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6 Course program Age-Period-Cohort models

Preface

The course in Age-Period-Cohort models at Max Planck Institute for Demographic Research was
initiated by an invitation from Jutta Gambe to me. I accepted on the condition that I was
allowed to draw on the assistance for preparation and tutoring of practicals from Eva Gelnarova,
whom I met when she was a student at the course “Statistical Practise in Epidemiology with R”
in Tartu, Estonia in the summer of 2008.

This set of practical exercises were deveoped in collaboration between us during the first
months of 2009. I did the final editing so any faults and errors are my responsibility.

Bendix Carstensen

Course program

The daily program will have one lecture and one practical each morning and each afternoon.
Lectures will be between 45 and 90 minutes; normally with one or two breaks.
The practicals will follow the lecture to fill the 3-hour slot. Sometimes we may need to push

over some of the practical computing to take a bit of the beginning of the next slot.

Monday 23rd

09:00 – 09:15 Welcome and introduction.
09:15 – 12:15 Morning slot:

– L1: Follow-up time and rates from register data (surv-rate)
– Lexis machinery in Epi (lifetable)
– Follow-up time and rates from population data (tab-mod)
– P1: Danish prime ministers (pm)

13:15 – 16:15 Afternoon slot:
– L2: Likelihood for rates: Cox and Poisson
– Cox as limit of the Poisson (WntCma)
– Poisson model for rates: Factor models
– Practical handling of linear contrasts in R using ci.lin() (tab-mod)
– P2: Rates and survival (rates)
– Tabulation (tabulate)
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Tuesday 24th

09:00 – 09:30 Recap of Monday
09:30 – 12:15 Morning slot:

– L3: The age-period and the age-cohort model. (AP-AC)
– The Age-drift model
– P3: Age-period model (age-per)
– Age-cohort model (age-coh)
– Age-drift model (age-drift)

13:15 – 16:15 Afternoon slot:
– L4: The Age-period-cohort model
– Parametrizations
– P4: Age-period-cohort model (age-per-coh)

Wednesday 25th

09:00 – 09:30 Recap of Tuesday
09:30 – 12:15 Morning slot:

– L5: Data tabulated by age period and cohort.
– Parametrization revisted: The general case.
– P5: Age-period-cohort model for triangles (apc-tri)
– L5: The implementation of apc.fit.
– Parametrizations.
– The residual parametrization.
– P5: Using the apc-functions from Epi. (apc-fit)

13:15 – 16:15 Afternoon slot:
– L6: Several rates compared with APC-models:
– Estimation and reporting of effects.
– Parametrization options for several rates.
– P6: Lung cancer differences by sex (lung-sex)

Thursday 26th

09:00 – 16:00 Study free: Working with the assignment.

Friday 27th

09:00 – 09:30 Recap of Wednesday
09:30 – 12:15 Morning slot:

– L7: Predictions based on APC models
– Managing splines for prediction
– P7: Predicting lung cancer (lung-pred)
– Predicting breast cancer (breast-pred)

13:15 – 15:15 Afternoon slot:
– L8: Overview of course:
– What can the models be used for and what not.
– P8: Assignments.

15:15 – 15:30 Wrapping up, closure, evaluation and farewell
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Chapter 1

Introduction to computing and
practicals

1.1 Reading

It would be helpful if you had read the papers which cover the essentials of the models that we
will cover: [4, 2, 3, 1]

1.2 Introduction to exercises

Most of the following exercises all require basic skills in computing, in R, in particular the use of
the graphical facilities.

1.2.1 Datasets and how to access them.

All the datasets for the exercises in this section are in the folder APC\data. This can be accessed
through the homepage of the course, as:
http://www.biostat.ku.dk/~bxc/APC/data.
The datasets with .txt extension are plain text files where variable names are found in the first

line. Such datasets can be read into R with the command read.table, and into SAS by using in
%read_table macro supplied in the APC\sas\sasmacro folder. This can be accessed through the
homepage of the course, as:
http://www.biostat.ku.dk/~bxc/APC/sas/sasmacro.

1.2.2 R-functions

All the relevant functions for this course (and several more) are supplied in the R-package Epi,
which can be downloaded from CRAN (on the R-website).

> library( Epi )
> library( help=Epi )

The latter command will list the package information, including names of all the functions
available with brief descriptions.

1.2.3 Solutions

This document also contains some suggestions for solutions of teh assignments. They should not
be taken as the only let alone exhuastive solutions to the practicals.

9



10 Introduction to computing Age-Period-Cohort models

It is a good idea to give it a shot to do the practicals before you look in the solutions. However,
the odd solution proposal may contain a twist to the analyses that you may find useful. Any
suggestions for improving the solutions would be most welcome.

1.3 Probability concepts in follow-up studies

This section briefly summarizes relations between various quantities used in analysis of follow-up
studies. They are used all the time in the analysis and reporting of results. Hence it is important
to be familiar with all of them.

You should know them by heart to the extent that you can derive all of them from scratch:

• Survival function.

S(t) = P {survival at least till t}
= P {T > t} = 1− P {T ≤ t} = 1− F (t)

S(t|tentry) = P {survival at least till t| alive at tentry}
= S(t)/S(tentry)

• Distribution function.

F (t) = P {death before t}
= P {T ≤ t} = 1− S(t)

• Intensity:

λ(t) = lim
h→0

P {event in (t, t+ h] | alive at t} /h

= lim
h→0

F (t+ h)− F (t)
S(t)h

=
f(t)
S(t)

= lim
h→0
− S(t+ h)− S(t)

S(t)h
= − d logS(t)

dt

The intensity is also known as the hazard function, hazard rate, rate, mortality/morbidity
rate.

• Relationships:

− d logS(t)
dt

= λ(t)

m

S(t) = exp
(
−
∫ t

0
λ(u) du

)
= exp

(
−Λ(t)

)
Λ(t) =

∫ t
0 λ(s) ds is called the integrated intensity or the cumulative rate. It is not an

intensity, it is dimensionless.

λ(t) = − d log(S(t))
dt

= −S
′(t)
S(t)

=
F ′(t)

1− F (t)
=
f(t)
S(t)



Max Planck Institut for Demographic Research, Rostock, March 2009Introduction to computing 11

• The cumulative risk of an event (to time t) is:

F (t) = P {Event before time t} =
∫ t

0
λ(u)S(u) du = 1− S(t) = 1− e−Λ(t)

For small |x| (< 0.05), we have that 1− e−x ≈ x, so for small values of the integrated
intensity:

Cumulative risk to time t ≈ Λ(t) = Cumulative rate

• Likelihood from one person:
The likelihood from a number of small pieces of follow-up from one individual is a product
of conditional probabilities:

P {event at t4|entry at t0} = P {event at t4| alive at t3} ×
P {survive (t2, t3)| alive at t2} ×
P {survive (t1, t2)| alive at t1} ×
P {survive (t0, t1)| alive at t0}

Each term in this expression corresponds to one empirical rate1

(d, y) = (#deaths,#risk time), i.e. the data obtained from the follow-up opf one person in
the interval of length y. Each person can contribute many empirical rates, most with d = 0;
d can only be 1 for the last empirical rate for a person.

• Log-likelihood for an empirical rate (d, y):

`(λ) = d log(λ)− λy

This is under the assumption the the underlying rate is assumed to be constant over the
interval that the empirical rates refers to.

• Adding these over a group of persons (assuming identical and constant rates) gives:

D log(λ)− λY,

where Y is the total follow-up time, and D is the total number of failures.

Note: The Poisson log-likelihood for an observation D with mean λY is:

D log(λY )− λY = D log(λ) +D log(Y )− λY

The term D log(Y ) does not involve the parameter λ, so the likelihood for an observed rate
can be maximized by pretending that the no. of cases D is Poisson with mean λY . But this
does not imply that D follows a Poisson-distribution. It is entirely a likelihood based
computational convenience. Anything that is not likelihood based is not justified.

• A linear model for the log-rate, log(λ) = Xβ implies
λY = exp

(
log(λ) + log(Y )

)
= exp

(
Xβ + log(Y )

)
. Therefore, in order to get a linear model

we must require that log(Y ) appear as a variable in the model for the log-rate with the
regression coefficient fixed to 1, a so-called offset-term in the linear predictor.

1This is a concept coined by BxC, and so is not necessarily generally recognized.
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• Competing risks:

If there is more than one cause of death, occurring with (cause-specific) rates λ1, λ2, λ3, the
survival function is:

S(t) = exp
(
−
∫ t

0
λ1(u) + λ2(u) + λ3(u) du

)
The probability of dying from cause 1 before time t is:∫ t

0
λ1(u)S(u) du 6= 1− exp

(
−
∫ t

0
λ1(u) du

)
The second part of the term on the right hand side (sometimes referred to as the
“cause-specific survival”) does not have any probabilistic interpretation.
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Chapter 2

Practical exercises

2.1 Danish primeministers

The following table shows all Danish prime ministers in office since the war. They are ordered by
the period in office, hence some appear twice. Entry end exit refer to the office of prime minister.
A missing date of death means that the person was alive at the end of 2008.

Name Birth Death Entry Exit

Vilhelm Buhl 16/10/1881 18/12/1954 05/05/1945 07/11/1945
Knud Kristensen 26/10/1880 29/09/1962 07/11/1945 13/11/1947
Hans Hedtoft 21/04/1903 29/01/1955 13/11/1947 30/10/1950
Erik Eriksen 20/11/1902 07/10/1972 30/10/1950 30/09/1953
Hans Hedtoft 21/04/1903 29/01/1955 30/09/1953 29/01/1955
H C Hansen 08/11/1906 19/02/1960 01/02/1955 19/02/1960
Viggo Kampmann 21/07/1910 03/06/1976 21/02/1960 03/09/1962
Jens Otto Kragh 15/09/1914 22/06/1978 03/09/1962 02/02/1968
Hilmar Baunsgaard 26/02/1920 30/06/1989 02/02/1968 11/10/1971
Jens Otto Kragh 15/09/1914 22/06/1978 11/10/1971 05/10/1972
Anker Jorgensen 13/07/1922 . 05/10/1972 19/12/1973
Poul Hartling 14/08/1914 30/04/2000 19/12/1973 13/02/1975
Anker Jorgensen 13/07/1922 . 13/02/1975 10/09/1982
Poul Schlüter 03/04/1929 . 10/09/1982 25/01/1993
Poul Nyrup Rasmussen 15/06/1943 . 25/01/1993 27/11/2001
Anders Fogh Rasmussen 26/01/1953 . 27/11/2001 31/12/2007

The data in the table can be fould in the file pm-dk.txt.

> st <- read.table( "../data/pm-dk.txt", header=T, as.is=T,
+ na.strings="." )
> st
> str( st )

1. Draw a Lexis diagram with life-lines of the persons.

> # Change the character variables with dates to fractional calendar
> # years
> for( i in 2:5 ) st <- cal.yr( st, format="%d/%m/%Y" )
> # Attach the data for those still alive
> st$fail <- !is.na(st$death)
> st[!st$fail,"death"] <- 2009

15
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> st
> attach( st )
> # Lexis object
> L <- Lexis( entry = list(per=birth),
+ exit = list(per=death, age=death-birth),
+ exit.status=fail,
+ data=st )
> # Plot Lexis diagram
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, xaxt="n" ) # Omit x-labels
> plot( L, xlim=c(1945,2010), ylim=c(32,88), lwd=3, las=1,
+ grid=0:20*5, col="black", xlab = "Calendar time", ylab="Age" )
> points( L, pch=c(NA,16)[L$lex.Xst+1] )
> #put names of the prime ministers on the plot
> text( death, death-birth, Name, adj=c(1.05,-0.05), cex=0.7 )
> par( xaxt="s" )
> axis( side=1, at=seq(1950,2010,10) ) # x-labels at nice places

2. Mark with a different color the periods where they have been in office.

> # New Lexis object describing periods in an office
> # and lines added to a picture
> in_office <- c( rep(FALSE,nrow(st)-1),TRUE )
> st <- cbind( st, in_office )
> Lo <- Lexis( entry = list(per=entry),
+ exit = list(per=exit, age=exit-birth),
+ exit.status=in_office,
+ data = st )
> lines( Lo, lwd=3, las=1, col="red" )
> # the same may be plotted using command segments
> box()
> segments( birth, 0, death, death-birth, lwd=2 )
> segments( entry, entry-birth, exit, exit-birth, lwd=4, col="red" )

3. Draw the line representing age 50 years.

> abline( h=50 )

4. How many 50th birthdays have been celebrated in office since the war?

> age_entry <- Lo$age
> age_exit <- Lo$age + Lo$lex.dur
> n_birthday <- sum( ( age_entry<50 ) & ( age_exit>50 ) )
> n_birthday

5. Draw the line representing 2 October 1972. (Why just that?)

> abline( v=cal.yr( "2/10/1972", format="%d/%m/%Y" ) )

6. How many present and former prime ministes were alive at 31st December 2008?

> alive <- (L$death >=2004)
> n_alive <- sum( alive )
> n_alive
> #Anker Jorgensen - 1 person has got 2 lex.id's
> levels( as.factor( subset( L$Name, alive==T ) ) )

7. Which period(s) since the war has seen the maximal number of former post-war prime
ministers alive?

> # New lexis object - since entry to the office to the death
> Ln <- Lexis( entry=list(per=entry), exit=list(per=death,age=death-entry),
+ exit.status=fail, data=st )
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> ny <- 2008-1945
> n_alive <- vector( "numeric", ny )
> for (i in 1:ny)
+ {
+ alive <- ( (Ln$death >=(1944+i))&(Ln$entry<=(1944+i)) )
+ n_alive[i] <- nlevels( as.factor( subset( Ln$Name, alive==T ) ) )
+ }
> plot( n_alive~seq(1945,(1945+ny-1),1), type="l", xlab="Calendar year",
+ ylab = "Maximal numbers of former prime ministers alive" )

8. Mark the area in the diagram with person years lived by persons aged 50 to 70 in the period
1 January 1970 through 1 January 1990.

> rect( 1970, 50, 1990, 70, lwd=2, border="green",col="lightgreen" )

9. Mark the area for the lifetime experience of those who were between 10 and 20 years old in
1945.

> polygon( c(1955,2010,2010,1965,1955), c(30,85,75,30,30), lwd=2,
+ border="blue", col="lightblue" )

10. How many prime-minister-years have been spent time in each of these sets? And in the
intersection of them?

> # Prime-minister years lived by persons
> # aged 50 to 70 in the period 1 January 1970 through 1 January 1990.
> x1 <- splitLexis( Lo ,breaks = c(0,50,70,100), time.scale="age" )
> x2 <- splitLexis( x1, breaks = c(1900,1970,1990,2010), time.scale="per" )
> summary( x2 )
> tapply( status(x2,"exit")==1, list( timeBand(x2,"age","left"),
+ timeBand(x2,"per","left") ), sum )
> tapply( dur(x2), list( timeBand(x2,"age","left"),
+ timeBand(x2,"per","left") ), sum )
> # Computing the person-years in the 1925-35 cohort
> x3 <- subset( Lo, birth>1925 & birth<=1935 )
> summary( x3 )
> dur( x3 )
> # Computing person years in the intersection
> x4 <- subset( x2 , birth>1925 & birth<=1935 )
> summary( x4 )
> dur( x4 )
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2.2 Reading and tabulating data

The following exercise is aimed at tabulating and displaying the data typically involved in
age-period-cohort analysis.

1. Read the data in the file lung5-M.txt, and print the data. What does each line refer to?

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung
> head(lung)

> attach( lung )

2. Print the no. cases in a nice tabular form, and likewise with the person-years. Is there
someything special about the last period?

> D_table_nice <- stat.table( index=list(A,P), sum(D), data=lung, margin=T )
> print( D_table_nice, digits=c(sum=0) )
> Y_table_nice <- stat.table( index=list(A,P), sum(Y), data=lung, margin=T )
> print( Y_table_nice, digits=c(sum=2) )

3. Compute the empirical rates, and print them in a table too.

> R_table_nice <- stat.table( index=list(A,P), list(Rate=ratio(D,Y,100000)),
+ data=lung, margin=T )
> print( R_table_nice, digits=c(sum=2) )
> # another way of computation - not using Epi library
> D_table <- tapply( D, list(A,P), sum )
> Y_table <- tapply( Y, list(A,P), sum )
> R_table <- D_table/Y_table*(10^5)

4. Make the four classical graphs of the data. Consider whether a log-scale for the y-axis is
appropriate. Think about where on the x-axis each age-class is located.

(a) Age-specific rates for each period. (Rates from the same period connected).
> rateplot( R_table, which=c("AP"), ann=TRUE )

(b) Age-specific rates for each cohort. (Rates from the same cohort connected).
> rateplot( R_table, which=c("AC"), ann=TRUE )

(c) Rates for each age-class versus period. (Rates from the same age-class connected).
> rateplot( R_table, which=c("PA"), ann=TRUE )

(d) Rates for each age-class versus cohort. (Rates from the same age-class connected).
> rateplot( R_table, which=c("CA"), ann=TRUE )

5. How would each of these curves look if:

(a) age-specific rates did not change at all by time?
> # age-specific rates remain still the same as in period 1943
> source( "rateplot2.R" )
> R_table_no_change<-matrix( R_table[,1], dim(R_table)[1], dim(R_table)[2] )
> colnames( R_table_no_change ) <- colnames( R_table )
> rownames( R_table_no_change ) <- rownames( R_table )
> R_table_no_change

> par( mfrow=c(2,2) )
> rateplot2( R_table_no_change)

(b) age-specific rates were only influenced by period?
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> #age-specific rates are only influence by period
> step <- 2
> change_p <- matrix(rep(seq(1,11*step,step),10),10,11,byrow=T)
> change_p
> R_table_p <- R_table_no_change+change_p
> colnames( R_table_p ) <- colnames( R_table )
> rownames( R_table_p ) <- rownames( R_table )
> R_table_p

> par( mfrow=c(2,2) )
> rateplot2( (R_table_p) )

(c) age-specific rates were only influenced by cohort?
> #age-specific rates are only influence by cohort
> nr <- nrow(R_table)
> nc <- 10
> p <- c( rep(NA,nc), R_table[,1] )
> np <- length( p )
> R_table_c <- cbind( p[(np-nr+1):np], p[(np-nr):(np-1)],
+ p[(np-nr-1):(np-2)],p[(np-nr-2):(np-3)],
+ p[(np-nr-3):(np-4)], p[(np-nr-4):(np-5)],
+ p[(np-nr-5):(np-6)], p[(np-nr-6):(np-7)],
+ p[(np-nr-7):(np-8)], p[(np-nr-8):(np-9)],
+ p[(np-nr-9):(np-10)] )
> colnames( R_table_c ) <- colnames( R_table )
> rownames( R_table_c ) <- rownames( R_table )
> R_table_c

> par( mfrow=c(2,2) )
> rateplot2( R_table_c )
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2.3 Rates and survival

1. Consider the following data:

Year of birth Year of death Age at death
1994 1995

1994 2,900 500 0
1993 120 130 1
1992 50 60 2
1991 45 55 3
1990 40 40 4

(a) Represent these data in a Lexis diagram.
> # Enter the data from the table into a matrix
> D <- matrix( c(2900,120,50,45,40,500,130,60,55,40), 5, 2 )
> D

> # Make a Lexis diagram and represent the numbers there
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> Lexis.diagram( age=c(0,5), date=c(1991,1996), int=1, lab.int=1,
+ coh.grid=T )
> box()
> text( 1994+rep( c(2,4)/3, c(5,5) ),c(0:4+1/3,0:4+2/3), paste( D ) )

(b) On the basis of these data, can you calculate the age-specific death rate for
two-year-olds (1m2) in 1994? If you can, do it. If you cannot, explain what additional
information you would need.

(c) On the basis of these data, can you calculate the probability of surviving from age 2 to
age 3 (1q2) in for the cohort born in 1992?
If you can, do it. If you cannot, explain what additional information you would need.

2. Consider the following data:

• Live births during 1991: 142,000

• Number of infants born in 1991 who did not survive until the end of 1991: 2,900

• Number of infants born in 1991 who survived to the end of 1991, but did not reach
their first birthday: 500

• Live births during 1992: 138,000

• Number of infants born in 1992 who did not survive until the end of 1992: 2,600

• Number of infants born in 1992 who survived to the end of 1992, but did not reach
their first birthday: 450

(a) Represent the data on a Lexis diagram.
> # Enter the information in two data structures
> B <- c(142, 138)*1000
> D <- c(2900, 500, 2600, 450)

> # Make a Lexis diagram and represent the numbers there
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> Lexis.diagram( age=c(0,5), date=c(1991,1996), int=1, lab.int=1,
+ coh.grid=T )
> text( 1991+c(2,4,5,7)/3, c(1,2,1,2)/3, paste( D ) )
> text( 1991.5+0:1, 0, paste( B ), adj=c(0.5,-0.2), col="red" )
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(b) Calculate the infant mortality rate (IMR) for 1992 under the assumption that you were
only able to observe events occurring in 1992, and that you did not know the birth
dates of infants dying during that year.

(c) Same as above, except that now you do know the birth dates of infants dying during
1992.

(d) Assume all data are known: Calculate the IMR.

(e) What is the IMR for the 1992 birth cohort?
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2.4 Age-period model

The following exercise is aimed at familiarizing you with the parametrization of the age-period
model. It will give you the opportunity explore how to extract and and plot parameter estimates
from models. It is based on Danish male lung cancer incidence data in 5-year classes.

1. Read the data in the file lung5-M.txt as in the tabulation exercise:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung
> attach( lung )
> table( A )
> table( P )
> tapply( Y, list(A,P), sum )

What do these tables show?

