col="blue" )
> matpoints( a5.pt, ci.lin( m.lo, subset="A5", Exp=TRUE )[,5:7]1/1075,
+ pch=c(16,3,3), col="red" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
+ type="1", 1ty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Period", ylab="RR", log="y" )
> matpoints( p5.pt[-1], ci.lin( m.up, subset="P5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="blue" )
> matpoints( p5.pt[-1], ci.lin( m.lo, subset="P5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="red" )
> matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),
+ type="1", 1ty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Cohort", ylab="RR", log="y" )
> matpoints( s5.pt[-1], ci.lin( m.up, subset="S5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="blue" )
> matpoints( s5.pt[-1], ci.lin( m.lo, subset="S5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="red" )
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Figure 3.23: Estimates from.

The model fitted with the “correct” factor levels is actually two different models. This is
because observations in upper triangles are modelled by one set of the parameters, and
those in lower triangel by another set of parameters.
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Because of the ordering of the levels, the parametrization is different, but that is all.

There is no way out of the squeeze, except by resorting to parametric models for the actual
underlying scales, abandoning the factor modelling.

12. Load the splines package and fit a model using the correct midpoints of the triangles as
quantitative variables in restricted cubic splines, using the function ns:

> library( splines )
> mspl <- glm( D ~ -1 + ns(Ax,df=7,intercept=T)
+ ns(Px,df=6,intercept=F)
+ + ns(Cx,df=6,intercept=F) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( mspl )

Call:

glm(formula = D ~ -1 + ns(Ax, df = 7, intercept = T) + ns(Px,
df = 6, intercept = F) + ns(Cx, df = 6, intercept = F) +
offset(log(Y)), family = poisson, data = 1ltri)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.72761 -0.88692 -0.01217 0.93283 3.47380

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

ns(Ax, df = 7, intercept = T)1 -8.08248 0.09584 -84.329 < 2e-16
ns(Ax, df = 7, intercept = T)2 -8.81421 0.11261 -78.271 < 2e-16
ns(Ax, df = 7, intercept = T)3 -8.20301 0.11520 -71.209 < 2e-16
ns(Ax, df = 7, intercept = T)4 -7.90599 0.11814 -66.921 < 2e-16
ns(Ax, df = 7, intercept = T)5 -3.98298 0.08558 -46.540 < 2e-16
ns(Ax, df = 7, intercept = T)6 -21.35542 0.24841 -85.967 < 2e-16
ns(Ax, df = 7, intercept = T)7 0.70588 0.05540 12.741 < 2e-16
ns(Px, df = 6, intercept = F)1 0.59989 0.03777 15.883 < 2e-16
ns(Px, df = 6, intercept = F)2  0.94029 0.04319 21.771 < 2e-16
ns(Px, df = 6, intercept = F)3 1.18582 0.04354 27.237 < 2e-16
ns(Px, df = 6, intercept = Fa 1.22421 0.04204 29.122 < 2e-16
ns(Px, df = 6, intercept = F)5 1.46929 0.08247 17.816 < 2e-16
ns(Px, df = 6, intercept = F)6 1.07376 0.04202 25.555 < 2e-16
ns(Cx, df = 6, intercept = F)1 1.57834 0.10334 15.273 < 2e-16
ns(Cx, df = 6, intercept = F)2 1.60219 0.11202 14.303 < 2e-16
ns(Cx, df = 6, intercept = F)3  1.37407 0.10178 13.500 < 2e-16
ns(Cx, df = 6, intercept = F)4 1.03167 0.07211 14.306 < 2e-16
ns(Cx, df = 6, intercept = F)5 1.19310 0.21716 5.494 3.93e-08
ns(Cx, df = 6, intercept = F)6 NA NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.0037e+08 on 220 degrees of freedom
Residual deviance: 4.3344e+02 on 202 degrees of freedom
AIC: 2026.7

Number of Fisher Scoring iterations: 4

> summary( mt )$deviance - summary( mspl )$deviance
[1] -148.7082

> summary( mt )$df - summary( mspl )$df

[1] 58 -58 61

13. How do the deviances compare?

14. Make a prediction of the terms, using predict.glm using the argument type="terms" and
se.fit=TRUE. Remember to look up the help page for predict.glm.



78 Age-period-cohort model for triangles Solutions to exercises

> pspl <- predict( mspl, type="terms", se.fit=TRUE )
> str(pspl)

List of 3
$ fit : num [1:220, 1:3] -10.8 -11.1 -10.8 -11.1 -10.8 ...
..— attr(*, "dimnames")=List of 2
..$ : chr [1:220] "am n2m n3m ngn |
.. ..$ : chr [1:3] "ns(Ax, df = 7, intercept = T)" "ns(Px, df = 6, intercept = F)" "ns(Cx, df = 6, inte
..— attr(*, "constant")= num O
$ se.fit : num [1:220, 1:3] 0.107 0.109 0.107 0.109 0.107 ...
..— attr(*, "dimnames")=List of 2
..$ : chr [1:220] "im nm2m n3m ngn |
.. ..$ : chr [1:3] "ns(Ax, df = 7, intercept = T)" "ns(Px, df = 6, intercept = F)" "ns(Cx, df
$ residual.scale: num 1

6, inte

> a.ord <- order( 1tri$Ax )
> p.ord <- order( 1tri$Px )
> c.ord <- order( 1tri$Cx )
> par( mfrow=c(1,3) )
> matplot( Ax[a.ord], exp(cbind( pspl$fit[,1], pspl$se.fit[,1] )l[a.ord,] /*} ci.mat())*1075,
+ type="1", 1ty=1, lwd=c(2,1,1), col=gray(0.2),
+ xlab="Age", ylab="Rates", log="y" )
> matplot( Px[p.ord], exp(cbind( pspl$fit[,2], pspl$se.fit[,2] )l[p.ord,] /*7 ci.mat()),
+ type="1", 1lty=1, lwd=c(2,1,1), col=gray(0.2),
+ xlab="Period", ylab="RR", log="y" )
> matplot( Cx[c.ord], exp(cbind( pspl$fit[,3], psplé$se.fit[,3] )[c.ord,] 7%*J ci.mat()),
+ type="1", 1lty=1, lwd=c(2,1,1), col=gray(0.2),
+ xlab="Cohort", ylab="RR", log="y" )
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Figure 3.24: FEstimates from.
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3.9 Using apc.fit etc.