2. Fit a Poisson model with effects of age (A) and period (P) as class variables:

> ap.1 <- glm( D ~ factor(A) + factor(P) + offset(log(Y)), family=poisson )
> summary( ap.1 )

What do the parameters refer to, i.e. which ones are log-rates and which ones are
rate-ratios?

3. Fit the same model without intercept (use -1 in the model formula); call it ap.0 — we shall
refer to this subsequently. What do the parameters now refer to?

4. Fit the same model, using the period 1968–72 as the reference period, by using the relevel
command for factors to make 1968 the first level:

> ap.3 <- glm( D ~ factor(A) - 1 + relevel(factor(P),"1968") + offset(log(Y)),
+ family=poisson )

5. Extract the prameters from the model, by doing:

> ap.cf <- summary( ap.3 )$coef

6. Now plot the estimated age-specific incidence rates, remembering to annoatte them with the correct
scale. We need the first 10 parameters, with their standard errors:

> age.cf <- ap.cf[1:10,1:2]

This means that we take rows 1–10 and columns 1–2. The corresponding age classes are 40, . . . , 85.
The midpoints of these age-classes are 2.5 years higher. The ages can be generated in R by saying
seq(40,85,5)+2.5.

Now put confidence limits on the curves by taking ±1.96× s.e.. The line of the estimates can be
over-drawn once more in a thicker style:

> lines( seq(40,85,5)+2.5, exp(age.cf[,1]), lwd=3 )

7. Now for the rate-ratio-parameters, take the rest of the coefficients:

> RR.cf <- ap.cf[11:20,1:2]

But the reference group is missing, so we must stick two 0s in the correct place. We use the
command rbind (row-bind):

> RR.cf <- rbind( RR.cf[1:5,], c(0,0), RR.cf[6:10,] )
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Now we have the same situation as for the age-specific rates, and can plot the relative risks (relative
to 1968) in precisely the same way as for the agespecific rates.

Make a line-plot of the relative risks with confidence intervals.

8. However, the relevant parameters may also be extracted directly from the model without intercept,
using the function ci.lin (remember to read the documentation for this!)

The point is to define a contrast matrix, which multiplied to (a subset of) the parameters gives the
rates in the reference period. The log-rates in the reference period (the first level of factor(P) are
the age-parameters. The log-rates in the period labelled 1968 are these plus the period estimate
from 1968.

Now construct the following matrix and look at it:

> cm.A <- cbind( diag( nlevels( factor(A) ) ), 1 )

Now look at the parameters extracted by ci.lin, using the subset= argument:

> ci.lin( ap.0, subset=c("A","1968") )

Now use the argument ctr.mat= in ci.lin to produce the rates in period 1968 and plot them on a
log-scale.

9. Save the estimates of age aned period effects along with the age-points and period-points, using save
(look up the help page if you are not familiar with it. You will need these in the next exercise on the
age-cohort model.

10. We can also use the same machinery to extract the rate-ratios relative to 1968. The contrast matrix
to use is the difference between two: The first one is the one that extracts the rate-ratios with a
prefixed 0:

> cm.P <- rbind(0,diag( nlevels(factor(P))-1 ) )
> cm.P
> ci.lin( ap.0, subset="P", ctr.mat=cm.P )

In order to subtract the value corresponding to 1968, we must subtract a 11× 10 matrix, that just
selects the 1968 column:

> cm.Pref <- cm.P * 0
> cm.Pref[,5] <- 1
> cm.Pref

The contrast matrix to use is the difference between these two:

> cm.P - cm.Pref
> ci.lin( ap.0, subset="P", ctr.mat=cm.P-cm.Pref )

Use the Exp=TRUE argument to get the rate-ratios and plot these with confidence intervals on a
log-scale.

11. For the real nerds: Plot the rates and the rate ratios beside each other, and make sure that the
physical extent of the units on both the x-axis and the y-axis are the same.

Hint: You may want to use par(mar=c(0,0,0,0), oma=), the function layout as well as the
xaxs="i" argument to plot.
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2.5 Age-cohort model

This exercise is aimed at familiarizing you with the parametrization of the age-cohort model. It
will give you the opportunity explore how to extract and and plot parameter estimates from
models. It is parallel to the exercise on the age-period model and is therefor less detailed.

1. Read the data in the file lung5-M.txt as in the tabulation exercise:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung
> attach( lung )
> table( A )
> table( P )
> table( P-A )

What do these tables show?

2. Fit a Poisson model with effects of age (A) and cohort (C) as class variables. You will need
to form the variable C (cohort) as P−A first.

What do the parameters refer to ?

3. Fit the same model without intercept. What do the parameters now refer to ?

(Use -1 in the model formula.)

4. Fit the same model, using the cohort 1908 as the reference cohort. What do the parameters
represent now?

(Use the relevel command for factors to make 1968 the first level.)

5. What is the range of birth dates represented in the cohort 1908?

6. Extract the age-specific incidence parameters from the model and plot then against age.
Remember to annotate them with the correct units. Add 95% confidence intervals.

7. Extract the cohort-specific rate-ratio parameters and plot then against the date of birth
(cohort). Add 95% confidence intervals.

8. Now load the estimates from the age-period model, and plot the estimated age-specific rates
from the two models on top of each other.

Why are they different; in particular, why do they have different slopes?
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2.6 Age-drift model

This exercise is aimed at introducing the age-drift model and make you familiar with the two
different ways of parametrizing this model. Like the two previous exercises it is based on the male
lung cancer data.

1. First read the data in the file lung5-M.txt and create the cohort variable:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung$C <- lung$P - lung$A

2. Fit a Poisson model with effects of age as class variable and period P as continuous variable.

What do the parameters refer to ?

3. Fit the same model without intercept. What do the parameters now refer to?

4. Fit the same model, using the period 1968–72 as the reference period.

Now what do the parameters represent?

5. Fit a model with cohort as a continuous variable, using 1908 as the reference, and without
intercept. What do the resulting parameters represent?

6. Compare the deviances and the slope estimates from the models with cohort drift and
period drift.

7. What is the relationship between the estimated age-effects in the two models?

Verify this empirically by converting one set of age-parameters to the other.

8. Plot the age-specific incidence rates from the two different models in the same panel.

9. The rates from the model are:

log(λap) = αp + δ(p− 1970.5)

Therefore, with an x-variable: (1943,. . . ,1993) + 2.5, the log rate ratio relative to 1970.5
will be:

log RR = δ̂ × x

and the upper and lower confidence bands:

log RR = (δ̂ ± 1.96× s.e.(δ))× x

Now extract the slope parameter, and plot the rate-ratio functions as a function of period.
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2.7 Age-period-cohort model

The following exercise is aimed at familiarizing you with the parametrization of the
age-period-cohort model and with the realtionship of the APC-model to the other model that you
have been working with, so we will refer back to those, and assume that you have the results from
them at hand.

1. Read the data in the file lung5-M.txt as in the tabulation exercise:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung
> attach( lung )

2. Fit a Poisson model with effects of age (A), period (P) and cohort (C) as class variables.
Also fit a model with age alone as a class variable. Write down a scheme showing the
deviances and degrees of freedom for the 5 models you have models fitted to this dataset.

3. Compare the models that can be compared, with likelihood-ratio tetsts. You will want to
use anova (or specifically anova.glm) with the argument test="Chisq".

4. Next, fit the same model without intercept, and with the first and last period parameters
and the 1908 cohort parameter set to 0. Before you do so a few practical things must be
fixed:

You can merge the first and the last period level using the Relevel function (look at the
documentation for it).

> lung$Pr <- Relevel( factor(lung$P), list("first-last"=c("1943","1993") ) )

You can also use this function to make the 1908 cohort the first level of the cohort factor:

> lung$Cr <- Relevel( factor(lung$P-lung$A), "1908" )

It is a good idea to tabulate the new factor against the old one (i.e. that variable from
which it was created) in order to meake sure that the relevelling actually is as you intended
it to be.

5. Now you can fit the model, using the factors you just defined. What do the parameters now
refer to?

6. Make a graph of the parameters. Remember to take the exponential to convert the
age-parameters to rates (and find out what the units are) and the period and cohort
parameters to rate ratios. Also use a log-scale for the y-axis. You may want to use ci.lin
to facilitate this.

7. Fit the same model, using the period 1968–72 as the reference period and two cohorts of
your choice as references. To decide which of the cohorts to alias it may be useful to see how
many observations there are in each:

> with( lung, table(P-A) )
> with( lung, tapply(D,list(P-A),sum) )

Having fitted the model, now what do the parameters in it represent?

8. Make a plot of these parameters.

Add the parameters from the previous parametrization to the same graph.
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2.8 Age-period-cohort model for triangles

The following exercise is aimed at showing the problems associated with age-period-cohort
modelling for triangular data.

Also you will learn how to overcome these problems by parametric modelling of the three effects.

1. Read the Danish male lung cancer data tabulated by age period and birth cohort,
lung5-Mc.txt. List the first few lines of the dataset and make sure you understand what
the variables refer to. Also define nthe synthetic cohorts as P5-A5:

> ltri <- read.table( "../data/lung5-Mc.txt", header=T )
> ltri$S5 <- ltri$P5 - ltri$A5
> attach( ltri )

2. Make a Lexis diagram showing the subdivision of the follow-data. You will explore the
function Lexis.diagram.

> Lexis.diagram( age=c(40,90), date=c(1943,1998), coh.grid=TRUE )

3. Use the variables A5 and P5 to fit a traditional age-period-cohort model with synthetic
cohort defined by P5-A5:

> ms <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( ms )$df

[1] 38 182 39

How many parameters does this model have?

4. Now try to fit the model with the “real” cohort:

> mc <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(C5) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( mc )$df

[1] 40 180 40

How many parameters does this model have?

5. Plot the parameter estimates from the two models on top of each other, with confidence
intervals. Remember to put the rigt scales on the plots.

> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(A5)) )
> p.pt <- as.numeric( levels(factor(P5)) )
> s.pt <- as.numeric( levels(factor(S5)) )
> c.pt <- as.numeric( levels(factor(C5)) )
> matplot( a.pt, ci.lin( ms, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Age", ylab="Rates", log="y" )
> matlines( a.pt, ci.lin( mc, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( ms, subset="P5",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Period", ylab="RR", log="y" )
> matlines( p.pt, rbind( c(1,1,1), ci.lin( mc, subset="P5",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
> matplot( s.pt, rbind(c(1,1,1),ci.lin( ms, subset="S5", Exp=TRUE )[,5:7]),
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+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Cohort", ylab="RR", log="y" )
> matlines( c.pt, rbind(c(1,1,1),ci.lin( mc, subset="C5", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )

It is seen that the confidence bands are much wider for the age and cohort effects but
narrower for the period effects.

6. Now fit the model using the proper midpoints of the triangles as factor levels. How many
parameters does this model have?

> mt <- glm( D ~ -1 + factor(Ax) + factor(Px) + factor(Cx) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( mt )$df

[1] 76 144 80

7. Plot the parameters from this model in three panels as for the previous two models.

> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(Ax)) )
> p.pt <- as.numeric( levels(factor(Px)) )
> c.pt <- as.numeric( levels(factor(Cx)) )
> matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Age", ylab="Rates", log="y" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Period", ylab="RR", log="y" )
> matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Cohort", ylab="RR", log="y" )

We see that the parameters clearly do not convey a reasonable picture of the effects; som
severe indeterminacy has crept in.

8. What is the residual deviance of this model?

> summary( mt )$deviance

[1] 284.7269

9. The dataset also has a variable up, which indicates whether the observation comes from an
upper or lower triangle. Try to tabulate it against P5-A5-C5.

> table( up, P5-A5-S5 )

up 0
0 110
1 110

10. Fit an age-period cohort model separately for the subset of the dataset from the upper
triangles and from the lowere triangles. What is the residual deviance from each of these
models and what is the sum of these. Compare to the model using the proper midpoints as
factor levels.

> m.up <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=subset(ltri,up==1) )
> summary( m.up )$deviance
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[1] 150.2703

> m.lo <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=subset(ltri,up==0) )
> summary( m.lo )$deviance

[1] 134.4566

> summary( m.lo )$deviance + summary( m.up )$deviance

[1] 284.7269

> summary( mt )$deviance

[1] 284.7269

11. Next, repeat the plots of the parameters from the model using the proper midpoints as
factor levels, but now super-posing the estimates (in different color) from each of the two
models just fitted. What goes on?

> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(Ax)) )
> p.pt <- as.numeric( levels(factor(Px)) )
> c.pt <- as.numeric( levels(factor(Cx)) )
> a5.pt <- as.numeric( levels(factor(A5)) )
> p5.pt <- as.numeric( levels(factor(P5)) )
> s5.pt <- as.numeric( levels(factor(S5)) )
> matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Age", ylab="Rates", log="y" )
> matpoints( a5.pt, ci.lin( m.up, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ pch=c(16,3,3), col="blue" )
> matpoints( a5.pt, ci.lin( m.lo, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ pch=c(16,3,3), col="red" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Period", ylab="RR", log="y" )
> matpoints( p5.pt[-1], ci.lin( m.up, subset="P5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="blue" )
> matpoints( p5.pt[-1], ci.lin( m.lo, subset="P5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="red" )
> matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Cohort", ylab="RR", log="y" )
> matpoints( s5.pt[-1], ci.lin( m.up, subset="S5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="blue" )
> matpoints( s5.pt[-1], ci.lin( m.lo, subset="S5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="red" )

The model fitted with the “correct” factor levels is actually two different models. This is
because observations in upper triangles are modelled by one set of the parameters, and
those in lower triangel by another set of parameters.

Because of the ordering of the levels, the parametrization is different, but that is all.

There is no way out of the squeeze, except by resorting to parametric models for the actual
underlying scales, abandoning the factor modelling.

12. Load the splines package and fit a model using the correct midpoints of the triangles as
quantitative variables in restricted cubic splines, using the function ns:
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> library( splines )
> mspl <- glm( D ~ -1 + ns(Ax,df=7,intercept=T)
+ + ns(Px,df=6,intercept=F)
+ + ns(Cx,df=6,intercept=F) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( mspl )

Call:
glm(formula = D ~ -1 + ns(Ax, df = 7, intercept = T) + ns(Px,

df = 6, intercept = F) + ns(Cx, df = 6, intercept = F) +
offset(log(Y)), family = poisson, data = ltri)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.72761 -0.88692 -0.01217 0.93283 3.47380

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

ns(Ax, df = 7, intercept = T)1 -8.08248 0.09584 -84.329 < 2e-16
ns(Ax, df = 7, intercept = T)2 -8.81421 0.11261 -78.271 < 2e-16
ns(Ax, df = 7, intercept = T)3 -8.20301 0.11520 -71.209 < 2e-16
ns(Ax, df = 7, intercept = T)4 -7.90599 0.11814 -66.921 < 2e-16
ns(Ax, df = 7, intercept = T)5 -3.98298 0.08558 -46.540 < 2e-16
ns(Ax, df = 7, intercept = T)6 -21.35542 0.24841 -85.967 < 2e-16
ns(Ax, df = 7, intercept = T)7 0.70588 0.05540 12.741 < 2e-16
ns(Px, df = 6, intercept = F)1 0.59989 0.03777 15.883 < 2e-16
ns(Px, df = 6, intercept = F)2 0.94029 0.04319 21.771 < 2e-16
ns(Px, df = 6, intercept = F)3 1.18582 0.04354 27.237 < 2e-16
ns(Px, df = 6, intercept = F)4 1.22421 0.04204 29.122 < 2e-16
ns(Px, df = 6, intercept = F)5 1.46929 0.08247 17.816 < 2e-16
ns(Px, df = 6, intercept = F)6 1.07376 0.04202 25.555 < 2e-16
ns(Cx, df = 6, intercept = F)1 1.57834 0.10334 15.273 < 2e-16
ns(Cx, df = 6, intercept = F)2 1.60219 0.11202 14.303 < 2e-16
ns(Cx, df = 6, intercept = F)3 1.37407 0.10178 13.500 < 2e-16
ns(Cx, df = 6, intercept = F)4 1.03167 0.07211 14.306 < 2e-16
ns(Cx, df = 6, intercept = F)5 1.19310 0.21716 5.494 3.93e-08
ns(Cx, df = 6, intercept = F)6 NA NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.0037e+08 on 220 degrees of freedom
Residual deviance: 4.3344e+02 on 202 degrees of freedom
AIC: 2026.7

Number of Fisher Scoring iterations: 4

> summary( mt )$deviance - summary( mspl )$deviance

[1] -148.7082

> summary( mt )$df - summary( mspl )$df

[1] 58 -58 61

13. How do the deviances compare?

14. Make a prediction of the terms, using predict.glm using the argument type="terms".
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2.9 Using apc.fit etc.

This exercise is aimed at introducing the functions for fitting and plotting the results from
age-period-cohort models: apc.fit apc.plot apc.lines and apc.frame.

1. Read the testis cancer data and collapse the cases over the histological subtypes:

> th <- read.table( "../data/testis-hist.txt", header=T )
> str( th )

Knowing the names of the variables in the dataset, you collapse over the histological
subtypes. You may want to use the function aggregate; note that there is no need to
tabulate by cohort, because even for the triangular data the relationship c = p− a holds.

Note that the original data had three subtypes of testis cancer, so while it is OK to sum the
number of cases (D), risk time should not be aggregated across histological subtypes — this
is aggregation within subsets of the Lexis diagram.

2. Present the rates in 5-year age and period classes from age 15 to age 59 using rateplot.
Consider the function subset. To this end you must make a table, for example using
something like:

> with( tc, tapply( D, list(floor(A/5)*5+2.5,
+ floor((P-1943)/5)*5+1945.5), sum ) )

— assuming your aggregated data is in the data frame tc. and a similar construction for
the risk time.

3. Fit an age-period-cohort model to the data using the machinery implemented in apc.fit.
The function returns a fitted model and a parametrization, hence you must choose how to
parametrize it, in this case "ACP" with all the drift included in the cohort effect and the
reference cohort being 1918.

> tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,10), parm="ACP", ref.c=1918 )

Can any of the effects be omitted from the model?

4. Plot the estimates using the apc.plot function:

> apc.plot( tapc, ci=TRUE )

5. Now explore in more depth the cohort effect by increasing the number of parameters used
for it:

> tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,20),
+ parm="ACP", ref.c=1918, scale=10^5 )
> fp <- apc.plot( tapc, ci=TRUE )

Do the extra parameters for the cohort effect have any influence on the model fit?

6. Explore the effect of using the residual method instead, and over-plot the estimates from
this method on the existing plot1:

1Unfortunately there is a fatal bug in apc.fit when fitting the period residuals to the age-cohort model — it does
not crash but simply fit a totally meaningless model. There is a fix for this in the version 1.0.11 of the Epi package
which is available at the course homepage
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7. The standard display is not very pretty — it gives an overview, but certainly not anything
worth publishing, hence a bit of handwork is needed. Use the apc.frame for this, and create
a nicer plot of the estimates from the residual model. You may not agree with all the
parameters suggested here:

> par( mar=c(3,4,1,4), mgp=c(3,1,0)/1.7, las=1 )
> fp <- apc.frame( a.lab=seq(20,60,10),
+ a.tic=seq(10,60,5),
+ cp.lab=seq(1900,2000,20),
+ cp.tic=seq(1885,2000,5),
+ r.lab=c(c(1,2,5)/10,1,2,5,10),
+ r.tic=c(1:9/10,1:10),
+ gap=8,
+ rr.ref=1)
> apc.lines( tapc, ci=TRUE, col="blue", frame.par=fp )
> apc.lines( tac.p, ci=TRUE, col="red", frame.par=fp )

8. Try to repeat the exercise using period as the primary timescale, and add this to the plot as
well.

What is revealed by looking at the data this way?
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2.10 Lung cancer: the sex difference

The purpose of this exercise to analyse lung cancer incidence rates in Danish men and women and
make comparisons of the effects between the two.

1. Read the lung cancer dataset from the

> lung <- read.table("../data/apc-Lung.txt", header=T )
> str( lung )
> summary( lung )

These data are tabulated by sex, age, period and cohort in 1-year classes, i.e. each
observation corresponds to a triangle in the Lexis diagram.

2. The variables A, P and C are the left endpoints of the tabulation intervals. In order to be
able to properly analyse data, compute the correct midpoints for each of the triangles.

3. Produce a suitable overview of the rates using the rateplot on suitably grouped rates.
Make the plots separately for men and women.

4. Fit an age-period-cohort model for male and female rates separately. Plot them in separate
displays using apc.plot. Use apc.frame to set up a display that will accomodate plotting
of both sets of estimates.

5. Can you find a way of estimating the ratios of rates and the ratios of RRs between the two
sexes (including confidence intervals for them) using only the apc objects for males and
females separately.

6. Use the function ns (from the splines package) to create model matrices describing age,
period and cohort effects respectively. Then use the function detrend to remove intercept
and trend from the cohort and period terms.

Fit the age-period-cohort model with these terms separately for each sex, for example by
introducing an interaction between sex and all the variables (remember that sex must be a
factor for this to be meaningful).

7. Are there any of the effects that possibly could be assumed to be similar between males and
females?

8. Fit a model where the period effect is assumed to be identical between males and females
and plot the resulting fit for the male/female rate-ratios, and comment on this.
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2.11 Prediction of breast cancer rates

1. Read the breast cancer data from the text file and take a look at it for example by:

> breast <- read.table("../data/breast.txt", header=T )
> str( breast )
> summary( breast )

These data are tabulated be age, period and cohort, i.e. each observation correspond to a
triangle in the Lexis diagram.

2. The variables A, P and C are the left endpoints of the tabulation intervals. In order to be
able to proper analyse data, compute the correct midpoints for each of the triangles.

3. Produce a suitable overview of the rates using the rateplot on suitably grouped rates.

4. Fit the age-period-cohort model with natural splines and plot it in a age-period-cohort
display. Adjust the display to proper quality using apc.frame.

5. Based on the model fitted, make a prediction of future rates of breast cancer:

• at year 2020.

• in the 1960 generation.

Use extensions of the estimated period and cohort effects through the last point and a point
30 years earlier. Try also to see how using a distance of 40 and 20 years work too.

As a start, add the prediction of the period and cohort effects to the plot of the effects.

You will need to look into the single components of the apc object from apc.fit, and you
should take a look at the function approx for linear interpolation.

6. Now use predictions of the period- and cohort effects based on the 30-year differences to
make predictions of cross-sectional rates in 2020 and of the (longitudinal) rates in the 1960
cohort.

Most likely you will need to compute extrapolated values for the period- and cohort-effects
anew.

Show the predicted rates in a plot.



Chapter 3

Solutions to exercises

3.1 Danish primeministers

The following table shows all Danish prime ministers in office since the war. They are ordered by
the period in office, hence some appear twice. Entry end exit refer to the office of prime minister.
A missing date of death means that the person was alive at the end of 2008.

Name Birth Death Entry Exit

Vilhelm Buhl 16/10/1881 18/12/1954 05/05/1945 07/11/1945
Knud Kristensen 26/10/1880 29/09/1962 07/11/1945 13/11/1947
Hans Hedtoft 21/04/1903 29/01/1955 13/11/1947 30/10/1950
Erik Eriksen 20/11/1902 07/10/1972 30/10/1950 30/09/1953
Hans Hedtoft 21/04/1903 29/01/1955 30/09/1953 29/01/1955
H C Hansen 08/11/1906 19/02/1960 01/02/1955 19/02/1960
Viggo Kampmann 21/07/1910 03/06/1976 21/02/1960 03/09/1962
Jens Otto Kragh 15/09/1914 22/06/1978 03/09/1962 02/02/1968
Hilmar Baunsgaard 26/02/1920 30/06/1989 02/02/1968 11/10/1971
Jens Otto Kragh 15/09/1914 22/06/1978 11/10/1971 05/10/1972
Anker Jorgensen 13/07/1922 . 05/10/1972 19/12/1973
Poul Hartling 14/08/1914 30/04/2000 19/12/1973 13/02/1975
Anker Jorgensen 13/07/1922 . 13/02/1975 10/09/1982
Poul Schlüter 03/04/1929 . 10/09/1982 25/01/1993
Poul Nyrup Rasmussen 15/06/1943 . 25/01/1993 27/11/2001
Anders Fogh Rasmussen 26/01/1953 . 27/11/2001 31/12/2007

The data in the table can be fould in the file pm-dk.txt.

> st <- read.table( "../data/pm-dk.txt", header=T, as.is=T,
+ na.strings="." )
> st

Name birth death entry exit
1 Vilhelm Buhl 16/10/1881 18/12/1954 05/05/1945 07/11/1945
2 Knud Kristensen 26/10/1880 29/09/1962 07/11/1945 13/11/1947
3 Hans Hedtoft 21/04/1903 29/01/1955 13/11/1947 30/10/1950
4 Erik Eriksen 20/11/1902 07/10/1972 30/10/1950 30/09/1953
5 Hans Hedtoft 21/04/1903 29/01/1955 30/09/1953 29/01/1955
6 H C Hansen 08/11/1906 19/02/1960 01/02/1955 19/02/1960
7 Viggo Kampmann 21/07/1910 03/06/1976 21/02/1960 03/09/1962
8 Jens Otto Krag 15/09/1914 22/06/1978 03/09/1962 18/02/1968

35
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9 Hilmar Baunsgaard 26/02/1920 30/06/1989 18/02/1968 09/10/1971
10 Jens Otto Krag 15/09/1914 22/06/1978 09/10/1971 05/10/1972
11 Anker Jørgensen 13/07/1922 <NA> 05/10/1972 18/12/1973
12 Poul Hartling 14/08/1914 30/04/2000 18/12/1973 13/02/1975
13 Anker Jørgensen 13/07/1922 <NA> 13/02/1975 10/09/1982
14 Poul Schlüter 03/04/1929 <NA> 10/09/1982 25/01/1993
15 Poul Nyrup Rasmussen 15/06/1943 <NA> 25/01/1993 27/11/2001
16 Anders Fogh Rasmussen 26/01/1953 <NA> 27/11/2001 21/01/2009

> str( st )

'data.frame': 16 obs. of 5 variables:
$ Name : chr "Vilhelm Buhl" "Knud Kristensen" "Hans Hedtoft" "Erik Eriksen" ...
$ birth: chr "16/10/1881" "26/10/1880" "21/04/1903" "20/11/1902" ...
$ death: chr "18/12/1954" "29/09/1962" "29/01/1955" "07/10/1972" ...
$ entry: chr "05/05/1945" "07/11/1945" "13/11/1947" "30/10/1950" ...
$ exit : chr "07/11/1945" "13/11/1947" "30/10/1950" "30/09/1953" ...
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Figure 3.1: Lexis diagram of life lines of all post-war Danish prime ministers, from 30 years of age.
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1. Draw a Lexis diagram with life-lines of the persons.

> # Change the character variables with dates to fractional calendar
> # years
> for( i in 2:5 ) st[,i] <- cal.yr( st[,i], format="%d/%m/%Y" )
> # Attach the data for those still alive
> st$fail <- !is.na(st$death)
> st[!st$fail,"death"] <- 2009
> st

Name birth death entry exit fail
1 Vilhelm Buhl 1881.792 1954.961 1945.340 1945.849 TRUE
2 Knud Kristensen 1880.820 1962.742 1945.849 1947.864 TRUE
3 Hans Hedtoft 1903.300 1955.076 1947.864 1950.827 TRUE
4 Erik Eriksen 1902.884 1972.765 1950.827 1953.745 TRUE
5 Hans Hedtoft 1903.300 1955.076 1953.745 1955.076 TRUE
6 H C Hansen 1906.851 1960.133 1955.084 1960.133 TRUE
7 Viggo Kampmann 1910.550 1976.420 1960.138 1962.671 TRUE
8 Jens Otto Krag 1914.704 1978.471 1962.671 1968.130 TRUE
9 Hilmar Baunsgaard 1920.152 1989.493 1968.130 1971.769 TRUE
10 Jens Otto Krag 1914.704 1978.471 1971.769 1972.760 TRUE
11 Anker Jørgensen 1922.528 2009.000 1972.760 1973.962 FALSE
12 Poul Hartling 1914.616 2000.327 1973.962 1975.117 TRUE
13 Anker Jørgensen 1922.528 2009.000 1975.117 1982.690 FALSE
14 Poul Schlüter 1929.253 2009.000 1982.690 1993.066 FALSE
15 Poul Nyrup Rasmussen 1943.451 2009.000 1993.066 2001.904 FALSE
16 Anders Fogh Rasmussen 1953.069 2009.000 2001.904 2009.055 FALSE

> attach( st )

> # Lexis object
> L <- Lexis( entry = list(per=birth),
+ exit = list(per=death,age=death-birth),
+ exit.status = fail,
+ data = st )
> # Plot Lexis diagram
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, xaxt="n" ) # Omit x-labels
> plot( L, xlim=c(1945,2010), ylim=c(32,88), lwd=3, las=1,grid=0:20*5, col="black",
+ xlab="Calendar time", ylab="Age" )
> points( L, pch=c(NA,16)[L$lex.Xst+1] )
> #put names of the prime ministers on the plot
> text( death, death-birth, Name, adj=c(1.05,-0.05), cex=0.7 )
> par( xaxt="s" )
> axis( side=1, at=seq(1950,2010,10) ) # x-labels at nice places

2. Mark with a different color the periods where they have been in office.

> # New Lexis object describing periods in an office
> # and lines added to a picture
> in_office <- c( rep(FALSE,nrow(st)-1), TRUE )
> st <- cbind( st, in_office )
> Lo <- Lexis( entry = list(per=entry),
+ exit = list(per=exit,age=exit-birth),
+ exit.status = in_office,
+ data = st )
> lines( Lo, lwd=3, las=1, col="red" )
> # the same may be plotted using command segments
> box()
> segments( birth, 0, death, death-birth, lwd=2 )
> segments( entry, entry-birth, exit, exit-birth, lwd=4, col="red" )

3. Draw the line representing age 50 years.
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> abline( h=50 )

4. How many 50th birthdays have been celebrated in office since the war?

> age_entry <- Lo$age
> age_exit <- Lo$age+Lo$lex.dur
> n_birthday<- sum( ( age_entry<50) & ( age_exit>50 ) )
> n_birthday

[1] 7

5. Draw the line representing 2 October 1972. (Why just that?)

> abline( v=cal.yr( "2/10/1972", format="%d/%m/%Y" ) )

6. How many present and former prime ministes were alive at 31st December 2008?

> alive <- (L$death >=2004)
> n_alive <- sum(alive)
> n_alive

[1] 5

> #Anker Jorgensen - 1 person has got 2 lex.id's
> levels( as.factor( subset( L$Name,alive==T ) ) )

[1] "Anders Fogh Rasmussen" "Anker Jørgensen" "Poul Nyrup Rasmussen"
[4] "Poul Schlüter"

7. Which period(s) since the war has seen the maximal number of former post-war prime
ministers alive?

> # New lexis object - since entry to the office to the death
> Ln <- Lexis( entry=list(per=entry), exit=list(per=death,age=death-entry),
+ exit.status=fail, data=st )
> ny <- 2008-1945
> n_alive <- vector( "numeric", ny )
> for (i in 1:ny)
+ {
+ alive <- ( (Ln$death >=(1944+i)) & (Ln$entry<=(1944+i)) )
+ n_alive[i] <- nlevels( as.factor( subset( Ln$Name, alive==T ) ) )
+ }

The maximal number of former post-war prime ministres alive was 5 in 1974-1976 3.2.

8. Mark the area in the diagram with person years lived by persons aged 50 to 70 in the period
1 January 1970 through 1 January 1990.

> rect( 1970, 50, 1990, 70, lwd=2, border="green",col="lightgreen" )

9. Mark the area for the lifetime experience of those who were between 10 and 20 years old in
1945.

> polygon( c(1955,2005,2005,1965,1955), c(30,80,70,30,30), lwd=2,
+ border="blue", col="lightblue" )

The Lexis diagram with all the requested lines etc. is shown in figure 3.1 .

10. How many prime-minister-years have been spent time in each of these sets? And in the
intersection of them?
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Figure 3.2: Number of former prime ministers alive.

> # Prime-minister years lived by persons
> # aged 50 to 70 in the period 1 January 1970 through 1 January 1990.
> x1 <- splitLexis ( Lo ,breaks=c(0,50,70,100), time.scale="age" )
> x2 <- splitLexis ( x1, breaks=c(1900,1970,1990,2010), time.scale="per" )
> summary( x2 )

Transitions:
To

From FALSE TRUE Records: Events: Risk time: Persons:
FALSE 24 1 25 1 63.7 16

Rates:
To

From FALSE TRUE Total
FALSE 0 0.02 0.02

> tapply( status(x2,"exit")==1, list( timeBand(x2,"age","left"),
+ timeBand(x2,"per","left") ), sum )

1900 1970 1990
0 0 0 0
50 0 0 1

> tapply( dur(x2), list( timeBand(x2,"age","left"),
+ timeBand(x2,"per","left") ), sum )
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1900 1970 1990
0 11.10198 0.1519507 1.549624
50 13.54415 19.8480493 17.505818

> # Computing the person-years in the 1925-35 cohort
> x3 <- subset( Lo , birth>1925 & birth<=1935 )
> summary( x3 )

Transitions:
To

From FALSE Records: Events: Risk time: Persons:
FALSE 1 1 0 10.38 1

Rates:
To

From FALSE Total
FALSE 0 0

> dur( x3 )

[1] 10.37645

> # Computing person years in the intersection
> x4 <- subset( x2 , birth>1925 & birth<=1935 )
> summary( x4 )

Transitions:
To

From FALSE Records: Events: Risk time: Persons:
FALSE 2 2 0 10.38 1

Rates:
To

From FALSE Total
FALSE 0 0

> dur( x4 )

[1] 7.310062 3.066393

The number of person-years in office in ages 50-69 in the period 1979-1989 is 19.85. The
number of prime-minister-years in the 1925-35 cohort is 10.38. The intersection of the two
sets holds 7.31 person-years.
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3.2 Reading and tabulating data

The following exercise is aimed at tabulating and displaying the data typically involved in
age-period-cohort analysis.

1. Read the data in the file lung5-M.txt, and print the data. What does each line refer to?

First we have read the data concerning the lung cancer tabulated in 5 years wide age and
period groups. Variables in a data set represent the Age group (A), Period (P), number of
cancer cases (D) and person-years (Y). Each line represents number of cancer cases and
person-years at risk in for a specific age group and period.

> lung <- read.table( "../data/lung5-M.txt", header=T )
> head(lung)

A P D Y
1 40 1943 80 694046.5
2 40 1948 81 754769.5
3 40 1953 73 769440.7
4 40 1958 99 749264.5
5 40 1963 82 757240.0
6 40 1968 97 709558.5

> attach( lung )

2. Print the no. cases in a nice tabular form, and likewise with the person-years. Is there
someything special about the last period?

Table D_table_nice represents number of cancer cases in a tabulater form. Similarly, table
Y_table_nice represents person-years in a tabulater form. While the person-years at risk
are constant or slightly increasing for previous periods, in the last period 1993 the
person-years and number of cases (for age groups older then 55 years and even more for men
older then 65) are slightly smaller. These were born during and before the the second-world
war.

> D_table_nice <- stat.table(index=list(A,P), sum(D), data=lung, margin=T )
> print( D_table_nice, digits=c(sum=0) )

--------------------------------------------------------------------------------------------------------
------------------------------------------------P------------------------------------------------

A 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993 Total
--------------------------------------------------------------------------------------------------------
40 80 81 73 99 82 97 86 90 116 149 91 1044
45 135 163 208 226 252 284 263 251 257 265 251 2555
50 197 292 442 508 560 580 657 608 591 493 446 5374
55 261 404 596 772 1052 1075 1115 1218 1090 995 696 9274
60 213 394 577 955 1342 1682 1654 1826 1885 1497 1113 13138
65 141 273 491 868 1235 1856 2136 2231 2188 2193 1485 15097
70 110 215 300 596 976 1448 1924 2283 2293 2157 1691 13993
75 54 126 167 320 514 860 1213 1559 1824 1640 1221 9498
80 20 57 87 157 220 390 573 753 881 837 716 4691
85 7 10 23 48 72 110 176 213 307 286 262 1514

Total 1218 2015 2964 4549 6305 8382 9797 11032 11432 10512 7972 76178
--------------------------------------------------------------------------------------------------------

> Y_table_nice<-stat.table( index=list(A,P), sum(Y), data=lung, margin=T )
> print( Y_table_nice, digits=c(sum=2) )
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---------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------P-------------------------------------------------------------------

A 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993 Total
---------------------------------------------------------------------------------------------------------------------------------------------
40 694046.50 754769.50 769440.67 749264.50 757240.00 709558.50 695210.17 756263.00 941402.00 1026461.33 752950.17 8606606.34
45 622256.67 676718.00 738290.50 754357.67 737405.67 747054.83 697976.33 681063.83 741553.17 924431.83 821389.83 8142498.33
50 538964.17 600506.33 653867.50 715819.83 733590.17 717677.33 724880.33 675371.50 659498.33 719660.00 700860.17 7440695.66
55 471016.00 512338.00 571270.67 622413.33 681097.00 699103.17 683242.67 686939.50 640796.83 626481.33 544088.17 6738786.67
60 403172.50 435098.33 474197.50 528106.33 573204.83 627036.33 644142.67 627509.17 630384.50 590669.00 463087.83 5996608.99
65 328690.50 357694.83 386083.00 419562.00 463265.17 501020.00 548399.50 564173.50 548586.17 553420.50 421467.67 5092362.84
70 230090.83 269235.83 294786.67 317388.00 341288.33 373577.00 404348.83 442925.00 458828.33 448996.33 365932.67 3947397.82
75 140110.67 166641.83 195729.83 214930.33 228793.50 245932.00 268415.17 290162.33 319152.67 336461.67 262910.17 2669240.17
80 67778.83 80587.00 98561.33 116116.67 125697.33 136646.17 150131.83 163433.00 175767.17 196465.83 168011.67 1479196.83
85 24656.17 28463.83 34280.50 42136.33 49263.33 56018.17 63742.67 71226.50 77621.50 85376.67 74610.50 607396.17

Total 3520782.84 3882053.48 4216508.17 4480094.99 4690845.33 4813623.50 4880490.17 4959067.33 5193590.67 5508424.49 4575308.85 50720789.82
---------------------------------------------------------------------------------------------------------------------------------------------

3. Compute the empirical rates, and print them in a table too.

Table R_table_nice represents age-specific incidence rate per 100 000 person-years in a
tabulater form. Despite the change in person-years, the age-specific rates for period 1993 do
not diverge from the rates of previous ones.

> R_table_nice <- stat.table( index=list(A,P), list(Rate=ratio(D,Y,100000)),
+ data=lung, margin=T )
> print( R_table_nice, digits=c(sum=2) )

--------------------------------------------------------------------------------------------------------
------------------------------------------------P------------------------------------------------

A 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993 Total
--------------------------------------------------------------------------------------------------------
40 11.53 10.73 9.49 13.21 10.83 13.67 12.37 11.90 12.32 14.52 12.09 12.13
45 21.70 24.09 28.17 29.96 34.17 38.02 37.68 36.85 34.66 28.67 30.56 31.38
50 36.55 48.63 67.60 70.97 76.34 80.82 90.64 90.02 89.61 68.50 63.64 72.22
55 55.41 78.85 104.33 124.03 154.46 153.77 163.19 177.31 170.10 158.82 127.92 137.62
60 52.83 90.55 121.68 180.83 234.12 268.25 256.78 290.99 299.02 253.44 240.34 219.09
65 42.90 76.32 127.17 206.88 266.59 370.44 389.50 395.45 398.84 396.26 352.34 296.46
70 47.81 79.86 101.77 187.78 285.98 387.60 475.83 515.44 499.75 480.40 462.11 354.49
75 38.54 75.61 85.32 148.89 224.66 349.69 451.91 537.29 571.51 487.43 464.42 355.83
80 29.51 70.73 88.27 135.21 175.02 285.41 381.66 460.74 501.23 426.03 426.16 317.13
85 28.39 35.13 67.09 113.92 146.15 196.36 276.11 299.05 395.51 334.99 351.16 249.26

Total 34.59 51.91 70.30 101.54 134.41 174.13 200.74 222.46 220.12 190.83 174.24 150.19
--------------------------------------------------------------------------------------------------------

> # another way of computation - not using Epi library
> D_table <- tapply( D, list(A,P), sum )
> Y_table <- tapply( Y, list(A,P), sum )
> R_table <- D_table/Y_table*(10^5)

4. Make the four classical graphs of the data. Consider whether a log-scale for the y-axis is
appropriate. Think about where on the x-axis each age-class is located.

(a) Age-specific rates for each period. (Rates from the same period connected).
> rateplot( R_table, which=c("AP"), ann=TRUE )

(b) Age-specific rates for each cohort. (Rates from the same cohort connected).
> rateplot( R_table, which=c("AC"), ann=TRUE )

(c) Rates for each age-class versus period. (Rates from the same age-class connected).
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> rateplot( R_table, which=c("PA"), ann=TRUE )

(d) Rates for each age-class versus cohort. (Rates from the same age-class connected).
> rateplot( R_table, which=c("CA"), ann=TRUE )
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Figure 3.3: Four rate plots for lung cancer data. Top left: Age on x axis, the rates corresponding
to same period are connected by lines. Top right: Age on x axis, the rates corresponding to same
cohorts are connected by lines. Bottom left: Period on x axis, the rates corresponding to same age
groups are connected by lines. Bottom right: Cohort on x axis, the rates corresponding to same age
groups are connected by lines.