This exercise introduces the functions for fitting and plotting the results from age-period-cohort
models: apc.fit apc.plot apc.lines and apc.frame.

1. We first read the testis cancer data and collapse the cases over the histological subtypes:

> th <- read.table( "../data/testis-hist.txt", header=T )

> str( th )

'data.frame': 29160 obs. of 9 variables:

$ a :int 0000001111 ...

$p : int 1943 1943 1943 1943 1943 1943 1943 1943 1943 1943 ...
$c : int 1942 1942 1942 1943 1943 1943 1941 1941 1941 1942 ...
$y : num 18853 18853 18853 20797 20797 ...

$ age : num 0.667 0.667 0.667 0.333 0.333 ...

$ diag : num 1943 1943 1943 1944 1944 ...

$ birth: num 1943 1943 1943 1943 1943 ...

$ hist : int 1231231231 ...

$ d :int 0100000000 ...

Knowing the names of the variables in the dataset, we can now collapse over the histological
subtypes. There is no need to tabulate by cohort as well, because even for the triangular
data the relationship ¢ = p — a holds. For aesthetic reasons we get rid of the variable we do
not need:

> tc <- aggregate( th[,c("age", "diag","d","y")], list(A=th$age,P=th$diag), sum )
> str( tc )

'data.frame': 9720 obs. of 6 variables:
$ A : num 0.667 1.667 2.667 3.667 4.667 ...
$P : num 1943 1943 1943 1943 1943 ...

$ age : num 2 58 11 14 ...

$ diag: num 5830 5830 5830 5830 5830 ...

$4 :int 1000000000 ...

$y : num 56559 51319 49931 49083 48376 ...

> names( tc ) <- toupper( names(tc) )
> tc <- tC[,C(”A”,"P”,"D",”Y”)J

Now the original data had three subtypes of testis cancer, so while it is OK to sum the
number of cases (D), the amount of risk time has been aggregated erroneously, so we must
divide by 3:

> tc$Y <- tc$v/3
> tc$C <- tc$P - tc$A

> str( tc )
'data.frame': 9720 obs. of b5 variables:
$ A: num 0.667 1.667 2.667 3.667 4.667 ...
$ P: num 1943 1943 1943 1943 1943 ...
$D: int 1000000000 ...
$ Y: num 18853 17106 16644 16361 16125 ...
$ C: num 1943 1942 1941 1940 1939 ...
> head( tc )
A P Y C

.6666667 1943.333
.6666667 1943.333
.6666667 1943.333
.6666667 1943.333
.6666667 1943.333
.6666667 1943.333

18853.00 1942.667
17106.33 1941.667
16643.50 1940.667
16361.00 1939.667
16125.17 1938.667
15728.50 1937.667
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. If we want to present the rates in 5-year age and period classes from age 15 to age 59 using

rateplot, we must make a table as input to the rateplot function. Note that in this case we
aggregate across subsets of the Lexis diagram and not as above within, and hence we must
use the sum both for events and risk time:

> par( mfrow=c(2,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> rateplot(
+ with( subset( tc, A>15 & A<60 ),
+ tapply( D, list(floor(A/5)*5+2.5,
floor((P-1943)/5)*5+1945.5), sum ) /
tapply( Y, list(floor(A/5)*5+2.5,
floor ((P-1943)/5)*5+1945.5), sum ) * 1075 ),
col=topo.colors(12) )

+ + + +
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Figure 3.25: Age-specific rates for testis cancer in Denmark.

. We now fit an age-period-cohort model to the data using the machinery implemented in

apc.fit. The function returns a fitted model and a parametrization, hence we must choose
how to parametrize it, in this case "ACP" with all the drift included in the cohort effect and
the reference cohort being 1918.

> tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,10), parm="ACP", ref.c=1918 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"
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Analysis of deviance for Age-Period-Cohort model

Age

Age-drift
Age-Cohort

Age-Period-Cohort

Age-Period
Age-drift

Resid. Df Resid. Dev

4849
4848
4839
4830
4839
4848

6513.
5313.
5244 .
5193.
5290.
5313.

OO DO

Df Deviance

1
9
9
-9
-9

P(>IChil)

1199.5 7.990e-263

69.2
50.5
-96.6
-23.2

2.147e-11
8.633e-08
7.652e-17
5.867e-03

It is seen that the period effect is weaker (deviance=50.5) than the cohort effect
(deviance=96.6), although still formally strongly significant.

4. We can plot the estimates using the apc.plot function:

> apc.plot( tapc, ci=TRUE )

cp.offset
1823.33333

5e-05 1le-04

Rate

5e-06 1e-05 2e-05

RR.fac
0.00001
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Figure 3.26: The default plot for the fit of an Age-Period-Cohort model for testis cancer in Denmark.
10 parameters for all effects.

5. Now explore in more depth the cohort effect by increasing the number of parameters used

for it:

> tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,20),
parm="ACP", ref.c=1918, scale=10"5 )

+
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[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"
Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance P(>|Chil)

Age 4849 6513.1
Age-drift 4848 5313.6 1 1199.5 7.990e-263
Age-Cohort 4829 5233.1 19 80.6 1.484e-09
Age-Period-Cohort 4820 5182.6 9 50.5 8.811e-08
Age-Period 4839 5290.5 -19 -107.9 1.95be-14
Age-drift 4848 5313.6 -9 -23.2 5.867e-03
> fp <- apc.plot( tapc, ci=TRUE )
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Figure 3.27: The default plot for the fit of an AGe-Period-Cohort model for testis cancer in Den-
mark. 20 parameters for the cohort effect, 10 for age and period.

6. We now explore the effect of using the residual method instead, and over-plot the estimates
from this method on the existing plot?:

> tac.p <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,20),
+ parm="AC-P", ref.c=1918, scale=10"5 )

[1] "Sequential modelling Poisson with log(Y) offset : ( AC-P ):\n"

Analysis of deviance for Age-Period-Cohort model

2Unfortunately there is a fatal bug in apc.fit when fitting the period residuals to the age-cohort model — it does
not crash but simply fit a totally meaningless model. There is a fix for this in the version 1.0.11 of the Epi package
which is available at the course homepage
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Resid. Df Resid. Dev

Age 4849 6513.1
Age-drift 4848 5313.6
Age-Cohort 4829 5233.1
Age-Period-Cohort 4820 5182.6
Age-Period 4839 5290.5
Age-drift 4848 5313.6

> fp <- apc.plot( tapc, ci=TRUE )

> apc.lines( tac.p, ci=TRUE, col="red",

Df

1
19

-19
-9

Deviance P(>|Chil)

1199.5 7.990e-263
80.6 1.484e-09
50.5 8.811e-08

-107.9 1.956e-14

-23.2 5.867e-03

frame.par=fp )
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Figure 3.28: Comparing the ML-method with the residual method for the Danish testis cancer cases.

7. The standard display is not very pretty — it gives an overview, but certainly not anything

worth publishing, hence a bit of handwork is needed. We can use the apc.frame for this,

and create a nicer plot of the estimates from the residual model:

> par( mar=c(3,4,1,4), mgp=c(3,1,0)/1.7, las=1 )
> fp <- apc.frame( a.lab=seq(20,60,10),

a.tic=seq(10,60,5),

cp.lab=seq(1900,2000,20),
cp.tic=seq(1885,2000,5),
r.lab=c(c(1,2,5)/10,1,2,5,10),

gap=8,
rr.ref=1)

+
+
+
+
+ r.tic=c(1:9/10,1:10),
+
+
>

apc.lines( tapc, ci=TRUE, col="blue",
> apc.lines( tac.p, ci=TRUE, col="red",

frame.par=fp )
frame.par=fp )

8. We now try to use period as the primary timescale, and add this to the plot as well:

> tap ¢ <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,20),
parm="AP-C", ref.p=1950, scale=10"5 )
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[1] "Sequential modelling Poisson with log(Y) offset : ( AP-C ):\n"
Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance P(>|Chil)

Age 4849 6513.1

Age-drift 4848 5313.6 1 1199.5 7.990e-263
Age-Cohort 4829 5233.1 19 80.6 1.484e-09
Age-Period-Cohort 4820 5182.6 9 50.5 8.811e-08
Age-Period 4839 5290.5 -19 -107.9 1.956e-14
Age-drift 4848 5313.6 -9 -23.2 5.867e-03

> apc.lines( tap.c, ci=TRUE, col=c("black",'"gray","black"), frame.par=fp )

Rate per 100,000 person-years
1
(==Y
Rate ratio

01 T T 1T T T 1 T 11 UL T T T
20 30 40 50 60 1900 1920 1940 1960
Age Calendar time

L 0.1

T T T
1980 2000

Figure 3.29: Comparing the ML-method with the residual method for the Danish testis cancer cases.
Additionally, the parametrization of the residual method for the age-period model is shown.

From the black (and gray) curves in figure 3.29, the dips in incidence rates for the
generations born during the world wars is quite remarkable, but it also seen that the shift to
a period-primary model shifts the age-specific rates to peak at a slightly earlier age, 30
instead of 35.

The former figure is an indication of the age-distribution of next years cases (when
multiplied by the population distribution ...), whereas the latter is a reasonable statement
about the natural history of the disease; men are at increasing risk until age 35, and there
after it decreases.
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3.10 Lung cancer: the sex difference

The following exercise is aimed at investigation of the effect of age, period and cohort on the lung
cancer incidence for both sexes using one complex age-period-cohort model. First, we will use
5-year triangular data to xxxx and build separate models for males and females. Further the
complex model will be built for 1-year triangular data.

1. First we read l-year triangular data from data set apc-Lung.txt

> lung <- read.table( "../data/apc-Lung.txt", header=T )
> head( lung)

sex A P CD Y
1 1 0 1943 1942 0 19546.2
2 1 0 1943 1943 0 20796.5
3 1 0 1944 1943 0 20681.3
4 1 0 1944 1944 0 22478.5
5 1 0 1945 1944 0 22369.2
6 1 0 1945 1945 0 23885.0

2. The variables A, P and C are the left endpoints of the tabulation intervals, so the value of the
variable P-A-C is 0 for lower triangles and 1 for upper triangles in the Lexis diagram. This
can the be used to compute the correct values of the mean age and period (and cohort) in
the dataset.
> lung <- transform( lung, up = P-A-C, At = A, Pt =P, Ct =C )

> lung <- transform( lung, A = At + 1/3 + up/3,
+ Pt + 3/2 - up/3 )

> lung <- transform( lung, C =P - A )
> head( lung )

sex A P CD Y up At Pt Ct
1 1 0.6666667 1944.167 1943.500 0 19546.2 1 0 1943 1942
2 1 0.3333333 1944.500 1944.167 0 20796.5 0 0 1943 1943
3 1 0.6666667 1945.167 1944.500 0 20681.3 1 0 1944 1943
4 1 0.3333333 1945.500 1945.167 0 22478.5 0 0 1944 1944
5 1 0.6666667 1946.167 1945.500 0 22369.2 1 0 1945 1944
6 1 0.3333333 1946.500 1946.167 0 23885.0 0 O 1945 1945

A Dbit of care is required with the transform function; each of the assignments is made in the
original dataframe given as the first argument, hence it is not possible compute the correct C