5. How would each of these curves look if:

(a) age-specific rates did not change at all by time?
When age-specific rates did not change at all by time, the age-specific rates are
identical for all periods and cohorts. The period and cohort effects are represented by
constant horizontal lines. Fig.3.4



44 Reading and tabulating data Solutions to exercises

> # age-specific rates remain still the same as in period 1943
> source( "rateplot2.R" )
> R_table_no_change <- matrix( R_table[,1], dim(R_table)[1], dim(R_table)[2] )
> colnames( R_table_no_change ) <- colnames( R_table )
> rownames( R_table_no_change ) <- rownames( R_table )
> R_table_no_change

1943 1948 1953 1958 1963 1968 1973 1978
40 11.52661 11.52661 11.52661 11.52661 11.52661 11.52661 11.52661 11.52661
45 21.69523 21.69523 21.69523 21.69523 21.69523 21.69523 21.69523 21.69523
50 36.55159 36.55159 36.55159 36.55159 36.55159 36.55159 36.55159 36.55159
55 55.41213 55.41213 55.41213 55.41213 55.41213 55.41213 55.41213 55.41213
60 52.83098 52.83098 52.83098 52.83098 52.83098 52.83098 52.83098 52.83098
65 42.89750 42.89750 42.89750 42.89750 42.89750 42.89750 42.89750 42.89750
70 47.80721 47.80721 47.80721 47.80721 47.80721 47.80721 47.80721 47.80721
75 38.54096 38.54096 38.54096 38.54096 38.54096 38.54096 38.54096 38.54096
80 29.50774 29.50774 29.50774 29.50774 29.50774 29.50774 29.50774 29.50774
85 28.39046 28.39046 28.39046 28.39046 28.39046 28.39046 28.39046 28.39046

1983 1988 1993
40 11.52661 11.52661 11.52661
45 21.69523 21.69523 21.69523
50 36.55159 36.55159 36.55159
55 55.41213 55.41213 55.41213
60 52.83098 52.83098 52.83098
65 42.89750 42.89750 42.89750
70 47.80721 47.80721 47.80721
75 38.54096 38.54096 38.54096
80 29.50774 29.50774 29.50774
85 28.39046 28.39046 28.39046

> par( mfrow=c(2,2) )
> rateplot2( R_table_no_change )

(b) age-specific rates were only influenced by period?
When age-specific rates are influenced only by period, the age-specific rates are parallel
for all periods. The period effects are represented by parallel lines. Fig.3.5.
> #age-specific rates are only influence by period
> step <- 2
> change_p <- matrix( rep(seq(1,11*step,step),10),10,11, byrow=T )
> change_p

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,] 1 3 5 7 9 11 13 15 17 19 21
[2,] 1 3 5 7 9 11 13 15 17 19 21
[3,] 1 3 5 7 9 11 13 15 17 19 21
[4,] 1 3 5 7 9 11 13 15 17 19 21
[5,] 1 3 5 7 9 11 13 15 17 19 21
[6,] 1 3 5 7 9 11 13 15 17 19 21
[7,] 1 3 5 7 9 11 13 15 17 19 21
[8,] 1 3 5 7 9 11 13 15 17 19 21
[9,] 1 3 5 7 9 11 13 15 17 19 21
[10,] 1 3 5 7 9 11 13 15 17 19 21

> R_table_p <- R_table_no_change + change_p
> colnames( R_table_p ) <- colnames( R_table )
> rownames( R_table_p ) <- rownames( R_table )
> R_table_p

1943 1948 1953 1958 1963 1968 1973 1978
40 12.52661 14.52661 16.52661 18.52661 20.52661 22.52661 24.52661 26.52661
45 22.69523 24.69523 26.69523 28.69523 30.69523 32.69523 34.69523 36.69523
50 37.55159 39.55159 41.55159 43.55159 45.55159 47.55159 49.55159 51.55159
55 56.41213 58.41213 60.41213 62.41213 64.41213 66.41213 68.41213 70.41213
60 53.83098 55.83098 57.83098 59.83098 61.83098 63.83098 65.83098 67.83098
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Figure 3.4: Four rate plots for data with no period and cohort effect. Top left: Age on x axis,
the rates corresponding to same period are connected by lines. Top right: Age on x axis, the rates
corresponding to same cohorts are connected by lines. Bottom left: Period on x axis, the rates
corresponding to same age groups are connected by lines. Bottom right: Cohort on x axis, the rates
corresponding to same age groups are connected by lines.

65 43.89750 45.89750 47.89750 49.89750 51.89750 53.89750 55.89750 57.89750
70 48.80721 50.80721 52.80721 54.80721 56.80721 58.80721 60.80721 62.80721
75 39.54096 41.54096 43.54096 45.54096 47.54096 49.54096 51.54096 53.54096
80 30.50774 32.50774 34.50774 36.50774 38.50774 40.50774 42.50774 44.50774
85 29.39046 31.39046 33.39046 35.39046 37.39046 39.39046 41.39046 43.39046

1983 1988 1993
40 28.52661 30.52661 32.52661
45 38.69523 40.69523 42.69523
50 53.55159 55.55159 57.55159
55 72.41213 74.41213 76.41213
60 69.83098 71.83098 73.83098
65 59.89750 61.89750 63.89750
70 64.80721 66.80721 68.80721
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75 55.54096 57.54096 59.54096
80 46.50774 48.50774 50.50774
85 45.39046 47.39046 49.39046

> par( mfrow=c(2,2) )
> rateplot2( (R_table_p) )
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Figure 3.5: Four rate plots for data with an effect of period. Top left: Age on x axis, the rates cor-
responding to same period are connected by lines. Top right: Age on x axis, the rates corresponding
to same cohorts are connected by lines. Bottom left: Period on x axis, the rates corresponding to
same age groups are connected by lines. Bottom right: Cohort on x axis, the rates corresponding
to same age groups are connected by lines.

(c) age-specific rates were only influenced by cohort?
The situation when age-specific rates are influenced only by cohort is demonstrated at
Fig.3.6
> #age-specific rates are only influence by cohort
> nr <- nrow( R_table )
> nc <- 10
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> p <- c( rep(NA,nc ), R_table[,1] )
> np <- length( p )
> R_table_c <- cbind(p[(np-nr+1):np],p[(np-nr):(np-1)],p[(np-nr-1):(np-2)],
+ p[(np-nr-2):(np-3)],p[(np-nr-3):(np-4)],p[(np-nr-4):(np-5)],
+ p[(np-nr-5):(np-6)],p[(np-nr-6):(np-7)],p[(np-nr-7):(np-8)],
+ p[(np-nr-8):(np-9)],p[(np-nr-9):(np-10)]
+ )
> colnames( R_table_c ) <- colnames( R_table )
> rownames( R_table_c ) <- rownames( R_table )
> R_table_c

1943 1948 1953 1958 1963 1968 1973 1978
40 11.52661 NA NA NA NA NA NA NA
45 21.69523 11.52661 NA NA NA NA NA NA
50 36.55159 21.69523 11.52661 NA NA NA NA NA
55 55.41213 36.55159 21.69523 11.52661 NA NA NA NA
60 52.83098 55.41213 36.55159 21.69523 11.52661 NA NA NA
65 42.89750 52.83098 55.41213 36.55159 21.69523 11.52661 NA NA
70 47.80721 42.89750 52.83098 55.41213 36.55159 21.69523 11.52661 NA
75 38.54096 47.80721 42.89750 52.83098 55.41213 36.55159 21.69523 11.52661
80 29.50774 38.54096 47.80721 42.89750 52.83098 55.41213 36.55159 21.69523
85 28.39046 29.50774 38.54096 47.80721 42.89750 52.83098 55.41213 36.55159

1983 1988 1993
40 NA NA NA
45 NA NA NA
50 NA NA NA
55 NA NA NA
60 NA NA NA
65 NA NA NA
70 NA NA NA
75 NA NA NA
80 11.52661 NA NA
85 21.69523 11.52661 NA

> par( mfrow=c(2,2) )
> rateplot2( R_table_c )
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Figure 3.6: Four rate plots for data with an effect of cohort. Top left: Age on x axis, the rates cor-
responding to same period are connected by lines. Top right: Age on x axis, the rates corresponding
to same cohorts are connected by lines. Bottom left: Period on x axis, the rates corresponding to
same age groups are connected by lines. Bottom right: Cohort on x axis, the rates corresponding
to same age groups are connected by lines.

3.3 Rates and survival

1. Consider the following data:

Year of birth Year of death Age at death
1994 1995

1994 2,900 500 0
1993 120 130 1
1992 50 60 2
1991 45 55 3
1990 40 40 4
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(a) Represent these data in a Lexis diagram.

Calendar time

A
ge

1991 1992 1993 1994 1995 1996
0

1

2

3

4

5

2900

120

50

45

40

500

130

60

55

40

Figure 3.7: Deaths in age classes 0–4 for the birth cohorts 1990–94, and in age class 0 for the
cohorts 1991 and 1992. Fictitious data.

The given data are shown in the Lexis-diagram in figure 3.7(left). Note that the deaths
given are only for one age class for each cohort, so there is no period with complete
death count.

(b) On the basis of these data, can you calculate the age-specific death rate for
two-year-olds (1m2) in 1994? If you can, do it. If you cannot, explain what additional
information you would need.
In order to be able to do so one would need the total number of deaths among all
two-year olds in 1994. But only the deaths in the 1992 cohort are known, not those in
the 1991 cohort. Further one would need to know the risk time in the age-class in 1994.
This could be estimated as the average of the number of 2-years olds at the beginning
and end of 1994 if these numbers were available. If the number of one-year olds at the
beginning of 1994 and the number of three-year olds at the end of 1994 were available
a more sophisticated estimate of the risk time would be available.

(c) On the basis of these data, can you calculate the probability of surviving from age 2 to
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age 3 (1q2) in for the cohort born in 1992?
If you can, do it. If you cannot, explain what additional information you would need.
It is not possible to compute the probability of surviving from age 2 to age 3 in the
1992 cohort, because the number in this cohort that reach the age of 2 is not known.
This number would be the denominator in the fraction estimating the probability
where the numerator would be the number of deaths, 50 + 60 = 110.

2. Consider the following data:

• Live births during 1991: 142,000

• Number of infants born in 1991 who did not survive until the end of 1991: 2,900

• Number of infants born in 1991 who survived to the end of 1991, but did not reach
their first birthday: 500

• Live births during 1992: 138,000

• Number of infants born in 1992 who did not survive until the end of 1992: 2,600

• Number of infants born in 1992 who survived to the end of 1992, but did not reach
their first birthday: 450

(a) The data are represented on a Lexis diagram at figure 3.7 (right).

(b) Calculate the infant mortality rate (IMR) for 1992 under the assumption that you were
only able to observe events occurring in 1992, and that you did not know the birth
dates of infants dying during that year.
The infant mortality rate given that we only observe events during 1992, would have to
be computed on the assumption that birth rates were constant, i.e. the number of
births in 1991 and 1992 were the same. We would then observe the one-year survival
probability to be (500 + 2600)/138000 = 0.02246377, and hence the IMR to be
− log(1− 0.02246377) = 0.22720.
Alternatively we could argue that out of the initial 138000, 3100 dies, so a fair bet on
the risk time is 138000− 3100/2 = 136450, so the rate is estimated as
3100/136450 = 0.022719

(c) Same as above, except that now you do know the birth dates of infants dying during
1992.
If we know the birth date of those dying during 1992 we get extra information that
enables us to produce a better estimate of the risk time. If we assume that births occur
uniformly over the year, the 138000− 2600 = 135400 survivors of the 1992 cohort
contribute on average 1/2 person-year. Assuming the 2600 deaths occur uniformly over
the triangle, these will contribute 1/3 person-year each1. By the same token the 500
deaths in the upper triangle also contribute 1/3 person year each. In order to get the
contribution from those surviving through the upper triangle we must again invoke the
assumption of constancy of birth and death rates and assume that 135400 0-year olds
are alive at the beginning of 1992, so 134900 survive, contributiong 134900/2 person
years. Thus the total risk time is:

135400/2 + 2600/3 + 134900/2 + 500/3 = 136183.3

giving an estimate of the infant mortality rate of 3100/136183.3 = 0.022763.

1
∫ p=1

p=0

∫ a=p

a=0
2a da dp =

∫ p=1

p=0
a2 dp = 1/3
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Figure 3.8: Deaths in the cohorts 1991 and 1992. Fictitious data.

(d) Assume all data are known: Calculate the IMR.
If we assume all numbers are known, the last calculation must be updated with the
correct number of 0-year olds at the beginning of 1992, 142000− 2900 = 139100, giving
138600 survivors in the upper triangle:

135400/2 + 2600/3 + 138600/2 + 500/3 = 138033.3

giving an estimate of the infant mortality rate of 3100/138033.3 = 0.022458.
Thus we see that the annual variation in birth rates far outweighs the differenecs
between the various methodological approaches.

(e) What is the IMR for the 1992 birth cohort?
For the 1992 birth cohort we have two ways of proceeding:

• 2600 + 450 = 3050 out of 138000 die, thus the one-year survival probability is
3050/138000 = 0.022101 and hence the infant mortality rate
− log(1− 0.022101) = 0.022349.
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• The person-years can be calculated using the same arguments as above:

(138000− 2600)/2 + 2600/3 + (138000− 2600− 450)/2 + 450/3 = 136191.7

so the rate is estimated as 3050/136191.7 = 0.022395.
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3.4 Age-period model

The following exercise is aimed at familiarizing you with the parametrization of the age-period
model. It will give you the opportunity explore how to extract and and plot parameter estimates
from models.

1. Read the data in the file lung5-M.txt as in the tabulation exercise:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> head(lung)

A P D Y
1 40 1943 80 694046.5
2 40 1948 81 754769.5
3 40 1953 73 769440.7
4 40 1958 99 749264.5
5 40 1963 82 757240.0
6 40 1968 97 709558.5

> attach( lung )
> table( A )

A
40 45 50 55 60 65 70 75 80 85
11 11 11 11 11 11 11 11 11 11

> table( P )

P
1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993
10 10 10 10 10 10 10 10 10 10 10

The tables here shows the extent of the data aling the age and period axes, whereas the
next table shows the persons years. It is more conveniently rescaled to person-millenia,
rounded to one decimal:

> round( tapply( Y, list(A,P), sum )/1000, 1 )

1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 1993
40 694.0 754.8 769.4 749.3 757.2 709.6 695.2 756.3 941.4 1026.5 753.0
45 622.3 676.7 738.3 754.4 737.4 747.1 698.0 681.1 741.6 924.4 821.4
50 539.0 600.5 653.9 715.8 733.6 717.7 724.9 675.4 659.5 719.7 700.9
55 471.0 512.3 571.3 622.4 681.1 699.1 683.2 686.9 640.8 626.5 544.1
60 403.2 435.1 474.2 528.1 573.2 627.0 644.1 627.5 630.4 590.7 463.1
65 328.7 357.7 386.1 419.6 463.3 501.0 548.4 564.2 548.6 553.4 421.5
70 230.1 269.2 294.8 317.4 341.3 373.6 404.3 442.9 458.8 449.0 365.9
75 140.1 166.6 195.7 214.9 228.8 245.9 268.4 290.2 319.2 336.5 262.9
80 67.8 80.6 98.6 116.1 125.7 136.6 150.1 163.4 175.8 196.5 168.0
85 24.7 28.5 34.3 42.1 49.3 56.0 63.7 71.2 77.6 85.4 74.6

2. We fit a Poisson model with effects of age (A) and period (P) as class variables:

> ap.1 <- glm( D ~ factor(A) + factor(P) + offset(log(Y)), family=poisson )
> summary( ap.1 )

Call:
glm(formula = D ~ factor(A) + factor(P) + offset(log(Y)), family = poisson)

Deviance Residuals:
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Min 1Q Median 3Q Max
-10.400 -3.728 -0.984 3.685 11.203

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.34235 0.04192 -246.71 <2e-16
factor(A)45 0.95258 0.03673 25.93 <2e-16
factor(A)50 1.78237 0.03383 52.69 <2e-16
factor(A)55 2.41412 0.03265 73.94 <2e-16
factor(A)60 2.86259 0.03216 89.01 <2e-16
factor(A)65 3.15159 0.03201 98.47 <2e-16
factor(A)70 3.31784 0.03209 103.40 <2e-16
factor(A)75 3.30980 0.03261 101.50 <2e-16
factor(A)80 3.17640 0.03423 92.81 <2e-16
factor(A)85 2.90983 0.04024 72.32 <2e-16
factor(P)1948 0.39206 0.03629 10.80 <2e-16
factor(P)1953 0.67592 0.03404 19.86 <2e-16
factor(P)1958 1.01434 0.03226 31.44 <2e-16
factor(P)1963 1.26666 0.03130 40.47 <2e-16
factor(P)1968 1.48717 0.03067 48.49 <2e-16
factor(P)1973 1.59239 0.03039 52.40 <2e-16
factor(P)1978 1.67994 0.03020 55.62 <2e-16
factor(P)1983 1.69902 0.03015 56.35 <2e-16
factor(P)1988 1.59958 0.03028 52.83 <2e-16
factor(P)1993 1.52558 0.03078 49.57 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 71776.2 on 109 degrees of freedom
Residual deviance: 2723.5 on 90 degrees of freedom
AIC: 3620.5

Number of Fisher Scoring iterations: 5

The parameters in this model are: intercept: the log-rate in the refence category, which in
this model is the first age-category (40: 40–44 years), and the first period (1943: 1943–47),
— namely the ones not mentioned in the output from the model. All other parameters are
log-rate-ratios relative to this reference category.

3. The same model is now fitted without intercept:

> ap.0 <- glm( D ~ -1 + factor(A) + factor(P) + offset(log(Y)), family=poisson )
> summary( ap.0 )

Call:
glm(formula = D ~ -1 + factor(A) + factor(P) + offset(log(Y)),

family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-10.400 -3.728 -0.984 3.685 11.203

Coefficients:
Estimate Std. Error z value Pr(>|z|)

factor(A)40 -10.34235 0.04192 -246.71 <2e-16
factor(A)45 -9.38977 0.03454 -271.89 <2e-16
factor(A)50 -8.55998 0.03145 -272.17 <2e-16
factor(A)55 -7.92822 0.03020 -262.48 <2e-16
factor(A)60 -7.47976 0.02970 -251.83 <2e-16
factor(A)65 -7.19075 0.02956 -243.26 <2e-16
factor(A)70 -7.02451 0.02970 -236.53 <2e-16
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factor(A)75 -7.03255 0.03031 -232.05 <2e-16
factor(A)80 -7.16595 0.03209 -223.33 <2e-16
factor(A)85 -7.43252 0.03847 -193.22 <2e-16
factor(P)1948 0.39206 0.03629 10.80 <2e-16
factor(P)1953 0.67592 0.03404 19.86 <2e-16
factor(P)1958 1.01434 0.03226 31.44 <2e-16
factor(P)1963 1.26666 0.03130 40.47 <2e-16
factor(P)1968 1.48717 0.03067 48.49 <2e-16
factor(P)1973 1.59239 0.03039 52.40 <2e-16
factor(P)1978 1.67994 0.03020 55.62 <2e-16
factor(P)1983 1.69902 0.03015 56.35 <2e-16
factor(P)1988 1.59958 0.03028 52.83 <2e-16
factor(P)1993 1.52558 0.03078 49.57 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.0037e+08 on 110 degrees of freedom
Residual deviance: 2.7235e+03 on 90 degrees of freedom
AIC: 3620.5

Number of Fisher Scoring iterations: 5

The age-parameters now refer to log-rates as estimated in the reference period, 1943.

4. Now we fit the same model, using the period 1968–72 as the reference period, by using the
relevel command for factors to make 1968 the first level:

> ap.2 <- glm( D ~ factor(A) - 1 + relevel(factor(P),"1968") + offset(log(Y)),
+ family=poisson )

5. Extract the parameters from the model, by doing:

> ( ap.cf <- summary( ap.2 )$coef )

Estimate Std. Error z value Pr(>|z|)
factor(A)40 -8.85517346 0.03267181 -271.034040 0.000000e+00
factor(A)45 -7.90259321 0.02232327 -354.007042 0.000000e+00
factor(A)50 -7.07280223 0.01707967 -414.106430 0.000000e+00
factor(A)55 -6.44104968 0.01455119 -442.647633 0.000000e+00
factor(A)60 -5.99258631 0.01342462 -446.387795 0.000000e+00
factor(A)65 -5.70357953 0.01312796 -434.460586 0.000000e+00
factor(A)70 -5.53733722 0.01337568 -413.985515 0.000000e+00
factor(A)75 -5.54537497 0.01462008 -379.298646 0.000000e+00
factor(A)80 -5.67877130 0.01794833 -316.395572 0.000000e+00
factor(A)85 -5.94534410 0.02775505 -214.207677 0.000000e+00
relevel(factor(P), "1968")1943 -1.48717439 0.03066768 -48.493215 0.000000e+00
relevel(factor(P), "1968")1948 -1.09511737 0.02481363 -44.133706 0.000000e+00
relevel(factor(P), "1968")1953 -0.81125051 0.02137233 -37.957983 0.000000e+00
relevel(factor(P), "1968")1958 -0.47283820 0.01841692 -25.674120 2.274664e-145
relevel(factor(P), "1968")1963 -0.22051337 0.01667114 -13.227249 6.108232e-40
relevel(factor(P), "1968")1973 0.10521650 0.01487968 7.071155 1.536496e-12
relevel(factor(P), "1968")1978 0.19276119 0.01449332 13.300001 2.314659e-40
relevel(factor(P), "1968")1983 0.21184343 0.01438727 14.724363 4.496857e-49
relevel(factor(P), "1968")1988 0.11240928 0.01465483 7.670458 1.713837e-14
relevel(factor(P), "1968")1993 0.03840264 0.01565559 2.452966 1.416836e-02

6. We plot the estimated age-specific incidence rates, we need the first 10 parameters, with
their standard errors:

> age.cf <- ap.cf[1:10,1:2]
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This means that we take rows 1–10 and columns 1–2. The corresponding age classes are
40, . . . , 85. The midpoints of these age-classes are 2.5 years higher. The ages can be
generated in R by saying seq(40,85,5)+2.5. So we can make the plot in increasing detail:

> par( mfrow=c(1,3) )
> am <- seq(40,85,5)+2.5
> plot( am, age.cf[,1] )
> plot( am, exp(age.cf[,1]), log="y" )
> plot( am, exp(age.cf[,1]), type="l", log="y" )
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Figure 3.9: Three versions of the plot of the age-specific rates.

If we want to put confidence limits on we just take ±1.96× s.e. on the log-scale. And the
s.e.s are in column 2 of age.cf. Lines are added to a plot by the command lines, or all is
made in one go using matplot

> matplot( am, cbind( exp(age.cf[,1]),
+ exp(age.cf[,1]-1.96*age.cf[,2]),
+ exp(age.cf[,1]+1.96*age.cf[,2]) ),
+ type="l", log="y", lwd=c(3,1,1), lty=1, col="black" )

The specification of lty= and col= is necessary in matplot, because these otherwise cycles
through linetypes and colours, whcih is not desired here.