3. We can make an overview of the rates if we can produce a table of the rates in a suitable
form. This can be done by grouping on the fly and tabulating by sex too:

> lrate <- with( subset( lung, A>40 & A<90 ),

+ tapply( D, list(sex,

+ floor (A/5)*5+2.5,

+ floor ((P-1943)/5)*5+1943+2.5),
+ sum ) /

+ tapply( Y, list(sex,

+ floor (A/5)*5+2.5,

+ floor ((P-1943)/5)*5+1943+2.5),
+ sum ) * 1075 )

With this three-way table we can plot the rates for males and females in one go, using the
same scale for the axes among men and women; as seen in the figure 77:
> par( mfrow=c(2,4), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )

> rateplot( lrate[1,,], col="blue", ylim=range(lrate,na.rm=T) )
> rateplot( lrate[2,,], col="red", ylim=range(lrate,na.rm=T) )

4. The models are easily fitted separately using the subset function on the dataframe:
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> apc.m <- apc.fit( subset (lung,sex==1 & A>40), npar=c(8,8,15), ref.c=1930, scale=10"5 )

[1] "ML of APC-model Poisson with log(Y) offset

( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Age

Age-drift
Age-Cohort

Age-Period-Cohort

Age-Period
Age-drift

> apc.f <- apc.fit( subset (lung,sex==2 & A>40), npar=c(8,8,15),

[1] "ML of APC-model Poisson with log(Y) offset

Resid. Df Resid. Dev
23484.6

6091
6090
6076
6069
6083
6090

16697.
8239.
7451.

10719.

16697.

[N e >IN¢) oo lNe)]

Df Deviance P(>|Chil)
1 6787.0 0.0
14 8457.8 0.0
7 788.3 6.178e-166
-14 -3268.0 0.0
-7 -5978.1 0.0

( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Age

Age-drift
Age-Cohort

Age-Period-Cohort

Age-Period
Age-drift

Resid. Df Resid. Dev

6091
6090
6076
6069
6083
6090

24291.

8458

7535.
7045.
7953.
8458.

B OI0O ™

Df Deviance P(>|Chil)
1 15833.4 0.0
14 923.3 4.305e-188
7 489.2 1.641e-101
-14  -907.7 9.582e-185
-7  -504.9 7.198e-105

ref.c=1930, scale=10"5 )

We can plot the the results separately and then judging from the displays find out what
display is required for a sensible common plot

> apc.plot( apc.m, col="blue" )

cp.offset
1753.333

RR.fac
100.000

> apc.plot( apc.f, col="red" )
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Figure 3.31: initial sketch plots for the male and the female rates of ling cancer incidence in
Denmark.

cp.offset RR.fac
1753.333  100.000

Now we can set up a

> par( las=1, mar=c(4,3,1,4), mgp=c(3,1,0)/1.6 )
> fp <- apc.frame( a.lab = seq(40,90,20),

+ cp.lab = seq(1880,2000,20),

+ r.lab = ¢(6,c(1,2,5)*10,c(1,2,5)*100),
+ # rr.lab = r.lab / rr.ref,

+ rr.ref = 200,

+ a.tic = seq(35,90,5),

+ cp.tic = seq(1855,2005,5),

+ r.tic = ¢(5:9,1:9%10,1:6%100),

+ # rr.tic = r.tic / rr.ref,

+ tic.fac = 1.3,

+ a.txt = "Age",

+ cp.txt = "Calendar time",

+ r.txt = "Lung cancer rate per 100,000 person-years',
+ rr.txt = "Rate ratio",

+ ref.line = TRUE,

+ gap = 13,

+ col.grid = gray(0.85),

+ sides = c(1,2,4) )

> apc.lines( apc.m, col="blue", ci=T, frame.par=fp )
> apc.lines( apc.f, col="red" , ci=T, frame.par=fp )

5. The ratios of the rates also follows an age-period-cohort model:

log (Aar(a.p)/Ar(a,p)) = log(Ar(a.p))—log(Ar(a,p)) = (far(a)—fr(a))+(gm (p)—gr(p))+ (har(c)—hr(

so for the rate-ratios we have excatly the same identification problems, but we can for a
start just compute the ratois of the effects with confidence intervals.

To this end is is easier to devise a small function that takes two sets of estimated rates/RRs
with c.i.s and returns the ratio with c.i.s:

rr <-

function( one, two )

{

one[,-1] <- log(one[,-1] )

two[,-1] <- log(two[,-1] )

sd.dif <- sqrt( ((one[,4]-one[,3]1)/3.92)°2 +
((twol,4]-twol[,3]1)/3.92)°2 )

rat <- one

rat[,-1] <- exp( cbind( onel[,2]-two[,2], sd.dif ) J*}
rbind( c(1,1,1), 1.96%c(0,-1,1) ) )

++++++++++V

rat
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> rr.Age <- rr( apc.m$Age, apc.f$Age )
> rr.Per <- rr( apc.m$Per, apc.f$Per )
> rr.Coh <- rr( apc.m$Coh, apc.f$Coh )

In order to plot these in an apc-frame, we can just fake an apc-object, and in order to get a
reasonable apc-frame we compute the ranges of the RRs:

> apc.mf <- apc.m

> apc.mf$Age <- rr.Age

> apc.mf$Per <- rr.Per

> apc.mf$Coh <- rr.Coh

> ( RRr <- range( rbind(rr.Agel,-1],

+ rr.Per[,-1],

+ rr.Coh[,-1]) ) )

[1] 0.2169004 4.3770837

So we devise a frame which stretces fom 0.2 to 5:

> par( las=1, mar=c(4,3,1,2), mgp=c(3,1,0)/1.6 )
> fp <- apc.frame( a.lab = seq(40,90,20),

+ cp.lab = seq(1880,2000,20),

+ r.lab = ¢(0.2,0.5,1,2,5),

+ rr.ref = 1,

+ a.tic = seq(35,90,5),

+ cp.tic = seq(1855,2005,5),

+ r.tic = ¢(2:9/10,1:5),

+ tic.fac = 1.3,

+ a.txt = "Age",

+ cp.txt = "Calendar time",

+ r.txt = "M/F Rate ratio of lung cancer",
+ rr.txt = "",

+ ref.line = TRUE,

+ gap = 13,

+ col.grid = gray(0.85),

+ sides = c¢(1,2,4) )

> abline( h=1 )

> apc.lines( apc.mf, col="black", ci=T, frame.par=fp )
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Figure 3.32: M/F rate-ratio of lung cancer in Denmark.
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6. In order to explicitly fix the knots we just use those from the male apc object:

> A.kn <- apc.m$Knots$Age

> nk.A <- length(A.kn)

> MA <- ns( lung$A, knots=A.kn[-c(1,nk.A)], Bo=A.kn[c(1,nk.A)], intercept=TRUE )
> P.kn <- apc.m$Knots$Per

> nk.P <- length(P.kn)

> MP <- ns( lung$P, knots=P.kn[-c(1,nk.P)], Bo=P.kn[c(1,nk.P)], intercept=TRUE )
> MP <- detrend( MP, lung$P )

> C.kn <- apc.m$Knots$Coh

> nk.C <- length(C.kn)

> MC <- ns( lung$C, knots=C.kn[-c(1,nk.C)], Bo=C.kn[c(1,nk.C)], intercept=TRUE )
> MC <- detrend( MC, lung$C )

With these matrices we can now fit the models we want; the model with sex-interaction on

all three variables and the one where we assume identical 2nd order period-effects:

> lung$sex <- factor(lung$sex,labels=c("M","F"))
> m.int <- glm( D ~ -1 + MA:sex + MP:sex + MC:sex + I(C-1950):sex +
+ offset( log(Y) ), family=poisson, data=lung )

7. We can check if any of the second-order terms are identical between males and females by

removing the interaction with sex. This will however only work for the period and the

cohort effect, because the intercept and linear effect of age is included with the age-effect

and removing the interation there would be tantamount to testing wheter the absolute
levels and the (first order) shape were the same.

So we start by checking wheter the period and age-effects have the same second-order
properties (i.e. same shape):

> m.per <- update( m.int, . ~ . - MP:sex + MP )
> m.coh <- update( m.int, . ~ . - MC:sex + MC )
> anova( m.coh, m.int, m.per, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ MC + MA:sex + sex:MP + sex:I(C - 1950) + offset(log(Y)) -
1
Model 2: D ~ -1 + MA:sex + MP:sex + MC:sex + I(C - 1950):sex + offset(log(Y))
Model 3: D ~ MP + MA:sex + sex:MC + sex:I(C - 1950) + offset(log(Y)) -
1
Resid. Df Resid. Dev Df Deviance P(>|Chil)

1 21912 19298.0
2 21898 17701.6 14  1596.4 0.0
3 21905 17741.1 -7 -39.5 1.551e-06

Alhough both effects are significant there is a much smaller deviance for the period effect, so

we can assume that the period-effects have the same shape.

As goes for the age-effect we can test the same hypothesis, but we want to test a slightly

stronger hypothesis, namely that the actual slope with age is the same too, so when we

update the model we include the main effect of sex, but not the interction vith sex and age;

or rather we make succesice tests for this:

> m.age <- update( m.int, . ~ . - MA:sex + MA + sex + sex:A )
> m.aln <- update( m.age, . ~ . - sex:A )
> anova( m.int, m.age, m.aln, test="Chisq" )

Analysis of Deviance Table

Model 1: D © -1 + MA:sex + MP:sex + MC:sex + I(C - 1950):sex + offset(log(Y))

Model 2: D ~ MA + sex + sex:MP + sex:MC + sex:I(C - 1950) + sex:A + offset(log(Y)) -
1

Model 3: D ~ MA + sex + sex:MP + sex:MC + sex:I(C - 1950) + offset(log(Y)) -
1
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Resid. Df Resid. Dev Df Deviance P(>|Chil)

1 21898 17701.6
2 21905 17827.6 -7 -126.0 4.202e-24
3 21906 17979.9 -1 -152.3 5.430e-35

We see that there quite strong evidence against the hypothesis that the age-effects have the
same shape and even stronger that they should have the same “slopes”, i.e. first-order
shapes too.

. Thus it seems that a relevant description of the relationship of lung cancer rates between

males and females in Denmark is that they follow an age-cohort model. This model is
alreafy fitted, but in order to facilitate extractio of the parameters we refit it with a
parametrization of the linear cohort effect that gives the difference of these, so it is easier to
use a contrast matrix to get it out:

>mRR<—g1m(D ~ -1+ MA + MP + MC + I(C-1950) +
MA:sex + MC:sex + I(C-1950):sex +
+ offset( log(Y) ), family=poisson, data=lung )
> pr.RR <- predict( m.RR, type="terms", se.fit=TRUE )
> str( pr.RR )

List of 3
$ fit : num [1:21960, 1:7] -18.5 -18.6 -18.5 -18.6 -18.5 ...
..— attr(*, "dimnames")=List of 2
..$ : chr [1:21960] "im" n2m n3n ngn |
.. ..$ : chr [1:7] "MA" "MP" "MC" "I(C - 1950)"
..— attr(*, "constant")= num O
$ se.fit : num [1:21960, 1:7] 0.193 0.194 0.193 0.194 0.193 ...
..— attr(*, "dimnames")=List of 2
..$ : chr [1:21960] "im" m"2m n3n ngn |
..$ : chr [1:7] "MA" "MP" "MC" "I(C - 1950)"
$ residual.scale: num 1

This allows us to reconstruct the age and the period effects by taking the unique rows of the
cohort and age-design matrices and multiply on the parameters of the interaction terms in
order to get the log-RRs:

> # Unique ages and cohort

> au <- match( sort(unique(lung$4)), lung$4)

> cu <- match( sort(unique(lung$C)), lung$C)

> # Corresponding subsets of the design matrices
> A.ctr <- MA[au,]

> C.ctr <- cbind( MC[cu,], (1lung$C-1950) [cu] )

> # Paramter names

> parnam <- names( coef(m.RR) )

> # Have we found the age-paramters we want?