7. Now for the rate-ratio-parameters, take the rest of the coefficients:

> ( RR.cf <- ap.cf[11:20,1:2] )

Estimate Std. Error
relevel(factor(P), "1968")1943 -1.48717439 0.03066768
relevel(factor(P), "1968")1948 -1.09511737 0.02481363
relevel(factor(P), "1968")1953 -0.81125051 0.02137233
relevel(factor(P), "1968")1958 -0.47283820 0.01841692
relevel(factor(P), "1968")1963 -0.22051337 0.01667114
relevel(factor(P), "1968")1973 0.10521650 0.01487968
relevel(factor(P), "1968")1978 0.19276119 0.01449332
relevel(factor(P), "1968")1983 0.21184343 0.01438727
relevel(factor(P), "1968")1988 0.11240928 0.01465483
relevel(factor(P), "1968")1993 0.03840264 0.01565559
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But the reference group is missing, so we must stick two 0s in the correct place. We use the
command rbind (row-bind):

> RR.cf <- rbind( RR.cf[1:5,], c(0,0), RR.cf[6:10,] )
> RR.cf

Estimate Std. Error
relevel(factor(P), "1968")1943 -1.48717439 0.03066768
relevel(factor(P), "1968")1948 -1.09511737 0.02481363
relevel(factor(P), "1968")1953 -0.81125051 0.02137233
relevel(factor(P), "1968")1958 -0.47283820 0.01841692
relevel(factor(P), "1968")1963 -0.22051337 0.01667114

0.00000000 0.00000000
relevel(factor(P), "1968")1973 0.10521650 0.01487968
relevel(factor(P), "1968")1978 0.19276119 0.01449332
relevel(factor(P), "1968")1983 0.21184343 0.01438727
relevel(factor(P), "1968")1988 0.11240928 0.01465483
relevel(factor(P), "1968")1993 0.03840264 0.01565559

Now we have the same situation as for the age-specific rates, and can plot the relative risks
(relative to 1968) in precisely the same way as for the age-specific rates:

> matplot( as.numeric(levels(factor(P)))+2.5,
+ cbind( exp(RR.cf[,1]),
+ exp(RR.cf[,1]-1.96*RR.cf[,2]),
+ exp(RR.cf[,1]+1.96*RR.cf[,2]) ),
+ type="l", log="y", lwd=c(3,1,1), lty=1, col="black" )

These rate-ratios are presented beside the corresponding age-specific rates.
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Figure 3.10: Age-specific rates and rate-ratios relative to the period 1968–72.

8. The relevant parameters may also be extracted directly from the model without intercept,
using the function ci.lin which allows selection of a subset of the parameters either by
using numbers in the sequence or using character strings through grep. Linear functions of
selected parameter are computed using a contrast matrix, which is multiplied to the selected
parameters.
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If we want log-rates in the reference period (the first level of factor(P) are the
age-parameters. The log-rates in the period labelled 1968 are these plus the period estimate
from 1968, so to illustrate the workings of the subsetting we select the relevant parameters
and just disply these.

> ci.lin( ap.0, subset=c("A","1968") )

Estimate StdErr z P 2.5% 97.5%
factor(A)40 -10.342348 0.04192098 -246.71054 0 -10.424511 -10.260184
factor(A)45 -9.389768 0.03453519 -271.88982 0 -9.457455 -9.322080
factor(A)50 -8.559977 0.03145070 -272.17123 0 -8.621619 -8.498334
factor(A)55 -7.928224 0.03020492 -262.48125 0 -7.987425 -7.869024
factor(A)60 -7.479761 0.02970184 -251.82817 0 -7.537975 -7.421546
factor(A)65 -7.190754 0.02956000 -243.25964 0 -7.248690 -7.132817
factor(A)70 -7.024512 0.02969777 -236.53331 0 -7.082718 -6.966305
factor(A)75 -7.032549 0.03030666 -232.04631 0 -7.091949 -6.973149
factor(A)80 -7.165946 0.03208700 -223.32863 0 -7.228835 -7.103056
factor(A)85 -7.432518 0.03846618 -193.22216 0 -7.507911 -7.357126
factor(P)1968 1.487174 0.03066768 48.49322 0 1.427067 1.547282

Since we often need rates as the exponentila of the parameters, there is a Exp= argument
that gives these too (with c.i.):

> ci.lin( ap.0, subset=c("A","1968"), Exp=TRUE )

Estimate StdErr z P exp(Est.) 2.5%
factor(A)40 -10.342348 0.04192098 -246.71054 0 3.223854e-05 2.969561e-05
factor(A)45 -9.389768 0.03453519 -271.88982 0 8.357488e-05 7.810509e-05
factor(A)50 -8.559977 0.03145070 -272.17123 0 1.916238e-04 1.801683e-04
factor(A)55 -7.928224 0.03020492 -262.48125 0 3.604259e-04 3.397078e-04
factor(A)60 -7.479761 0.02970184 -251.82817 0 5.643925e-04 5.324747e-04
factor(A)65 -7.190754 0.02956000 -243.25964 0 7.535208e-04 7.111050e-04
factor(A)70 -7.024512 0.02969777 -236.53331 0 8.898020e-04 8.394882e-04
factor(A)75 -7.032549 0.03030666 -232.04631 0 8.826786e-04 8.317744e-04
factor(A)80 -7.165946 0.03208700 -223.32863 0 7.724481e-04 7.253654e-04
factor(A)85 -7.432518 0.03846618 -193.22216 0 5.916955e-04 5.487263e-04
factor(P)1968 1.487174 0.03066768 48.49322 0 4.424576e+00 4.166460e+00

97.5%
factor(A)40 3.499924e-05
factor(A)45 8.942772e-05
factor(A)50 2.038076e-04
factor(A)55 3.824076e-04
factor(A)60 5.982235e-04
factor(A)65 7.984666e-04
factor(A)70 9.431313e-04
factor(A)75 9.366982e-04
factor(A)80 8.225870e-04
factor(A)85 6.380294e-04
factor(P)1968 4.698682e+00

To get the linear combination of parameters we want we construct the contrast matrix
needed to provide the estimates if premultiplied to the selected subset of parameters.

> ( cm.A <- cbind( diag( nlevels( factor(A) ) ), 1 ) )

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,] 1 0 0 0 0 0 0 0 0 0 1
[2,] 0 1 0 0 0 0 0 0 0 0 1
[3,] 0 0 1 0 0 0 0 0 0 0 1
[4,] 0 0 0 1 0 0 0 0 0 0 1
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[5,] 0 0 0 0 1 0 0 0 0 0 1
[6,] 0 0 0 0 0 1 0 0 0 0 1
[7,] 0 0 0 0 0 0 1 0 0 0 1
[8,] 0 0 0 0 0 0 0 1 0 0 1
[9,] 0 0 0 0 0 0 0 0 1 0 1
[10,] 0 0 0 0 0 0 0 0 0 1 1

Using the argument ctr.mat= in ci.lin to produce the rates in period 1968 we can plot
them on a log-scale (note we select only the columns with rates and ci.s:

> arates <- ci.lin( ap.0, subset=c("A","1968"), ctr.mat=cm.A, Exp=TRUE )[,5:7]
> matplot( as.numeric( levels( factor(A) ) )+2.5, arates,
+ log="y", type="l", lwd=c(3,1,1), col="black", lty=1 )

The rates extracted this way is in the left panel of figure 3.11.

9. Using the same machinery to extract the rate-ratios relative to 1968, we construct the
contrast matrix to extract the difference between the RRs with the first period as reference
and the RR at 1968; this is the differnece between two metrices: The first one is the one
that extracts the rate-ratios with a prefixed 0:

> cm.P <- rbind(0,diag( nlevels(factor(P))-1 ) )
> cm.P

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 1 0 0 0 0 0 0 0 0 0
[3,] 0 1 0 0 0 0 0 0 0 0
[4,] 0 0 1 0 0 0 0 0 0 0
[5,] 0 0 0 1 0 0 0 0 0 0
[6,] 0 0 0 0 1 0 0 0 0 0
[7,] 0 0 0 0 0 1 0 0 0 0
[8,] 0 0 0 0 0 0 1 0 0 0
[9,] 0 0 0 0 0 0 0 1 0 0
[10,] 0 0 0 0 0 0 0 0 1 0
[11,] 0 0 0 0 0 0 0 0 0 1

The second is the matrix with 1s in the column corresponding to 1968.

> cm.Pref <- cm.P * 0
> wh.col <- grep( "1968", levels(factor(P)) ) - 1
> cm.Pref[,wh.col] <- 1
> cm.Pref

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 1 0 0 0 0 0
[2,] 0 0 0 0 1 0 0 0 0 0
[3,] 0 0 0 0 1 0 0 0 0 0
[4,] 0 0 0 0 1 0 0 0 0 0
[5,] 0 0 0 0 1 0 0 0 0 0
[6,] 0 0 0 0 1 0 0 0 0 0
[7,] 0 0 0 0 1 0 0 0 0 0
[8,] 0 0 0 0 1 0 0 0 0 0
[9,] 0 0 0 0 1 0 0 0 0 0
[10,] 0 0 0 0 1 0 0 0 0 0
[11,] 0 0 0 0 1 0 0 0 0 0

The contrast matrix to use is the difference between these two, and can therefore be directly
plotted:
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> cm.P - cm.Pref

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 -1 0 0 0 0 0
[2,] 1 0 0 0 -1 0 0 0 0 0
[3,] 0 1 0 0 -1 0 0 0 0 0
[4,] 0 0 1 0 -1 0 0 0 0 0
[5,] 0 0 0 1 -1 0 0 0 0 0
[6,] 0 0 0 0 0 0 0 0 0 0
[7,] 0 0 0 0 -1 1 0 0 0 0
[8,] 0 0 0 0 -1 0 1 0 0 0
[9,] 0 0 0 0 -1 0 0 1 0 0
[10,] 0 0 0 0 -1 0 0 0 1 0
[11,] 0 0 0 0 -1 0 0 0 0 1

> RR0 <- ci.lin( ap.0, subset="P", ctr.mat=cm.P-cm.Pref, Exp=TRUE )[,5:7]
> matplot( as.numeric(levels(factor(P)))+2.5, RR0,
+ type="l", log="y", lwd=c(3,1,1), lty=1, col="black" )

These RRs are plotted alongside the estimated rates in figure 3.11.
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Figure 3.11: Age-specific rates and rate-ratios relative to the period 1968–72, extracted using ci.lin.

10. The estimates are saved along with the computed mipoints:

> age.pt <- as.numeric(levels(factor(A)))+2.5
> RR.pt <- as.numeric(levels(factor(P)))+2.5
> save( age.pt, arates,
+ RR.pt, RR0, file="../data/age-per-est.Rdata" )

11. If we want to plot the rates and the rate ratios beside each other, and make sure that the
physical extent of the units on both the x-axis and the y-axis are the same, we first
determine the relative extent of the x-axes for the two plots:

> alim <- range( A ) + c(0,5)
> plim <- range( P ) + c(0,5)
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We then use these to determine the relative width of the two panels, using the layout
function, and subsequenty adjust the y-axis of the RR-plot to the same physical extent as
the rate axis (note that the par("usr") returns the log10 of the limits for logaritmic axes):

> # Compute limits explicitly
> rlim <- range(arates*10^5)*c(1/1.05,1.05)
> RRlim <- 10^(log10(rlim)-ceiling(mean(log10(rlim))))
> # Determin reltive width of plots
> layout( rbind( c(1,2) ), widths=c(diff(alim),diff(plim)) )
> # No space on the sides of the plots, only outer space
> par( mar=c(4,0,1,0), oma=c(0,4,0,4), mgp=c(3,1,0)/1.5, las=1 )
> matplot( as.numeric(levels(factor(A)))+2.5, arates*10^5,
+ type="l", lwd=c(3,1,1), lty=1, col="black",
+ log="y", xaxs="i", xlim=alim, xlab="Age", ylim=rlim )
> mtext( "Male lung cancer per 100,000", las=0, side=2, outer=T, line=2.5 )
> matplot( as.numeric(levels(factor(P)))+2.5, RR0,
+ type="l", lwd=c(3,1,1), lty=1, col="black",
+ log="y", xlab="Period of follow-up", xlim=plim, yaxt="n", ylim=RRlim, ylab="" )
> abline( h=1 )
> points( 1968+2.5, 1, pch=1, lwd=3 )
> axis( side=4 )
> mtext( "Rate ratio", side=4, outer=T, las=0, line=2.5 )

The resulting plot is in figure 3.12
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Figure 3.12: Age-specific rates and rate-ratios relative to the period 1968–72, extracted using ci.lin,
and plotted with scales with physically equal scaling.
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3.5 Age-cohort model

This exercise is parallel to the exercise on the age-period model.

1. First we read the data in the file lung5-M.txt and create the cohort variable:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung$C <- lung$P - lung$A
> attach( lung )
> table( C )

C
1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918 1923 1928 1933

1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5
1938 1943 1948 1953

4 3 2 1

It is clear from these tables that the data layout is by age and period, since the outer
cohorts are more scarcely represented.

2. We fit a Poisson model with effects of age (A) and cohort (C) as class variables:

> ac.1 <- glm( D ~ factor(A) + factor(C) + offset(log(Y)), family=poisson )
> summary( ac.1 )

Call:
glm(formula = D ~ factor(A) + factor(C) + offset(log(Y)), family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-7.2822 -2.0274 0.3573 2.0545 5.2834

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -11.83501 0.38038 -31.114 < 2e-16
factor(A)45 0.96843 0.03800 25.487 < 2e-16
factor(A)50 1.83467 0.03591 51.087 < 2e-16
factor(A)55 2.51168 0.03508 71.595 < 2e-16
factor(A)60 3.02924 0.03476 87.147 < 2e-16
factor(A)65 3.40740 0.03471 98.156 < 2e-16
factor(A)70 3.67325 0.03487 105.335 < 2e-16
factor(A)75 3.78630 0.03545 106.819 < 2e-16
factor(A)80 3.78402 0.03704 102.165 < 2e-16
factor(A)85 3.66814 0.04280 85.703 < 2e-16
factor(C)1863 0.01046 0.42031 0.025 0.980152
factor(C)1868 0.51345 0.38845 1.322 0.186240
factor(C)1873 0.82684 0.38231 2.163 0.030560
factor(C)1878 1.05336 0.38054 2.768 0.005639
factor(C)1883 1.41904 0.37972 3.737 0.000186
factor(C)1888 1.91197 0.37927 5.041 4.63e-07
factor(C)1893 2.28073 0.37909 6.016 1.78e-09
factor(C)1898 2.55794 0.37900 6.749 1.49e-11
factor(C)1903 2.76315 0.37895 7.292 3.06e-13
factor(C)1908 2.83415 0.37894 7.479 7.48e-14
factor(C)1913 2.81410 0.37901 7.425 1.13e-13
factor(C)1918 2.86228 0.37902 7.552 4.30e-14
factor(C)1923 2.91551 0.37906 7.691 1.45e-14
factor(C)1928 2.86546 0.37917 7.557 4.12e-14
factor(C)1933 2.86314 0.37936 7.547 4.44e-14
factor(C)1938 2.72290 0.37983 7.169 7.57e-13
factor(C)1943 2.68759 0.38066 7.060 1.66e-12
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factor(C)1948 2.85099 0.38263 7.451 9.27e-14
factor(C)1953 2.81411 0.39456 7.132 9.87e-13

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 71776.18 on 109 degrees of freedom
Residual deviance: 829.63 on 81 degrees of freedom
AIC: 1744.7

Number of Fisher Scoring iterations: 4

The parameters in this model are: intercept: the log-rate in the refence category for age
(40:40–44), in the reference cohort which in this model is the first cohort (1858 = 1943− 85
which comprises persons born 5 years on either side of this, i.e. in the years 1853–1862 —
but not all persons borm in this interval). Note however that there are no observations in
the dataset in this category; it is actually a prediction purely outside the dataset. The rest
of the parameters are log-rate-ratios relative to thsi category.

3. We now fit the model without intercept,

4. and with 1908 as the reference:

> ac.2 <- glm( D ~ factor(A) - 1 + relevel(factor(C),"1908") + offset(log(Y)),
+ family=poisson )

The age-parameters now represent the estimated age-specific log-incidence rates from the
1908 cohort.

5. The range of birth dates represented in the cohort 1908 is from 1.1.1903–31.12.1912. Only
those born on 1.1.1908 are not represented in any other cohort. Hence the name “synthetic”
cohort.

6. We now extract the age-specific incidence rates with 95% c.i.s from the model using ci.lin:

> age.cf <- ci.lin( ac.2, subset="A", Exp=TRUE)[,5:7]
> matplot( as.numeric(levels(factor(A)))+2.5, age.cf,
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )

7. Simuilarly we extract the cohort-specific rate-ratio parameters, but we recall that the 1908
cohiort is missing from the estimates:

> RR.cf <- ci.lin( ac.2, subset="C", Exp=TRUE )[,5:7]
> wh <- grep( "1908", levels(factor(C)) ) - 1
> RR.cf <- rbind( RR.cf[1:wh,], c(1,1,1), RR.cf[-(1:wh),] )
> RR.cf

exp(Est.) 2.5% 97.5%
relevel(factor(C), "1908")1858 0.05876855 0.02796331 0.12350977
relevel(factor(C), "1908")1863 0.05938629 0.04146987 0.08504321
relevel(factor(C), "1908")1868 0.09820451 0.08277938 0.11650395
relevel(factor(C), "1908")1873 0.13435012 0.12110391 0.14904520
relevel(factor(C), "1908")1878 0.16850582 0.15647290 0.18146408
relevel(factor(C), "1908")1883 0.24290000 0.22987080 0.25666770
relevel(factor(C), "1908")1888 0.39765267 0.38150319 0.41448578
relevel(factor(C), "1908")1893 0.57498146 0.55558344 0.59505676
relevel(factor(C), "1908")1898 0.75865134 0.73613440 0.78185703
relevel(factor(C), "1908")1903 0.93146302 0.90603144 0.95760844

1.00000000 1.00000000 1.00000000
relevel(factor(C), "1908")1913 0.98015018 0.95413843 1.00687107
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relevel(factor(C), "1908")1918 1.02853256 1.00032662 1.05753381
relevel(factor(C), "1908")1923 1.08476601 1.05335624 1.11711238
relevel(factor(C), "1908")1928 1.03180855 0.99700213 1.06783011
relevel(factor(C), "1908")1933 1.02941676 0.98736788 1.07325636
relevel(factor(C), "1908")1938 0.89472043 0.84629736 0.94591416
relevel(factor(C), "1908")1943 0.86367228 0.80177907 0.93034332
relevel(factor(C), "1908")1948 1.01698726 0.91442192 1.13105675
relevel(factor(C), "1908")1953 0.98016430 0.78931406 1.21716072

> matplot( as.numeric(levels(factor(C))), RR.cf,
+ type="l", log="y", lwd=c(3,1,1), lty=1, col="black" )
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Figure 3.13: Age-specific rates and rate-ratios relative to the cohort 1908.

We could of course do as in the precvious exercise and combine the two plots in one which is
properly scales on both axes:

> alim <- range( A ) + c(0,5)
> clim <- range( C ) + c(-2.5,2.5)
> # Compute limits explicitly
> rlim <- range(age.cf*10^5)*c(1/1.05,1.05)
> RRlim <- 10^(log10(rlim)-ceiling(mean(log10(rlim)))) / 2
> # Determin reltive width of plots
> layout( rbind( c(1,2) ), widths=c(diff(alim),diff(clim)) )
> # No space on the sides of the plots, only outer space
> par( mar=c(4,0,1,0), oma=c(0,4,0,4), mgp=c(3,1,0)/1.5, las=1 )
> matplot( as.numeric(levels(factor(A)))+2.5, age.cf*10^5,
+ type="l", lwd=c(3,1,1), lty=1, col="black",
+ log="y", xaxs="i", xlim=alim, xlab="Age", ylim=rlim )
> mtext( "Male lung cancer per 100,000", las=0, side=2, outer=T, line=2.5 )
> matplot( as.numeric(levels(factor(C))), RR.cf,
+ type="l", lwd=c(3,1,1), lty=1, col="black",
+ log="y", xlab="Date of birth", xlim=clim, yaxt="n", ylim=RRlim, ylab="" )
> abline( h=1 )
> points( 1908, 1, pch=1, lwd=3 )
> axis( side=4 )
> mtext( "Rate ratio", side=4, outer=T, las=0, line=2.5 )

The resulting plot is in figure 3.14
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Figure 3.14: Age-specific rates and rate-ratios relative to the period 1968–72, extracted from the
age-cohort model. Note the axes with physically equal scaling.

8. Now we load the estimates from the age-period model, and plot the estimated age-specific
rates from the two models on top of each other. First

> load( file = "../data/age-per-est.Rdata" )
> matplot( as.numeric(levels(factor(A)))+2.5, age.cf,
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> matlines( age.pt, arates,
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )

The difference between the curves in figure 3.15, comes from the fact that the rates are
increasing by time. The estimates from the age-cohort model refer to rates in a “true”
cohort, whereas those from the age-period model refers to cross-sectional rates, where
succcesively older persons are from successively older cohorts (i.e. where rates were lower
overall).
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Figure 3.15: Age-specific rates from the age-cohort model (black) and from the age-period model
(blue).

3.6 Age-drift model

This exercise is aimed at introducing the age-drift model and make you familiar with the two
different ways of parametrizing this model. Like the two previous exercises it is based on the male
lung cancer data.

1. First we read the data in the file lung5-M.txt and create the cohort variable:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> lung$C <- lung$P - lung$A
> attach( lung )
> table( C )

C
1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918 1923 1928 1933

1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5
1938 1943 1948 1953

4 3 2 1

2.
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3. We fit the model to have age-parameters that refer to the period 1968–72. The midpoint of
this period is 1970.5 (periods are coded by their left endpoint, so we need to add 2.5 years
to 1968 to get the midpoint).