> a.par <- intersect( grep("MA",parnam), grep("sexM",parnam) )
> parnamla.par]

[1] "MAl:sexM" "MA2:sexM" "MA3:sexM" "MA4:sexM" "MA5:sexM" "MA6:sexM" "MA7:sexM"
[8] "MA8:sexM" "MA9:sexM"

> # Have we found the acohort-paramters we want?

> c.par <- c( grep("MC",parnam), grep("I",parnam) )
> c.par <- intersect( c.par, grep("sex",parnam) )

> parnam[c.par]

[1] "MC1:sexF" "MC2:sexF" "MC3:sexF" "MC4:sexF"
[6] "MC5:sexF" "MC6:sexF" "MC7 :sexF" "MC8:sexF"
[9] "MC9:sexF" "MC10:sexF" "MC11:sexF" "MC12:sexF"
[13] "MC13:sexF" "MC14:sexF" "I(C - 1950) :sexF"

> # Then we can extract effects, the parametrization for the cohort

> # effect is for F/M, hence we use -C.ctr

> A.eff <- ci.lin( m.RR, subset=a.par, ctr.mat= A.ctr, Exp=TRUE )[,5:7]
> C.eff <- ci.lin( m.RR, subset=c.par, ctr.mat=-C.ctr, Exp=TRUE )[,5:7]
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These effects can now be plotted side by side:

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( lung$A[au], A.eff,
+ log="y", ylim=c(0.5,5),
+ type="1", 1ty=1, col="black", lwd=c(3,1,1) )
> matplot( lung$Clcu], C.eff,

log="y", ylim=c(0.5,5),
+ type="1", 1ty=1, col="black", lwd=c(3,1,1) )

Now these effects could also be superposed on those from the separate APC-models:

> par( las=1, mar=c(4,3,1,2), mgp=c(3,1,0)/1.6 )
> fp <- apc.frame( a.lab = seq(40,90,20),
cp.lab = seq(1880,2000,20),

+

+ r.lab c(0.5,1,2,5),

+ rr.ref = 1,

+ a.tic = seq(35,90,5),

+ cp.tic = seq(1855,2005,5),
+ r.tic = ¢(4:9/10,1:6),

+ tic.fac = 1.3,

+ a.txt = "Age",

+ cp.txt = "Calendar time",
+ r.txt = "M/F Rate ratio of lung cancer",
+ rr.txt = "",

+ ref.line = TRUE,

+ gap = 13,

+ col.grid = gray(0.85),

+ sides = c(1,2,4) )

> abline( h=1 )

> apc.lines( apc.mf, col="black", ci=F, frame.par=fp, lwd=2 )

> matlines( lung$A[au], A.eff, lwd=c(3,1,1), 1lty=1, col="blue" )

> matlines( lung$C[cul-fp[1], C.eff, lwd=c(3,1,1), 1ty=1, col="blue" )

I RaLe 1auu Ul Uy Laiicen
N

/ \// !
0.5 / 0.5
T—T T T T T T T T T T T T T T—T T T L T
40 60 80 1880 1900 1920 1940 1960 1980 2000
Age Calendar time

Figure 3.33: Comparing the M/F rate-ratio between the simple approach and the approach using an
explicit model.
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3.11 Prediction of breast cancer rates

1. First we read the data and take an overview:

> breast <- read.table("../data/breast.txt", header=T )
> str( breast )

'data.frame': 10980 obs. of b5 variables:

$ A: int 0000000000 ...

$ P: int 1943 1943 1944 1944 1945 1945 1946 1946 1947 1947 ...
$ C: int 1942 1943 1943 1944 1944 1945 1945 1946 1946 1947 ...
$D: int 0000000000O0 ...

$ Y: num 18649 19947 19854 21265 21236 ...

> summary( breast )

A P C D Y
Min. : 0.0 Min. 11943 Min. :1853  Min. : 0.00 Min. . 385.2
1st Qu.:22.0 1st Qu.:1958 1st Qu.:1905 1st Qu.: 0.00 1st Qu.:11059.5
Median :44.5 Median :1973 Median :1928 Median : 9.00 Median :14538.3
Mean :44.5 Mean 11973 Mean 11928 Mean :12.11 Mean :135565.2
3rd Qu.:67.0 3rd Qu.:1988 3rd Qu.:1951 3rd Qu.:21.00 3rd Qu.:17767.2
Max. :89.0 Max. :2003 Max. :2003 Max. :69.00 Max. :22549.0

2. We now replace A, P and C with the correct triangle means; recall that the upper triangles
are characterized by the cohort being from the previous year, i.e. that p —a —c = 1.

> breast <- transform( breast, up = P-A-C )
> breast <- transform( breast, A = A+1/3+up/3,
+ P = P+2/3-up/3,
+ C = C+1/3+up/3 )
> with( breast, summary( P-A-C ) )
Min. 1st Qu. Median Mean 3rd Qu. Max.

2.274e-13 2.274e-13 2.274e-13 2.274e-13 2.274e-13 2.274e-13

> head( breast )

A P CD Y up
1 0.6666667 1943.333 1942.667 0 18648.83 1
2 0.3333333 1943.667 1943.333 0 19946.50 O
3 0.6666667 1944.333 1943.667 0 19853.67 1
4 0.3333333 1944.667 1944.333 0 21265.00 O
5 0.6666667 1945.333 1944.667 0 21235.67 1
6 0.3333333 1945.667 1945.333 0 22407.00 O

3. In order to use ratetab we must produce a matrix classified by age and period in suitable
intervals. This can be done choosing a tabulation interval length and then using this in
producing the tables. This approach enables a simple way of experimenting with the length.
Figure 3.34 shows the results.