> mp <- glm( D ~ -1 + factor(A) + I(P-1970.5) + offset( log(Y) ),
+ family=poisson, data=lung )
> ci.lin( mp )[,1:2]

Estimate StdErr
factor(A)40 -9.05098276 0.0309680655
factor(A)45 -8.10126627 0.0198136394
factor(A)50 -7.25742965 0.0136740899
factor(A)55 -6.61045586 0.0104218606
factor(A)60 -6.15631240 0.0087801489
factor(A)65 -5.87004530 0.0082214194
factor(A)70 -5.70814910 0.0085601026
factor(A)75 -5.71952829 0.0103703662
factor(A)80 -5.85585022 0.0147011698
factor(A)85 -6.12052787 0.0257736805
I(P - 1970.5) 0.02330670 0.0002569689

The parameters now represent the log-rates in each of the age-classes at 1970.5, i.e. in the
period 1968–72. The period-paramter is the the annual change in log-rates.

4. We now fit the same model, but with cohort as the continuous variable, centered around
1908:

> mc <- glm( D ~ -1 + factor(A) + I(C-1908) + offset( log(Y) ),
+ family=poisson, data=lung )
> ci.lin( mc )[,1:2]

Estimate StdErr
factor(A)40 -9.57538357 0.0317010811
factor(A)45 -8.50913356 0.0205578133
factor(A)50 -7.54876343 0.0142616192
factor(A)55 -6.78525612 0.0107586856
factor(A)60 -6.21457915 0.0088754237
factor(A)65 -5.81177854 0.0081553406
factor(A)70 -5.53334883 0.0084736086
factor(A)75 -5.42819451 0.0104021596
factor(A)80 -5.44798293 0.0148625870
factor(A)85 -5.59612707 0.0259850279
I(C - 1908) 0.02330670 0.0002569689

5. We see that the estimated slope (the drfit!) is exactly the same as in the period-model, but
the age-estimates are not.

Moreover the two are really the same model just parametrized differently; the residual
deviances are the same:

> c( summary( mp )$deviance,
+ summary( mc )$deviance )

[1] 6417.381 6417.381
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6. If we write how the cohort model is parametrized we have:

log(λap) = αa + β(c− 1908)
= αa + β(p− a− 1908)
= [αa + β(62.5− a)] + β(p− 1970.5)

The expression in the square brackets are the age-parameters in the age-period model.
Hence, the age parameters are linked by a simple linear relation, which is easily verified
empirically:

> ap <- ci.lin( mp )[1:10,1]
> ac <- ci.lin( mc )[1:10,1]
> c.sl <- ci.lin( mc )[11,1]
> a.pt <- seq(40,85,5)
> cbind( ap, ac + c.sl*(62.5-a.pt) )

ap
factor(A)40 -9.050983 -9.050983
factor(A)45 -8.101266 -8.101266
factor(A)50 -7.257430 -7.257430
factor(A)55 -6.610456 -6.610456
factor(A)60 -6.156312 -6.156312
factor(A)65 -5.870045 -5.870045
factor(A)70 -5.708149 -5.708149
factor(A)75 -5.719528 -5.719528
factor(A)80 -5.855850 -5.855850
factor(A)85 -6.120528 -6.120528

7. > matplot( a.pt + 2.5, cbind( ci.lin( mp, subset="A", Exp=TRUE )[,5:7],
+ ci.lin( mc, subset="A", Exp=TRUE )[,5:7] ) * 10^5,
+ log="y", xlab="Age", ylab="Lung cancer incidence rates / 100,000",
+ type="l", lty=1, lwd=c(3,1,1), col=rep(gray(c(0.2,0.7)),each=3) )

8. The relative risks are from the model:

log(λap) = αp + δ(p− 1970.5)

Therefore, with an x-variable: (1943,. . . ,1993) + 2.5, the relative risk will be:

RR = δ̂ × x

and the upper and lower confidence bands:

RR = (δ̂ ± 1.96× s.e.(δ))× x

We can find the estimated RRs with confidence intervals using a suitable 1-column contrast
matrix. We of course need a separate one for period and cohort since these cover different
time-spans:

> p.pt <- seq(min(P),max(P),,10)+2.5
> c.pt <- seq(min(C),max(C),,10)
> ctr.p <- cbind( p.pt - 1970.5 )
> ctr.c <- cbind( c.pt - 1908 )
> matplot( c.pt, ci.lin( mc, subset="C", ctr.mat=ctr.c, Exp=TRUE )[,5:7],
+ log="y", xlab="Calendar time", ylab="Rate ratio", xlim=c(1850,2000),
+ type="l", lty=1, lwd=c(3,1,1), col=gray(0.2) )
> matlines( p.pt, ci.lin( mp, subset="P", ctr.mat=ctr.p, Exp=TRUE )[,5:7],
+ type="l", lty=1, lwd=c(3,1,1), col=gray(0.7) )
> abline(h=1)
> points( c(1908,1970.5), c(1,1), pch=16 )
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The effect of time (the drift) is the same for the two parametrizations, but the age-specific
rates refer either to cross-sectional rates (period drift) or longitudinal rates (cohort drift).
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Figure 3.16: Age-specific rates from the age-drift model (left) and the rate-ratios as esimated under
the two diffferent parametrizations.
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3.7 Age-period-cohort model

We will need the results from the age-period, the age-cohort and the age-drift models in this
exercise so we briefly fit these models afte we have read data.

1. Read the data in the file lung5-M.txt as in the tabulation exercise:

> lung <- read.table( "../data/lung5-M.txt", header=T )
> str( lung )

'data.frame': 110 obs. of 4 variables:
$ A: int 40 40 40 40 40 40 40 40 40 40 ...
$ P: int 1943 1948 1953 1958 1963 1968 1973 1978 1983 1988 ...
$ D: int 80 81 73 99 82 97 86 90 116 149 ...
$ Y: num 694047 754770 769441 749265 757240 ...

> m.AP <- glm( D ~ factor(A) + factor(P) + offset( log(Y) ),
+ family=poisson, data=lung )
> m.AC <- glm( D ~ factor(A) + factor(P-A) + offset( log(Y) ),
+ family=poisson, data=lung )
> m.Ad <- glm( D ~ factor(A) + P + offset( log(Y) ),
+ family=poisson, data=lung )

2. We then fit the age-period-cohort model. Note that there is no such variable as the cohort
in the dataset; we have to compute this as P −A. This is best done on the fly instead of
cluttering up the dataframe with another variable. In the same go we fit the simplest model
with age alone:

> m.APC <- glm( D ~ factor(A) + factor(P) + factor(P-A) + offset( log(Y) ),
+ family=poisson, data=lung )
> m.A <- glm( D ~ factor(A) + offset( log(Y) ),
+ family=poisson, data=lung )

3. We can use anova.glm to test the different models in a sequence that gives all the valid
comparisons:

> anova( m.A, m.Ad, m.AP, m.APC, m.AC, m.Ad, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ factor(A) + offset(log(Y))
Model 2: D ~ factor(A) + P + offset(log(Y))
Model 3: D ~ factor(A) + factor(P) + offset(log(Y))
Model 4: D ~ factor(A) + factor(P) + factor(P - A) + offset(log(Y))
Model 5: D ~ factor(A) + factor(P - A) + offset(log(Y))
Model 6: D ~ factor(A) + P + offset(log(Y))
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 100 15103.0
2 99 6417.4 1 8685.6 0.0
3 90 2723.5 9 3693.9 0.0
4 72 208.5 18 2514.9 0.0
5 81 829.6 -9 -621.1 6.245e-128
6 99 6417.4 -18 -5587.8 0.0

The successive test refer to:

(a) linear effect of period/cohort

(b) non-linear effect of period
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(c) non-linear effect of cohort (in the presence of period)

(d) non-linear effect of period (in the presence of cohort)

(e) non-linear effect of cohort

Clearly, with the large amounts of data that we are dealing with, all of the tests are strongly
significant, but comparing the likelihood ratio statistics there is some indication that the
period curvature (non-linear component) is stronger than the cohort one.

4. When we want to fit models where some of the factor levels are merged or sorted as the first
one, we use the Relevel function to do this:

> lung$Pr <- Relevel( factor(lung$P), list("first-last"=c("1943","1993") ) )
> lung$Cr <- Relevel( factor(lung$P-lung$A), "1908" )

We of course check that the resulst of these opertions are as we like the to be:

> with( lung, table(P,Pr) )

Pr
P first-last 1948 1953 1958 1963 1968 1973 1978 1983 1988
1943 10 0 0 0 0 0 0 0 0 0
1948 0 10 0 0 0 0 0 0 0 0
1953 0 0 10 0 0 0 0 0 0 0
1958 0 0 0 10 0 0 0 0 0 0
1963 0 0 0 0 10 0 0 0 0 0
1968 0 0 0 0 0 10 0 0 0 0
1973 0 0 0 0 0 0 10 0 0 0
1978 0 0 0 0 0 0 0 10 0 0
1983 0 0 0 0 0 0 0 0 10 0
1988 0 0 0 0 0 0 0 0 0 10
1993 10 0 0 0 0 0 0 0 0 0

> with( lung, table(P-A,Cr) )

Cr
1908 1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1913 1918 1923

1858 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1863 0 0 2 0 0 0 0 0 0 0 0 0 0 0
1868 0 0 0 3 0 0 0 0 0 0 0 0 0 0
1873 0 0 0 0 4 0 0 0 0 0 0 0 0 0
1878 0 0 0 0 0 5 0 0 0 0 0 0 0 0
1883 0 0 0 0 0 0 6 0 0 0 0 0 0 0
1888 0 0 0 0 0 0 0 7 0 0 0 0 0 0
1893 0 0 0 0 0 0 0 0 8 0 0 0 0 0
1898 0 0 0 0 0 0 0 0 0 9 0 0 0 0
1903 0 0 0 0 0 0 0 0 0 0 10 0 0 0
1908 10 0 0 0 0 0 0 0 0 0 0 0 0 0
1913 0 0 0 0 0 0 0 0 0 0 0 9 0 0
1918 0 0 0 0 0 0 0 0 0 0 0 0 8 0
1923 0 0 0 0 0 0 0 0 0 0 0 0 0 7
1928 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1933 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1938 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1943 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1948 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1953 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cr
1928 1933 1938 1943 1948 1953

1858 0 0 0 0 0 0
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1863 0 0 0 0 0 0
1868 0 0 0 0 0 0
1873 0 0 0 0 0 0
1878 0 0 0 0 0 0
1883 0 0 0 0 0 0
1888 0 0 0 0 0 0
1893 0 0 0 0 0 0
1898 0 0 0 0 0 0
1903 0 0 0 0 0 0
1908 0 0 0 0 0 0
1913 0 0 0 0 0 0
1918 0 0 0 0 0 0
1923 0 0 0 0 0 0
1928 6 0 0 0 0 0
1933 0 5 0 0 0 0
1938 0 0 4 0 0 0
1943 0 0 0 3 0 0
1948 0 0 0 0 2 0
1953 0 0 0 0 0 1

5. We can now fit the models with these factors:

> m.APC1 <- glm( D ~ -1 + factor(A) + factor(Pr) + factor(Cr) + offset( log(Y) ),
+ family=poisson, data=lung )
> m.APC1$coef

factor(A)40 factor(A)45 factor(A)50 factor(A)55 factor(A)60
-9.328701115 -8.334529816 -7.454972743 -6.769070541 -6.241541847
factor(A)65 factor(A)70 factor(A)75 factor(A)80 factor(A)85
-5.849698430 -5.568204628 -5.440013453 -5.424818364 -5.526811866

factor(Pr)1948 factor(Pr)1953 factor(Pr)1958 factor(Pr)1963 factor(Pr)1968
0.095424116 0.104770778 0.200248212 0.249105289 0.311058535

factor(Pr)1973 factor(Pr)1978 factor(Pr)1983 factor(Pr)1988 factor(Cr)1858
0.295910526 0.294440825 0.249025339 0.103123244 -2.640060438

factor(Cr)1863 factor(Cr)1868 factor(Cr)1873 factor(Cr)1878 factor(Cr)1883
-2.646673834 -2.149730193 -1.850593043 -1.645272902 -1.310031751

factor(Cr)1888 factor(Cr)1893 factor(Cr)1898 factor(Cr)1903 factor(Cr)1913
-0.853337885 -0.520887869 -0.272223872 -0.079090672 0.005457283

factor(Cr)1918 factor(Cr)1923 factor(Cr)1928 factor(Cr)1933 factor(Cr)1938
0.088513857 0.179650494 0.165997726 0.197699170 0.089012570

factor(Cr)1943 factor(Cr)1948 factor(Cr)1953
0.086044048 0.293382042 0.307806293

The age-coefficients are log-rates (where the rates are in units person-year−1, the cohort
parameters are log-rate-ratios relative to a trend from the first to the last period.

6. We can use ci.lin to extract the parameters with confidence limits from this model:

> A.eff <- ci.lin( m.APC1, subset="A", Exp=TRUE )[,5:7]
> P.eff <- rbind( c(1,1,1),
+ ci.lin( m.APC1, subset="P", Exp=TRUE )[,5:7],
+ c(1,1,1) )
> C.ref <- match( "1908", levels( with(lung,factor(P-A)) ) )
> C.eff <- rbind( c(1,1,1),
+ ci.lin( m.APC1, subset="C",
+ Exp=TRUE )[,5:7] )[c(2:C.ref,1,C.ref:(nlevels(lung$Cr)-1)),]

In order to plot these we need the timepoints on the respective scales:

> A.pt <- sort( unique( lung$A ) ) + 2.5
> P.pt <- sort( unique( lung$P ) ) + 2.5
> C.pt <- sort( unique( lung$P-lung$A ) )
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Then we can plot the estomated effects

> par( mfrow=c(1,3), las=2 )
> matplot( A.pt, A.eff,
+ xlab="Age", ylab="Rates",
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> matplot( P.pt, P.eff,
+ xlab="Period", ylab="RR",
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1 )
> matplot( C.pt, C.eff,
+ xlab="Cohort", ylab="RR",
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1 )

50 60 70 80

1e−04

2e−04

5e−04

1e−03

2e−03

5e−03

Age

R
at

es

19
50

19
60

19
70

19
80

19
90

1.0

1.1

1.2

1.3

1.4

Period

R
R

18
60

18
80

19
00

19
20

19
40

0.05

0.10

0.20

0.50

1.00

Cohort

R
R

Figure 3.17: Estimates of the age-period-cohort model estimates — raw as they are.

This is is not a particularly informative plot, as the scales are all different — the rates are
between 10−4 and 5× 10−3, whereas the cohort RRs are between 0.05 and slightly more
than 1. So if we resacle the rate to rates per 1000, and then demand that all display have
y-axis from 0.05 to 5, we get comprable displays:

> par( mfrow=c(1,3), las=2 )
> matplot( A.pt, A.eff*1000,
+ xlab="Age", ylab="Rates", ylim=c(0.05,5),
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> matplot( P.pt, P.eff,
+ xlab="Period", ylab="RR", ylim=c(0.05,5),
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1 )
> matplot( C.pt, C.eff,
+ xlab="Cohort", ylab="RR", ylim=c(0.05,5),
+ log="y", type="l", lty=1, lwd=c(3,1,1), col="black" )
> abline( h=1 )
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Figure 3.18: Estimates of the age-period-cohort model estimates, scaled displays.

The parameters in this model represent age-specific rates, that approximates the rates in
the 1980 cohort (as predicted. . . ), cohort RRs relative to this cohort, and finally period
”residual” RRs.

But note an explicit decision has been made as to how the period residuals are defined;
namely as the deviations from the line between the periods 1943 and 1993.

7. We now fit the model with two cohorts aliased and one period as fixpoint. To decide which
of the cohort to alias (and define as the first level of the factor) we tabulate no of
observations and no of cases

> with( lung, table(P-A) )

1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918 1923 1928 1933
1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5

1938 1943 1948 1953
4 3 2 1

> with( lung, tapply(D,list(P-A),sum) )

1858 1863 1868 1873 1878 1883 1888 1893 1898 1903 1908 1913 1918
7 30 134 371 752 1436 2822 4668 6934 9305 10873 10468 9438

1923 1928 1933 1938 1943 1948 1953
8010 5040 3036 1536 827 400 91

Rater arbitraily we decide on 1878 and 1933; the numbers of these in the cohort numbers
are computed by:

> C.ref.pos <- with( lung, match( c("1878","1933"), levels( factor(P-A) ) ) )
> P.ref.pos <- with( lung, match( "1973", levels( factor(P) ) ) )

> lung$Cx <- Relevel( factor(lung$P-lung$A), list("first-last"=c("1878","1933") ) )
> lung$Px <- Relevel( factor(lung$P), "1973" )
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With these definitions we can now fit the model with the alternative parametrization:

> m.APC2 <- glm( D ~ -1 + factor(A) + factor(Px) + factor(Cx) + offset( log(Y) ),
+ family=poisson, data=lung )
> m.APC2$coef

factor(A)40 factor(A)45 factor(A)50 factor(A)55 factor(A)60
-8.83509142 -8.00846304 -7.29644888 -6.77808959 -6.41810381
factor(A)65 factor(A)70 factor(A)75 factor(A)80 factor(A)85
-6.19380331 -6.07985243 -6.11920417 -6.27155199 -6.54108841

factor(Px)1943 factor(Px)1948 factor(Px)1953 factor(Px)1958 factor(Px)1963
-1.30116802 -1.03820099 -0.86131141 -0.59829106 -0.38189107

factor(Px)1968 factor(Px)1978 factor(Px)1983 factor(Px)1988 factor(Px)1993
-0.15239491 0.16607322 0.28820064 0.30984147 0.37426114

factor(Cx)1858 factor(Cx)1863 factor(Cx)1868 factor(Cx)1873 factor(Cx)1883
-0.32461587 -0.49877219 -0.16937146 -0.03777722 0.16769824

factor(Cx)1888 factor(Cx)1893 factor(Cx)1898 factor(Cx)1903 factor(Cx)1908
0.45684919 0.62175629 0.70287737 0.72846765 0.64001541

factor(Cx)1913 factor(Cx)1918 factor(Cx)1923 factor(Cx)1928 factor(Cx)1938
0.47792978 0.39344343 0.31703715 0.13584147 -0.27622952

factor(Cx)1943 factor(Cx)1948 factor(Cx)1953
-0.44674095 -0.40694587 -0.56006454

We note that it is only the parametization that differs; the fitted model is the same:

> summary( m.APC )$deviance

[1] 208.5476

> summary( m.APC1 )$deviance

[1] 208.5476

> summary( m.APC2 )$deviance

[1] 208.5476

8. We use the same points for the age, period and cohort as before, but now extract the
parameters in a slightly different way:

> A.Eff <- ci.lin( m.APC2, subset="A", Exp=TRUE )[,5:7]
> P.Eff <- ci.lin( m.APC2, subset="P", Exp=TRUE )[,5:7]
> nP <- nrow(P.Eff)
> P.Eff <- rbind( P.Eff[1:(P.ref.pos-1),],c(1,1,1),P.Eff[P.ref.pos:nP,])
> C.Eff <- ci.lin( m.APC2, subset="C",Exp=TRUE )[,5:7]
> nC <- nrow(C.Eff)
> C.Eff <- rbind(C.Eff[1:(C.ref.pos[1]-1),],
+ c(1,1,1),
+ C.Eff[(C.ref.pos[1]):(C.ref.pos[2]-2),],
+ c(1,1,1),
+ C.Eff[(C.ref.pos[2]-1):nC,] )

We can now plot the two sets of parameters in the same plots:

> par( mfrow=c(1,3), las=2 )
> matplot( A.pt, cbind(A.eff,A.Eff)*1000,
+ xlab="Age", ylab="Rates", ylim=c(0.05,5),
+ log="y", type="l", lty=1, lwd=c(3,1,1), col=rep(c("black","blue"),each=3) )
> matplot( P.pt, cbind(P.eff,P.Eff),
+ xlab="Period", ylab="RR", ylim=c(0.05,5),
+ log="y", type="l", lty=1, lwd=c(3,1,1), col=rep(c("black","blue"),each=3) )
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> abline( h=1 )
> matplot( C.pt, cbind(C.eff,C.Eff),
+ xlab="Cohort", ylab="RR", ylim=c(0.05,5),
+ log="y", type="l", lty=1, lwd=c(3,1,1), col=rep(c("black","blue"),each=3) )
> abline( h=1 )

It is clear from the estimates that very different displays can be obtained from different
parametrizations.
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Figure 3.19: Estimates of the age-period-cohort model estimates, from the two different parametriza-
tions.
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3.8 Age-period-cohort model for triangles

The following exercise is aimed at showing the problems associated with age-period-cohort
modelling for triangular data.

Also you will learn how to overcome these problems by parametric modelling of the three effects.

1. Read the Danish male lung cancer data tabulated by age period and birth cohort,
lung5-Mc.txt. List the first few lines of the dataset and make sure you understand what
the variables refer to. Also define nthe synthetic cohorts as P5-A5:

> ltri <- read.table( "../data/lung5-Mc.txt", header=T )
> ltri$S5 <- ltri$P5 - ltri$A5
> attach( ltri )

2. Make a Lexis diagram showing the subdivision of the follow-data. You will explore the
function Lexis.diagram.

Try as an esoteric exercise to plot the number of cases in each of the triangles.

> Lexis.diagram( age=c(40,90), date=c(1943,1998), coh.grid=TRUE )

3. Use the variables A5 and P5 to fit a traditional age-period-cohort model with synthetic
cohort defined by P5-A5:

> ms <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( ms )$df

[1] 38 182 39

How many parameters does this model have?

4. Now try to fit the model with the “real” cohort:

> mc <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(C5) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( mc )$df

[1] 40 180 40

How many parameters does this model have?