> par( mfrow=c(2,2), mar=c(3,3,0,0), oma=c(0,0,1,1), mgp=c(3,1,0)/1.6 )

> ti <- 6

> with( subset( breast, A>30 ),

+ rateplot( tapply( D, list(floor(A/ti)*5+ti/2,

+ floor((P-1943) /ti)*5+1943+ti/2), sum ) /

+ tapply( Y, list(floor(A/ti)*ti+ti/2,

+ floor((P-1943)/ti)*ti+1943+ti/2), sum ) * 1075,
+ col=heat.colors(12) ) )

4. We use apc.fit to fit a model with age, period and cohort effects as natural splines (the
default), and the apc.plot to plot the estimated effects:

> ml <- apc.fit( subset( breast, A>30 ), npar=c(10,7,15), ref.c=1920, scale=10"5 )
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Figure 3.34: Danish breast cancer rates in 6-year age and period intervals.

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"
Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev  Df Deviance P(>|Chil)

Age 7309 16264.9

Age-drift 7308 10198.5 1 6066.3 0.0
Age-Cohort 7294 9119.7 14 1078.8 1.915e-221
Age-Period-Cohort 7288 9018.1 6 101.7 1.121e-19
Age-Period 7302 10092.2 -14 -1074.1 1.918e-220
Age-drift 7308 10198.5 -6 -106.3 1.191e-20

> apc.plot( m1 )

cp.offset RR.fac
1750 100

The plot (figure ?7?) is rather crappy, so we fine-tune the details by defining them explicit in
apc.frame. This piece of code is made by copying the definition of all parameters from the
help page and successively filling them in with suitable values:

> par( las=1, mar=c(3,4,1,4), mgp=c(3,1,0)/1.5 )

> fp <- apc.frame( a.lab = seq(30,90,10),
+ cp.lab = seq(1860,2005,20),
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Figure 3.35: FEstimates of age- period- and cohort effects plotted the default way — crap!

VH+++++++++++++++

r.lab = c¢(c(1,2,5)*10,c(1,2,5)*100),

# rr.lab = r.lab / rr.ref,
rr.ref = 100,
a.tic = seq(30,90,5),
cp.tic = seq(1855,2005,5),
r.tic = ¢(9,1:9%10,1:5%100),

# rr.tic = r.tic / rr.ref,
tic.fac = 1.3,
a.txt = "Age",
cp.txt = "Calendar time",
r.txt = "Rate per 100,000 person-years",
rr.txt = "Rate ratio",
gap = 8,
col.grid = gray(0.85),
sides = ¢(1,2,4) )

apc.lines( ml, frame.par=fp, ci=T, col="red" )

5. First we define the prediction points and the anchor points on the period scale:

> P.pt <= 2000 + 0:20
> P.rf <- 2000 - ¢(30,0)

Then we compute the estimated period effect on the log-RR scale at the anchor points, and

use these values for creating the prediction at 2020 (P.pt).

> Pp <- approx( mi$Per[,1], log(mi$Per[,2]), P.rf )8y
> P.eff <- Pp[2] + (Pp[2]-Pp[1])/diff(P.rf)*(P.pt-P.rf[2])

The same thing is done on the cohort scale:

C.pt <- 1970 + 0:20

C.rf <- 1970 - ¢(30,0)

Cp <- approx( m1$Coh[,1], log(mi$Coh[,2]), C.rf )%y
C.eff <- Cp[2] + (Cp[2]-Cp[1])/diff(C.rf)*(C.pt-C.rf[2])

vV VVvyVv
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Figure 3.36: Estimates of age- period- and cohort effects plotted after fine tuning the display using
apc.frame

Finally, these are added to the plot of the effects, after we have re-drawn the frame with a
calendar-time axis extending to 2020 (remember that the P.eff and the C.eff are log-RRs,
and hence we need to take the exp before plotting):

> par( las=1, mar=c(3,4,1,4), mgp=c(3,1,0)/1.5 )

> fp <- apc.frame( a.lab = seq(30,90,10),

+ cp.lab = seq(1860,2020,20),

+ r.lab = c(c(1,2,5)*10,c(1,2,5)*100),

+ # rr.lab = r.lab / rr.ref,

+ rr.ref = 100,

+ a.tic = seq(30,90,5),

+ cp.tic = seq(1855,2020,5),

+ r.tic = ¢(9,1:9%10,1:5%100),

+ # rr.tic = r.tic / rr.ref,

+ tic.fac = 1.3,

+ a.txt = "Age",

+ cp.txt = "Calendar time",

+ r.txt = "Rate per 100,000 person-years",

+ rr.txt = "Rate ratio",

+ gap = 8,

+ col.grid = gray(0.85),

+ sides = ¢(1,2,4) )

> apc.lines( ml, frame.par=fp, ci=T, col="red", lwd=c(3,1,1) )
> lines( P.pt-fp[1], exp(P.eff)*fp[2], col=gray(0.0), lty="11", lwd=2 )
> lines( C.pt-fpl[1], exp(C.eff)*fp[2], col=gray(0.0), lty="11", lwd=2 )

6. The fitted model gives an age-effect, a period effect and a cohort effect; the apc object
contains representations of these three effects as matrices with the age-values and the
estimated effects (with c.i.s) at these values and similarly for the period and cohort effects.

Prediction of the future rates will be based on extrapolations of the period and the cohort
effects. These must be linear in the sense that a linear function of the underlying scale
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Figure 3.37: Estimates of age- period- and cohort effects with the linear extension of the period and

cohort effects used for prediction of future rates.

affects the prediction linearly.

Therefore we can make these extrapolations using the estimated effects, by simply applying
an appropriate linear function to the estimated values.

In this case we use an extrapolation through the period point 2000, and a point 30 years
prior to this, and a cohort point 1970 and a point 30 year prior to this.

Cross-sectional rates: The first task is the prediction of cross-sectional age-specific rates
in 2020.

First we extract the estimated age-specific rates, and define the prediction point and the
anchor points:
.pt <- mi1$Agel,1]

.pt <- 2020
.rf <= 2000 - ¢(30,0)

> A
> P
>P
The period effect only need one point as we are predicting the cross-sectional rates in 2020.
Then we compute the estimated period effect on the log-RR scale at the anchor points, and
use these values for creating the prediction at 2020 (P.pt)

> Pp <- approx( mi$Per[,1], log(mi$Per[,2]), P.rf )$y
> P.eff <- Pp[2] + (Pp[2]-Pp[1])/diff(P.rf)*(P.pt-P.rf[2])

For the cohort effect we need to compute it at all cohorts represented in 2020. First we
compute the cohorts needed, set up a vector for the effects and then the reference points:
> C.pt <- P.pt - A.pt

> C.rf <- 1970 - ¢(30,0)
> C.eff <- numeric( length(C.pt) )
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Then we can fill in the estimated cohort effects by interpolation for those cohorts that are
before 1970:

> C.eff[C.pt<C.rf[2]] <- approx( m1$Coh[,1], log(m1$Coh[,2]), C.pt[C.pt<C.rf[2]] )8y

Subsequently we get the log-RRs for the two anchor points and use these for prediction of
the cohorts after 1970:

> Cp <- approx( m1$Coh[,1], log(mi$Coh[,2]), C.rf )%y
> C.eff[C.pt>=C.rf[2]] <- Cp[2] + (Cp[2]-Cp[1])/diff(C.rf)*(C.pt[C.pt>C.rf[2]]1-C.rf[2])

Finally, we can assemble the effects contributing to each of the ages represented, to give the
predicted age-specific rates in 2020:

> A.per.2020 <- exp( log(mi$Age[,2]) + P.eff + C.eff )

Longitudinal rates: We can now apply a similar machinery to predict the age-specific
rates for the 1950 cohort. The difference is now that the cohort effect is the same for all the
points, whereas the period effects differ.

> # Cohort point needed --- simple because the cohort is inside the data already

> C.pt <- 1960

> C.eff <- approx( m1$Coh[,1], log(mi$Coh[,2]), C.pt )8y

> # Period points needed

> P.pt <- C.pt + A.pt

> P.rf <- 2000 - ¢(30,0)

> # Where to put the period effects

> P.eff <- numeric( length(P.pt) )

> P.eff[P.pt<P.rf[2]] <- approx( mi$Per[,1], log(mi$Per[,2]), P.pt[P.pt<P.rf[2]] )8y
> # Nowe we use the points from the interpolation

> Pp <- approx( mi$Per[,1], log(mi$Per[,2]), P.rf )$y

> P.eff[P.pt>=P.rf[2]] <- Pp[2] + (Pp[2]-Pp[1])/diff(P.rf)*(P.pt[P.pt>=P.rf[2]]-P.rf[2])
> # Note that the prediction of the log RRs are made based on the estimated RRs

> # that refer to the predicted age-specific rates.

> A.coh.1960 <- exp( log(mi$Agel[,2]) + P.eff + C.eff )

Finally, we can plot the two predictions and the age-effect from the model, see figure 3.38

> matplot( A.pt, cbind( mi$Agel[,2], A.coh.1960, A.per.2020 ),

+ type="1", 1lty=1, lwd=2, col=c("red","blue", "black"),

+ log="y", xlab="Age", ylab="Predicted rates per 100,000" )

> abline( v=seq(30,90, 5), h=outer(1:9,1:3,function(x,y) x*107y), col=gray(0.9) )

> abline( v=seq(30,90,10), h=outer(c(1,2,5),1:3,function(x,y) x*107y), col=gray(0.8) )
> matlines( A.pt, cbind( m1$Age[,2], A.coh.1960, A.per.2020 ),

+ type="1", 1ty=1, lwd=5, col=c("red","blue", "black") )

> box()

It is clear from the plot in figure 3.38 that the prediction of the cohort rates in the 1960
cohort are approximately proportional to the estimated age-effect. They are actually not,
but the prediction of the period effects are almost constant, so the disturbance from the
period effect over the lifespan of the 1960 cohort is minimal, and not visually detectable in
the graph.
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Figure 3.38: Predicted age-specific breast cancer rates at 2020 (black) and in the 1950 cohort (blue)
and the estimated age-effects.



Bibliography

[1] B Carstensen. Age-Period-Cohort models for the Lexis diagram. Statistics in Medicine,
26(15):3018-3045, July 2007.

[2] D. Clayton and E. Schifflers. Models for temporal variation in cancer rates. I: Age-period and
age-cohort models. Statistics in Medicine, 6:449-467, 1987.

[3] D. Clayton and E. Schifflers. Models for temporal variation in cancer rates. II:
Age-period-cohort models. Statistics in Medicine, 6:469-481, 1987.

[4] TR Holford. The estimation of age, period and cohort effects for vital rates. Biometrics,
39:311-324, 1983.

99



	Contents
	Program for APC-course
	General contents
	Program structure
	Proposed dates
	Teacher


	Introduction to computing and practicals
	Datasets and how to access them.
	R-functions
	Functions for analysis of follow-up data
	Functions for APC-analysis

	Concepts in survival and demography
	Probability
	Statistics
	Competing risks
	Demography


	Practical exercises
	Danish primeministers
	Reading and tabulating data
	Rates and survival
	Age-period model
	Age-cohort model
	Age-drift model
	Age-period-cohort model
	Age-period-cohort model for triangles
	Using apc.fit etc.
	Lung cancer: the sex difference
	Prediction of breast cancer rates

	Solutions to exercises
	Danish primeministers
	Reading and tabulating data
	Rates and survival
	Age-period model
	Age-cohort model
	Age-drift model
	Age-period-cohort model
	Age-period-cohort model for triangles
	Using apc.fit etc.
	Lung cancer: the sex difference
	Prediction of breast cancer rates

	Bibliography