5. Plot the parameter estimates from the two models on top of each other, with confidence
intervals. Remember to put the right scales on the plots.

> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(A5)) )
> p.pt <- as.numeric( levels(factor(P5)) )
> s.pt <- as.numeric( levels(factor(S5)) )
> c.pt <- as.numeric( levels(factor(C5)) )
> matplot( a.pt, ci.lin( ms, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Age", ylab="Rates", log="y" )
> matlines( a.pt, ci.lin( mc, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( ms, subset="P5",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Period", ylab="RR", log="y" )
> matlines( p.pt, rbind( c(1,1,1), ci.lin( mc, subset="P5",Exp=TRUE )[,5:7] ),
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Figure 3.20: Lexis diagram showing the extent of the data.

+ type="l", lty=1, lwd=c(3,1,1), col="blue" )
> matplot( s.pt, rbind(c(1,1,1),ci.lin( ms, subset="S5", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Cohort", ylab="RR", log="y" )
> matlines( c.pt, rbind(c(1,1,1),ci.lin( mc, subset="C5", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(3,1,1), col="blue" )

It is seen that the confidence bands are much wider for the age and cohort effects but
narrower for the period effects.

6. Now fit the model using the proper midpoints of the triangles as factor levels. How many
parameters does this model have?

> mt <- glm( D ~ -1 + factor(Ax) + factor(Px) + factor(Cx) + offset(log(Y)),
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Figure 3.21: Estimates from.

+ family=poisson, data=ltri )
> summary( mt )$df

[1] 76 144 80

7. Plot the parameters from this model in three panels as for the previous two models.

> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(Ax)) )
> p.pt <- as.numeric( levels(factor(Px)) )
> c.pt <- as.numeric( levels(factor(Cx)) )
> matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Age", ylab="Rates", log="y" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Period", ylab="RR", log="y" )
> matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(3,1,1), col="black",
+ xlab="Cohort", ylab="RR", log="y" )

We see that the parameters clearly do not convey a reasonable picture of the effects; som
severe indeterminacy has crept in.

8. What is the residual deviance of this model?

> summary( mt )$deviance



80 Age-period-cohort model for triangles Solutions to exercises

40 50 60 70 80 90

2e
−

10
5e

−
10

2e
−

09
5e

−
09

2e
−

08
5e

−
08

2e
−

07
5e

−
07

Age

R
at

es

1950 1960 1970 1980 1990

5e
−

03
5e

−
02

5e
−

01
5e

+
00

Period

R
R

1860 1880 1900 1920 1940

1e
−

04
1e

−
02

1e
+

00
1e

+
02

Cohort
R

R

Figure 3.22: Estimates from.

[1] 284.7269

9. The dataset also has a variable up, which indicates whether the observation comes from an
upper or lower triangle. Try to tabulate it against P5-A5-C5.

> table( up, P5-A5-S5 )

up 0
0 110
1 110

10. Fit an age-period cohort model separately for the subset of the dataset from the upper
triangles and from the lowere triangles. What is the residual deviance from each of these
models and what is the sum of these. Compare to the model using the proper midpoints as
factor levels.

> m.up <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=subset(ltri,up==1) )
> summary( m.up )$deviance

[1] 150.2703

> m.lo <- glm( D ~ -1 + factor(A5) + factor(P5) + factor(S5) + offset(log(Y)),
+ family=poisson, data=subset(ltri,up==0) )
> summary( m.lo )$deviance

[1] 134.4566



Age-Period-Cohort models Age-period-cohort model for triangles 81

> summary( m.lo )$deviance + summary( m.up )$deviance

[1] 284.7269

> summary( mt )$deviance

[1] 284.7269

11. Next, repeat the plots of the parameters from the model using the proper midpoints as
factor levels, but now super-posing the estimates (in different color) from each of the two
models just fitted. What goes on?

> par( mfrow=c(1,3) )
> a.pt <- as.numeric( levels(factor(Ax)) )
> p.pt <- as.numeric( levels(factor(Px)) )
> c.pt <- as.numeric( levels(factor(Cx)) )
> a5.pt <- as.numeric( levels(factor(A5)) )
> p5.pt <- as.numeric( levels(factor(P5)) )
> s5.pt <- as.numeric( levels(factor(S5)) )
> matplot( a.pt, ci.lin( mt, subset="Ax", Exp=TRUE )[,5:7]/10^5,
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Age", ylab="Rates", log="y" )
> matpoints( a5.pt, ci.lin( m.up, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ pch=c(16,3,3), col="blue" )
> matpoints( a5.pt, ci.lin( m.lo, subset="A5", Exp=TRUE )[,5:7]/10^5,
+ pch=c(16,3,3), col="red" )
> matplot( p.pt, rbind( c(1,1,1), ci.lin( mt, subset="Px",Exp=TRUE )[,5:7] ),
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Period", ylab="RR", log="y" )
> matpoints( p5.pt[-1], ci.lin( m.up, subset="P5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="blue" )
> matpoints( p5.pt[-1], ci.lin( m.lo, subset="P5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="red" )
> matplot( c.pt, rbind(c(1,1,1),ci.lin( mt, subset="Cx", Exp=TRUE )[,5:7]),
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.7),
+ xlab="Cohort", ylab="RR", log="y" )
> matpoints( s5.pt[-1], ci.lin( m.up, subset="S5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="blue" )
> matpoints( s5.pt[-1], ci.lin( m.lo, subset="S5", Exp=TRUE )[,5:7],
+ pch=c(16,3,3), col="red" )

The model fitted with the “correct” factor levels is actually two different models. This is
because observations in upper triangles are modelled by one set of the parameters, and
those in lower triangel by another set of parameters.

Because of the ordering of the levels, the parametrization is different, but that is all.

There is no way out of the squeeze, except by resorting to parametric models for the actual
underlying scales, abandoning the factor modelling.

12. Load the splines package and fit a model using the correct midpoints of the triangles as
quantitative variables in restricted cubic splines, using the function ns:

> library( splines )
> mspl <- glm( D ~ -1 + ns(Ax,df=7,intercept=T)
+ + ns(Px,df=6,intercept=F)
+ + ns(Cx,df=6,intercept=F) + offset(log(Y)),
+ family=poisson, data=ltri )
> summary( mspl )
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Figure 3.23: Estimates from.

Call:
glm(formula = D ~ -1 + ns(Ax, df = 7, intercept = T) + ns(Px,

df = 6, intercept = F) + ns(Cx, df = 6, intercept = F) +
offset(log(Y)), family = poisson, data = ltri)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.72761 -0.88692 -0.01217 0.93283 3.47380

Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

ns(Ax, df = 7, intercept = T)1 -8.08248 0.09584 -84.329 < 2e-16
ns(Ax, df = 7, intercept = T)2 -8.81421 0.11261 -78.271 < 2e-16
ns(Ax, df = 7, intercept = T)3 -8.20301 0.11520 -71.209 < 2e-16
ns(Ax, df = 7, intercept = T)4 -7.90599 0.11814 -66.921 < 2e-16
ns(Ax, df = 7, intercept = T)5 -3.98298 0.08558 -46.540 < 2e-16
ns(Ax, df = 7, intercept = T)6 -21.35542 0.24841 -85.967 < 2e-16
ns(Ax, df = 7, intercept = T)7 0.70588 0.05540 12.741 < 2e-16
ns(Px, df = 6, intercept = F)1 0.59989 0.03777 15.883 < 2e-16
ns(Px, df = 6, intercept = F)2 0.94029 0.04319 21.771 < 2e-16
ns(Px, df = 6, intercept = F)3 1.18582 0.04354 27.237 < 2e-16
ns(Px, df = 6, intercept = F)4 1.22421 0.04204 29.122 < 2e-16
ns(Px, df = 6, intercept = F)5 1.46929 0.08247 17.816 < 2e-16
ns(Px, df = 6, intercept = F)6 1.07376 0.04202 25.555 < 2e-16
ns(Cx, df = 6, intercept = F)1 1.57834 0.10334 15.273 < 2e-16
ns(Cx, df = 6, intercept = F)2 1.60219 0.11202 14.303 < 2e-16
ns(Cx, df = 6, intercept = F)3 1.37407 0.10178 13.500 < 2e-16
ns(Cx, df = 6, intercept = F)4 1.03167 0.07211 14.306 < 2e-16
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ns(Cx, df = 6, intercept = F)5 1.19310 0.21716 5.494 3.93e-08
ns(Cx, df = 6, intercept = F)6 NA NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.0037e+08 on 220 degrees of freedom
Residual deviance: 4.3344e+02 on 202 degrees of freedom
AIC: 2026.7

Number of Fisher Scoring iterations: 4

> summary( mt )$deviance - summary( mspl )$deviance

[1] -148.7082

> summary( mt )$df - summary( mspl )$df

[1] 58 -58 61

13. How do the deviances compare?

14. Make a prediction of the terms, using predict.glm using the argument type="terms" and
se.fit=TRUE. Remember to look up the help page for predict.glm.

> pspl <- predict( mspl, type="terms", se.fit=TRUE )
> str(pspl)

List of 3
$ fit : num [1:220, 1:3] -10.8 -11.1 -10.8 -11.1 -10.8 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:220] "1" "2" "3" "4" ...
.. ..$ : chr [1:3] "ns(Ax, df = 7, intercept = T)" "ns(Px, df = 6, intercept = F)" "ns(Cx, df = 6, intercept = F)"
..- attr(*, "constant")= num 0
$ se.fit : num [1:220, 1:3] 0.107 0.109 0.107 0.109 0.107 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:220] "1" "2" "3" "4" ...
.. ..$ : chr [1:3] "ns(Ax, df = 7, intercept = T)" "ns(Px, df = 6, intercept = F)" "ns(Cx, df = 6, intercept = F)"
$ residual.scale: num 1

> a.ord <- order( ltri$Ax )
> p.ord <- order( ltri$Px )
> c.ord <- order( ltri$Cx )
> par( mfrow=c(1,3) )
> matplot( Ax[a.ord], exp(cbind( pspl$fit[,1], pspl$se.fit[,1] )[a.ord,] %*% ci.mat())*10^5,
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.2),
+ xlab="Age", ylab="Rates", log="y" )
> matplot( Px[p.ord], exp(cbind( pspl$fit[,2], pspl$se.fit[,2] )[p.ord,] %*% ci.mat()),
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.2),
+ xlab="Period", ylab="RR", log="y" )
> matplot( Cx[c.ord], exp(cbind( pspl$fit[,3], pspl$se.fit[,3] )[c.ord,] %*% ci.mat()),
+ type="l", lty=1, lwd=c(2,1,1), col=gray(0.2),
+ xlab="Cohort", ylab="RR", log="y" )
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Figure 3.24: Estimates from.

3.9 Using apc.fit etc.

This exercise introduces the functions for fitting and plotting the results from age-period-cohort
models: apc.fit apc.plot apc.lines and apc.frame.

1. We first read the testis cancer data and collapse the cases over the histological subtypes:

> th <- read.table( "../data/testis-hist.txt", header=T )
> str( th )

'data.frame': 29160 obs. of 9 variables:
$ a : int 0 0 0 0 0 0 1 1 1 1 ...
$ p : int 1943 1943 1943 1943 1943 1943 1943 1943 1943 1943 ...
$ c : int 1942 1942 1942 1943 1943 1943 1941 1941 1941 1942 ...
$ y : num 18853 18853 18853 20797 20797 ...
$ age : num 0.667 0.667 0.667 0.333 0.333 ...
$ diag : num 1943 1943 1943 1944 1944 ...
$ birth: num 1943 1943 1943 1943 1943 ...
$ hist : int 1 2 3 1 2 3 1 2 3 1 ...
$ d : int 0 1 0 0 0 0 0 0 0 0 ...

Knowing the names of the variables in the dataset, we can now collapse over the histological
subtypes. There is no need to tabulate by cohort as well, because even for the triangular
data the relationship c = p− a holds. For aesthetic reasons we get rid of the variable we do
not need:

> tc <- aggregate( th[,c("age","diag","d","y")], list(A=th$age,P=th$diag), sum )
> str( tc )
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'data.frame': 9720 obs. of 6 variables:
$ A : num 0.667 1.667 2.667 3.667 4.667 ...
$ P : num 1943 1943 1943 1943 1943 ...
$ age : num 2 5 8 11 14 ...
$ diag: num 5830 5830 5830 5830 5830 ...
$ d : int 1 0 0 0 0 0 0 0 0 0 ...
$ y : num 56559 51319 49931 49083 48376 ...

> names( tc ) <- toupper( names(tc) )
> tc <- tc[,c("A","P","D","Y")]

Now the original data had three subtypes of testis cancer, so while it is OK to sum the
number of cases (D), the amount of risk time has been aggregated erroneously, so we must
divide by 3:

> tc$Y <- tc$Y/3
> tc$C <- tc$P - tc$A
> str( tc )

'data.frame': 9720 obs. of 5 variables:
$ A: num 0.667 1.667 2.667 3.667 4.667 ...
$ P: num 1943 1943 1943 1943 1943 ...
$ D: int 1 0 0 0 0 0 0 0 0 0 ...
$ Y: num 18853 17106 16644 16361 16125 ...
$ C: num 1943 1942 1941 1940 1939 ...

> head( tc )

A P D Y C
1 0.6666667 1943.333 1 18853.00 1942.667
2 1.6666667 1943.333 0 17106.33 1941.667
3 2.6666667 1943.333 0 16643.50 1940.667
4 3.6666667 1943.333 0 16361.00 1939.667
5 4.6666667 1943.333 0 16125.17 1938.667
6 5.6666667 1943.333 0 15728.50 1937.667

2. If we want to present the rates in 5-year age and period classes from age 15 to age 59 using
rateplot, we must make a table as input to the rateplot function. Note that in this case we
aggregate across subsets of the Lexis diagram and not as above within, and hence we must
use the sum both for events and risk time:

> par( mfrow=c(2,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> rateplot(
+ with( subset( tc, A>15 & A<60 ),
+ tapply( D, list(floor(A/5)*5+2.5,
+ floor((P-1943)/5)*5+1945.5), sum ) /
+ tapply( Y, list(floor(A/5)*5+2.5,
+ floor((P-1943)/5)*5+1945.5), sum ) * 10^5 ),
+ col=topo.colors(12) )

3. We now fit an age-period-cohort model to the data using the machinery implemented in
apc.fit. The function returns a fitted model and a parametrization, hence we must choose
how to parametrize it, in this case "ACP" with all the drift included in the cohort effect and
the reference cohort being 1918.

> tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,10), parm="ACP", ref.c=1918 )
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Figure 3.25: Age-specific rates for testis cancer in Denmark.

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
Age 4849 6513.1
Age-drift 4848 5313.6 1 1199.5 7.990e-263
Age-Cohort 4839 5244.4 9 69.2 2.147e-11
Age-Period-Cohort 4830 5193.9 9 50.5 8.633e-08
Age-Period 4839 5290.5 -9 -96.6 7.652e-17
Age-drift 4848 5313.6 -9 -23.2 5.867e-03

It is seen that the period effect is weaker (deviance=50.5) than the cohort effect
(deviance=96.6), although still formally strongly significant.

4. We can plot the estimates using the apc.plot function:

> apc.plot( tapc, ci=TRUE )

cp.offset RR.fac
1823.33333 0.00001
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Figure 3.26: The default plot for the fit of an Age-Period-Cohort model for testis cancer in Denmark.
10 parameters for all effects.

5. Now explore in more depth the cohort effect by increasing the number of parameters used
for it:

> tapc <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,20),
+ parm="ACP", ref.c=1918, scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
Age 4849 6513.1
Age-drift 4848 5313.6 1 1199.5 7.990e-263
Age-Cohort 4829 5233.1 19 80.6 1.484e-09
Age-Period-Cohort 4820 5182.6 9 50.5 8.811e-08
Age-Period 4839 5290.5 -19 -107.9 1.955e-14
Age-drift 4848 5313.6 -9 -23.2 5.867e-03

> fp <- apc.plot( tapc, ci=TRUE )

6. We now explore the effect of using the residual method instead, and over-plot the estimates
from this method on the existing plot2:

2Unfortunately there is a fatal bug in apc.fit when fitting the period residuals to the age-cohort model — it does
not crash but simply fit a totally meaningless model. There is a fix for this in the version 1.0.11 of the Epi package
which is available at the course homepage
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Figure 3.27: The default plot for the fit of an AGe-Period-Cohort model for testis cancer in Den-
mark. 20 parameters for the cohort effect, 10 for age and period.

> tac.p <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,20),
+ parm="AC-P", ref.c=1918, scale=10^5 )

[1] "Sequential modelling Poisson with log(Y) offset : ( AC-P ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
Age 4849 6513.1
Age-drift 4848 5313.6 1 1199.5 7.990e-263
Age-Cohort 4829 5233.1 19 80.6 1.484e-09
Age-Period-Cohort 4820 5182.6 9 50.5 8.811e-08
Age-Period 4839 5290.5 -19 -107.9 1.955e-14
Age-drift 4848 5313.6 -9 -23.2 5.867e-03

> fp <- apc.plot( tapc, ci=TRUE )
> apc.lines( tac.p, ci=TRUE, col="red", frame.par=fp )

7. The standard display is not very pretty — it gives an overview, but certainly not anything
worth publishing, hence a bit of handwork is needed. We can use the apc.frame for this,
and create a nicer plot of the estimates from the residual model:

> par( mar=c(3,4,1,4), mgp=c(3,1,0)/1.7, las=1 )
> fp <- apc.frame( a.lab=seq(20,60,10),
+ a.tic=seq(10,60,5),
+ cp.lab=seq(1900,2000,20),
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Figure 3.28: Comparing the ML-method with the residual method for the Danish testis cancer cases.

+ cp.tic=seq(1885,2000,5),
+ r.lab=c(c(1,2,5)/10,1,2,5,10),
+ r.tic=c(1:9/10,1:10),
+ gap=8,
+ rr.ref=1)
> apc.lines( tapc, ci=TRUE, col="blue", frame.par=fp )
> apc.lines( tac.p, ci=TRUE, col="red", frame.par=fp )

8. We now try to use period as the primary timescale, and add this to the plot as well:

> tap.c <- apc.fit( subset( tc, A>15 & A<60 ), npar=c(10,10,20),
+ parm="AP-C", ref.p=1950, scale=10^5 )

[1] "Sequential modelling Poisson with log(Y) offset : ( AP-C ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
Age 4849 6513.1
Age-drift 4848 5313.6 1 1199.5 7.990e-263
Age-Cohort 4829 5233.1 19 80.6 1.484e-09
Age-Period-Cohort 4820 5182.6 9 50.5 8.811e-08
Age-Period 4839 5290.5 -19 -107.9 1.955e-14
Age-drift 4848 5313.6 -9 -23.2 5.867e-03

> apc.lines( tap.c, ci=TRUE, col=c("black","gray","black"), frame.par=fp )

From the black (and gray) curves in figure 3.29, the dips in incidence rates for the
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Figure 3.29: Comparing the ML-method with the residual method for the Danish testis cancer cases.
Additionally, the parametrization of the residual method for the age-period model is shown.

generations born during the world wars is quite remarkable, but it also seen that the shift to
a period-primary model shifts the age-specific rates to peak at a slightly earlier age, 30
instead of 35.

The former figure is an indication of the age-distribution of next years cases (when
multiplied by the population distribution . . . ), whereas the latter is a reasonable statement
about the natural history of the disease; men are at increasing risk until age 35, and there
after it decreases.
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3.10 Lung cancer: the sex difference

The following exercise is aimed at investigation of the effect of age, period and cohort on the lung
cancer incidence for both sexes using one complex age-period-cohort model. First, we will use
5-year triangular data to xxxx and build separate models for males and females. Further the
complex model will be built for 1-year triangular data.

1. First we read 1-year triangular data from data set apc-Lung.txt

> lung <- read.table( "../data/apc-Lung.txt", header=T )
> head( lung)

sex A P C D Y
1 1 0 1943 1942 0 19546.2
2 1 0 1943 1943 0 20796.5
3 1 0 1944 1943 0 20681.3
4 1 0 1944 1944 0 22478.5
5 1 0 1945 1944 0 22369.2
6 1 0 1945 1945 0 23885.0

2. The variables A, P and C are the left endpoints of the tabulation intervals, so the value of the
variable P-A-C is 0 for lower triangles and 1 for upper triangles in the Lexis diagram. This
can the be used to compute the correct values of the mean age and period (and cohort) in
the dataset.

> lung <- transform( lung, up = P-A-C, At = A, Pt = P, Ct = C )
> lung <- transform( lung, A = At + 1/3 + up/3,
+ P = Pt + 3/2 - up/3 )
> lung <- transform( lung, C = P - A )
> head( lung )

sex A P C D Y up At Pt Ct
1 1 0.6666667 1944.167 1943.500 0 19546.2 1 0 1943 1942
2 1 0.3333333 1944.500 1944.167 0 20796.5 0 0 1943 1943
3 1 0.6666667 1945.167 1944.500 0 20681.3 1 0 1944 1943
4 1 0.3333333 1945.500 1945.167 0 22478.5 0 0 1944 1944
5 1 0.6666667 1946.167 1945.500 0 22369.2 1 0 1945 1944
6 1 0.3333333 1946.500 1946.167 0 23885.0 0 0 1945 1945

A bit of care is required with the transform function; each of the assignments is made in the
original dataframe given as the first argument, hence it is not possible compute the correct C

3. We can make an overview of the rates if we can produce a table of the rates in a suitable
form. This can be done by grouping on the fly and tabulating by sex too:

> lrate <- with( subset( lung, A>40 & A<90 ),
+ tapply( D, list(sex,
+ floor(A/5)*5+2.5,
+ floor((P-1943)/5)*5+1943+2.5),
+ sum ) /
+ tapply( Y, list(sex,
+ floor(A/5)*5+2.5,
+ floor((P-1943)/5)*5+1943+2.5),
+ sum ) * 10^5 )

With this three-way table we can plot the rates for males and females in one go, using the
same scale for the axes among men and women; as seen in the figure 3.30:
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> par( mfrow=c(2,4), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> rateplot( lrate[1,,], col="blue", ylim=range(lrate,na.rm=T) )
> rateplot( lrate[2,,], col="red", ylim=range(lrate,na.rm=T) )

50 60 70 80 90

2

5

10

20

50

100

200

500

Age at diagnosis

R
at

es

50 60 70 80 90

2

5

10

20

50

100

200

500

Age at diagnosis

R
at

es

1950 1960 1970 1980 1990 2000

2

5

10

20

50

100

200

500

Date of diagnosis

R
at

es

1860 1880 1900 1920 1940 1960

2

5

10

20

50

100

200

500

Date of birth

R
at

es

50 60 70 80 90

2

5

10

20

50

100

200

500

Age at diagnosis

R
at

es

50 60 70 80 90

2

5

10

20

50

100

200

500

Age at diagnosis

R
at

es

1950 1960 1970 1980 1990 2000

2

5

10

20

50

100

200

500

Date of diagnosis

R
at

es

1860 1880 1900 1920 1940 1960

2

5

10

20

50

100

200

500

Date of birth

R
at

es

Figure 3.30:

4. The models are easily fitted separately using the subset function on the dataframe:

> apc.m <- apc.fit( subset(lung,sex==1 & A>40), npar=c(8,8,15), ref.c=1930, scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
Age 6091 23484.6
Age-drift 6090 16697.6 1 6787.0 0.0
Age-Cohort 6076 8239.8 14 8457.8 0.0
Age-Period-Cohort 6069 7451.5 7 788.3 6.178e-166
Age-Period 6083 10719.6 -14 -3268.0 0.0
Age-drift 6090 16697.6 -7 -5978.1 0.0

> apc.f <- apc.fit( subset(lung,sex==2 & A>40), npar=c(8,8,15), ref.c=1930, scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
Age 6091 24291.8
Age-drift 6090 8458.4 1 15833.4 0.0
Age-Cohort 6076 7535.0 14 923.3 4.305e-188
Age-Period-Cohort 6069 7045.8 7 489.2 1.641e-101
Age-Period 6083 7953.5 -14 -907.7 9.582e-185
Age-drift 6090 8458.4 -7 -504.9 7.198e-105

We can plot the the results separately and then judging from the displays find out what
display is required for a sensible common plot
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> apc.plot( apc.m, col="blue" )

cp.offset RR.fac
1753.333 100.000

> apc.plot( apc.f, col="red" )

cp.offset RR.fac
1753.333 100.000
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Figure 3.31: initial sketch plots for the male and the female rates of ling cancer incidence in
Denmark.

Now we can set up a

> par( las=1, mar=c(4,3,1,4), mgp=c(3,1,0)/1.6 )
> fp <- apc.frame( a.lab = seq(40,90,20),
+ cp.lab = seq(1880,2000,20),
+ r.lab = c(6,c(1,2,5)*10,c(1,2,5)*100),
+ # rr.lab = r.lab / rr.ref,
+ rr.ref = 200,
+ a.tic = seq(35,90,5),
+ cp.tic = seq(1855,2005,5),
+ r.tic = c(5:9,1:9*10,1:6*100),
+ # rr.tic = r.tic / rr.ref,
+ tic.fac = 1.3,
+ a.txt = "Age",
+ cp.txt = "Calendar time",
+ r.txt = "Lung cancer rate per 100,000 person-years",
+ rr.txt = "Rate ratio",
+ ref.line = TRUE,
+ gap = 13,
+ col.grid = gray(0.85),
+ sides = c(1,2,4) )
> apc.lines( apc.m, col="blue", ci=T, frame.par=fp )
> apc.lines( apc.f, col="red" , ci=T, frame.par=fp )

5. The ratios of the rates also follows an age-period-cohort model:

log
(
λM (a.p)/λF (a, p)

)
= log

(
λM (a.p)

)
−log

(
λF (a, p)

)
=
(
fM (a)−fF (a)

)
+
(
gM (p)−gF (p)

)
+
(
hM (c)−hF (c)

)
so for the rate-ratios we have excatly the same identification problems, but we can for a
start just compute the ratois of the effects with confidence intervals.

To this end is is easier to devise a small function that takes two sets of estimated rates/RRs
with c.i.s and returns the ratio with c.i.s:
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> rr <-
+ function( one, two )
+ {
+ one[,-1] <- log(one[,-1] )
+ two[,-1] <- log(two[,-1] )
+ sd.dif <- sqrt( ((one[,4]-one[,3])/3.92)^2 +
+ ((two[,4]-two[,3])/3.92)^2 )
+ rat <- one
+ rat[,-1] <- exp( cbind( one[,2]-two[,2], sd.dif ) %*%
+ rbind( c(1,1,1), 1.96*c(0,-1,1) ) )
+ rat
+ }
> rr.Age <- rr( apc.m$Age, apc.f$Age )
> rr.Per <- rr( apc.m$Per, apc.f$Per )
> rr.Coh <- rr( apc.m$Coh, apc.f$Coh )

In order to plot these in an apc-frame, we can just fake an apc-object, and in order to get a
reasonable apc-frame we compute the ranges of the RRs:

> apc.mf <- apc.m
> apc.mf$Age <- rr.Age
> apc.mf$Per <- rr.Per
> apc.mf$Coh <- rr.Coh
> ( RRr <- range( rbind(rr.Age[,-1],
+ rr.Per[,-1],
+ rr.Coh[,-1]) ) )

[1] 0.2169004 4.3770837

So we devise a frame which stretces fom 0.2 to 5:

> par( las=1, mar=c(4,3,1,2), mgp=c(3,1,0)/1.6 )
> fp <- apc.frame( a.lab = seq(40,90,20),
+ cp.lab = seq(1880,2000,20),
+ r.lab = c(0.2,0.5,1,2,5),
+ rr.ref = 1,
+ a.tic = seq(35,90,5),
+ cp.tic = seq(1855,2005,5),
+ r.tic = c(2:9/10,1:5),
+ tic.fac = 1.3,
+ a.txt = "Age",
+ cp.txt = "Calendar time",
+ r.txt = "M/F Rate ratio of lung cancer",
+ rr.txt = "",
+ ref.line = TRUE,
+ gap = 13,
+ col.grid = gray(0.85),
+ sides = c(1,2,4) )
> abline( h=1 )
> apc.lines( apc.mf, col="black", ci=T, frame.par=fp )

6. In order to explicitly fix the knots we just use those from the male apc object:

> A.kn <- apc.m$Knots$Age
> nk.A <- length(A.kn)
> MA <- ns( lung$A, knots=A.kn[-c(1,nk.A)], Bo=A.kn[c(1,nk.A)], intercept=TRUE )
> P.kn <- apc.m$Knots$Per
> nk.P <- length(P.kn)
> MP <- ns( lung$P, knots=P.kn[-c(1,nk.P)], Bo=P.kn[c(1,nk.P)], intercept=TRUE )
> MP <- detrend( MP, lung$P )
> C.kn <- apc.m$Knots$Coh
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Figure 3.32: M/F rate-ratio of lung cancer in Denmark.

> nk.C <- length(C.kn)
> MC <- ns( lung$C, knots=C.kn[-c(1,nk.C)], Bo=C.kn[c(1,nk.C)], intercept=TRUE )
> MC <- detrend( MC, lung$C )

With these matrices we can now fit the models we want; the model with sex-interaction on
all three variables and the one where we assume identical 2nd order period-effects:

> lung$sex <- factor(lung$sex,labels=c("M","F"))
> m.int <- glm( D ~ -1 + MA:sex + MP:sex + MC:sex + I(C-1950):sex +
+ offset( log(Y) ), family=poisson, data=lung )

7. We can check if any of the second-order terms are identical between males and females by
removing the interaction with sex. This will however only work for the period and the
cohort effect, because the intercept and linear effect of age is included with the age-effect
and removing the interation there would be tantamount to testing wheter the absolute
levels and the (first order) shape were the same.

So we start by checking wheter the period and age-effects have the same second-order
properties (i.e. same shape):

> m.per <- update( m.int, . ~ . - MP:sex + MP )
> m.coh <- update( m.int, . ~ . - MC:sex + MC )
> anova( m.coh, m.int, m.per, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ MC + MA:sex + sex:MP + sex:I(C - 1950) + offset(log(Y)) -
1

Model 2: D ~ -1 + MA:sex + MP:sex + MC:sex + I(C - 1950):sex + offset(log(Y))
Model 3: D ~ MP + MA:sex + sex:MC + sex:I(C - 1950) + offset(log(Y)) -

1
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 21912 19298.0
2 21898 17701.6 14 1596.4 0.0
3 21905 17741.1 -7 -39.5 1.551e-06
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Alhough both effects are significant there is a much smaller deviance for the period effect, so
we can assume that the period-effects have the same shape.

As goes for the age-effect we can test the same hypothesis, but we want to test a slightly
stronger hypothesis, namely that the actual slope with age is the same too, so when we
update the model we include the main effect of sex, but not the interction vith sex and age;
or rather we make succesice tests for this:

> m.age <- update( m.int, . ~ . - MA:sex + MA + sex + sex:A )
> m.aln <- update( m.age, . ~ . - sex:A )
> anova( m.int, m.age, m.aln, test="Chisq" )

Analysis of Deviance Table

Model 1: D ~ -1 + MA:sex + MP:sex + MC:sex + I(C - 1950):sex + offset(log(Y))
Model 2: D ~ MA + sex + sex:MP + sex:MC + sex:I(C - 1950) + sex:A + offset(log(Y)) -

1
Model 3: D ~ MA + sex + sex:MP + sex:MC + sex:I(C - 1950) + offset(log(Y)) -

1
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 21898 17701.6
2 21905 17827.6 -7 -126.0 4.202e-24
3 21906 17979.9 -1 -152.3 5.430e-35

We see that there quite strong evidence against the hypothesis that the age-effects have the
same shape and even stronger that they should have the same “slopes”, i.e. first-order
shapes too.

8. Thus it seems that a relevant description of the relationship of lung cancer rates between
males and females in Denmark is that they follow an age-cohort model. This model is
alreafy fitted, but in order to facilitate extractio of the parameters we refit it with a
parametrization of the linear cohort effect that gives the difference of these, so it is easier to
use a contrast matrix to get it out:

> m.RR <- glm( D ~ -1 + MA + MP + MC + I(C-1950) +
+ MA:sex + MC:sex + I(C-1950):sex +
+ offset( log(Y) ), family=poisson, data=lung )
> pr.RR <- predict( m.RR, type="terms", se.fit=TRUE )
> str( pr.RR )

List of 3
$ fit : num [1:21960, 1:7] -18.5 -18.6 -18.5 -18.6 -18.5 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:21960] "1" "2" "3" "4" ...
.. ..$ : chr [1:7] "MA" "MP" "MC" "I(C - 1950)" ...
..- attr(*, "constant")= num 0
$ se.fit : num [1:21960, 1:7] 0.193 0.194 0.193 0.194 0.193 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:21960] "1" "2" "3" "4" ...
.. ..$ : chr [1:7] "MA" "MP" "MC" "I(C - 1950)" ...
$ residual.scale: num 1

This allows us to reconstruct the age and the period effects by taking the unique rows of the
cohort and age-design matrices and multiply on the parameters of the interaction terms in
order to get the log-RRs:

> # Unique ages and cohort
> au <- match( sort(unique(lung$A)), lung$A)
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> cu <- match( sort(unique(lung$C)), lung$C)
> # Corresponding subsets of the design matrices
> A.ctr <- MA[au,]
> C.ctr <- cbind( MC[cu,], (lung$C-1950)[cu] )
> # Paramter names
> parnam <- names( coef(m.RR) )
> # Have we found the age-paramters we want?
> a.par <- intersect( grep("MA",parnam), grep("sexM",parnam) )
> parnam[a.par]

[1] "MA1:sexM" "MA2:sexM" "MA3:sexM" "MA4:sexM" "MA5:sexM" "MA6:sexM" "MA7:sexM"
[8] "MA8:sexM" "MA9:sexM"

> # Have we found the acohort-paramters we want?
> c.par <- c( grep("MC",parnam), grep("I",parnam) )
> c.par <- intersect( c.par, grep("sex",parnam) )
> parnam[c.par]

[1] "MC1:sexF" "MC2:sexF" "MC3:sexF" "MC4:sexF"
[5] "MC5:sexF" "MC6:sexF" "MC7:sexF" "MC8:sexF"
[9] "MC9:sexF" "MC10:sexF" "MC11:sexF" "MC12:sexF"
[13] "MC13:sexF" "MC14:sexF" "I(C - 1950):sexF"

> # Then we can extract effects, the parametrization for the cohort
> # effect is for F/M, hence we use -C.ctr
> A.eff <- ci.lin( m.RR, subset=a.par, ctr.mat= A.ctr, Exp=TRUE )[,5:7]
> C.eff <- ci.lin( m.RR, subset=c.par, ctr.mat=-C.ctr, Exp=TRUE )[,5:7]

These effects can now be plotted side by side:

> par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
> matplot( lung$A[au], A.eff,
+ log="y", ylim=c(0.5,5),
+ type="l", lty=1, col="black", lwd=c(3,1,1) )
> matplot( lung$C[cu], C.eff,
+ log="y", ylim=c(0.5,5),
+ type="l", lty=1, col="black", lwd=c(3,1,1) )

Now these effects could also be superposed on those from the separate APC-models:

> par( las=1, mar=c(4,3,1,2), mgp=c(3,1,0)/1.6 )
> fp <- apc.frame( a.lab = seq(40,90,20),
+ cp.lab = seq(1880,2000,20),
+ r.lab = c(0.5,1,2,5),
+ rr.ref = 1,
+ a.tic = seq(35,90,5),
+ cp.tic = seq(1855,2005,5),
+ r.tic = c(4:9/10,1:6),
+ tic.fac = 1.3,
+ a.txt = "Age",
+ cp.txt = "Calendar time",
+ r.txt = "M/F Rate ratio of lung cancer",
+ rr.txt = "",
+ ref.line = TRUE,
+ gap = 13,
+ col.grid = gray(0.85),
+ sides = c(1,2,4) )
> abline( h=1 )
> apc.lines( apc.mf, col="black", ci=F, frame.par=fp, lwd=2 )
> matlines( lung$A[au], A.eff, lwd=c(3,1,1), lty=1, col="blue" )
> matlines( lung$C[cu]-fp[1], C.eff, lwd=c(3,1,1), lty=1, col="blue" )
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Figure 3.33: Comparing the M/F rate-ratio between the simple approach and the approach using an
explicit model.

3.11 Prediction of breast cancer rates

1. First we read the data and take an overview:

> breast <- read.table("../data/breast.txt", header=T )
> str( breast )

'data.frame': 10980 obs. of 5 variables:
$ A: int 0 0 0 0 0 0 0 0 0 0 ...
$ P: int 1943 1943 1944 1944 1945 1945 1946 1946 1947 1947 ...
$ C: int 1942 1943 1943 1944 1944 1945 1945 1946 1946 1947 ...
$ D: int 0 0 0 0 0 0 0 0 0 0 ...
$ Y: num 18649 19947 19854 21265 21236 ...

> summary( breast )

A P C D Y
Min. : 0.0 Min. :1943 Min. :1853 Min. : 0.00 Min. : 385.2
1st Qu.:22.0 1st Qu.:1958 1st Qu.:1905 1st Qu.: 0.00 1st Qu.:11059.5
Median :44.5 Median :1973 Median :1928 Median : 9.00 Median :14538.3
Mean :44.5 Mean :1973 Mean :1928 Mean :12.11 Mean :13555.2
3rd Qu.:67.0 3rd Qu.:1988 3rd Qu.:1951 3rd Qu.:21.00 3rd Qu.:17767.2
Max. :89.0 Max. :2003 Max. :2003 Max. :69.00 Max. :22549.0

2. We now replace A, P and C with the correct triangle means; recall that the upper triangles
are characterized by the cohort being from the previous year, i.e. that p− a− c = 1.

> breast <- transform( breast, up = P-A-C )
> breast <- transform( breast, A = A+1/3+up/3,
+ P = P+2/3-up/3,
+ C = C+1/3+up/3 )
> with( breast, summary( P-A-C ) )

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.274e-13 2.274e-13 2.274e-13 2.274e-13 2.274e-13 2.274e-13

> head( breast )
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A P C D Y up
1 0.6666667 1943.333 1942.667 0 18648.83 1
2 0.3333333 1943.667 1943.333 0 19946.50 0
3 0.6666667 1944.333 1943.667 0 19853.67 1
4 0.3333333 1944.667 1944.333 0 21265.00 0
5 0.6666667 1945.333 1944.667 0 21235.67 1
6 0.3333333 1945.667 1945.333 0 22407.00 0

3. In order to use ratetab we must produce a matrix classified by age and period in suitable
intervals. This can be done choosing a tabulation interval length and then using this in
producing the tables. This approach enables a simple way of experimenting with the length.
Figure 3.34 shows the results.

> par( mfrow=c(2,2), mar=c(3,3,0,0), oma=c(0,0,1,1), mgp=c(3,1,0)/1.6 )
> ti <- 6
> with( subset( breast, A>30 ),
+ rateplot( tapply( D, list(floor(A/ti)*5+ti/2,
+ floor((P-1943)/ti)*5+1943+ti/2), sum ) /
+ tapply( Y, list(floor(A/ti)*ti+ti/2,
+ floor((P-1943)/ti)*ti+1943+ti/2), sum ) * 10^5,
+ col=heat.colors(12) ) )
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Figure 3.34: Danish breast cancer rates in 6-year age and period intervals.
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4. We use apc.fit to fit a model with age, period and cohort effects as natural splines (the
default), and the apc.plot to plot the estimated effects:

> m1 <- apc.fit( subset( breast, A>30 ), npar=c(10,7,15), ref.c=1920, scale=10^5 )

[1] "ML of APC-model Poisson with log(Y) offset : ( ACP ):\n"

Analysis of deviance for Age-Period-Cohort model

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
Age 7309 16264.9
Age-drift 7308 10198.5 1 6066.3 0.0
Age-Cohort 7294 9119.7 14 1078.8 1.915e-221
Age-Period-Cohort 7288 9018.1 6 101.7 1.121e-19
Age-Period 7302 10092.2 -14 -1074.1 1.918e-220
Age-drift 7308 10198.5 -6 -106.3 1.191e-20

> apc.plot( m1 )
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Figure 3.35: Estimates of age- period- and cohort effects plotted the default way — crap!

The plot (figure 3.35) is rather crappy, so we fine-tune the details by defining them explicit
in apc.frame. This piece of code is made by copying the definition of all parameters from
the help page and successively filling them in with suitable values:

> par( las=1, mar=c(3,4,1,4), mgp=c(3,1,0)/1.5 )
> fp <- apc.frame( a.lab = seq(30,90,10),
+ cp.lab = seq(1860,2005,20),
+ r.lab = c(c(1,2,5)*10,c(1,2,5)*100),
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+ # rr.lab = r.lab / rr.ref,
+ rr.ref = 100,
+ a.tic = seq(30,90,5),
+ cp.tic = seq(1855,2005,5),
+ r.tic = c(9,1:9*10,1:5*100),
+ # rr.tic = r.tic / rr.ref,
+ tic.fac = 1.3,
+ a.txt = "Age",
+ cp.txt = "Calendar time",
+ r.txt = "Rate per 100,000 person-years",
+ rr.txt = "Rate ratio",
+ gap = 8,
+ col.grid = gray(0.85),
+ sides = c(1,2,4) )
> apc.lines( m1, frame.par=fp, ci=T, col="red" )
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Figure 3.36: Estimates of age- period- and cohort effects plotted after fine tuning the display using
apc.frame

5. First we define the prediction points and the anchor points on the period scale:

> P.pt <- 2000 + 0:20
> P.rf <- 2000 - c(30,0)

Then we compute the estimated period effect on the log-RR scale at the anchor points, and
use these values for creating the prediction at 2020 (P.pt).

> Pp <- approx( m1$Per[,1], log(m1$Per[,2]), P.rf )$y
> P.eff <- Pp[2] + (Pp[2]-Pp[1])/diff(P.rf)*(P.pt-P.rf[2])

The same thing is done on the cohort scale:
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> C.pt <- 1970 + 0:20
> C.rf <- 1970 - c(30,0)
> Cp <- approx( m1$Coh[,1], log(m1$Coh[,2]), C.rf )$y
> C.eff <- Cp[2] + (Cp[2]-Cp[1])/diff(C.rf)*(C.pt-C.rf[2])

Finally, these are added to the plot of the effects, after we have re-drawn the frame with a
calendar-time axis extending to 2020 (remember that the P.eff and the C.eff are log-RRs,
and hence we need to take the exp before plotting):

> par( las=1, mar=c(3,4,1,4), mgp=c(3,1,0)/1.5 )
> fp <- apc.frame( a.lab = seq(30,90,10),
+ cp.lab = seq(1860,2020,20),
+ r.lab = c(c(1,2,5)*10,c(1,2,5)*100),
+ # rr.lab = r.lab / rr.ref,
+ rr.ref = 100,
+ a.tic = seq(30,90,5),
+ cp.tic = seq(1855,2020,5),
+ r.tic = c(9,1:9*10,1:5*100),
+ # rr.tic = r.tic / rr.ref,
+ tic.fac = 1.3,
+ a.txt = "Age",
+ cp.txt = "Calendar time",
+ r.txt = "Rate per 100,000 person-years",
+ rr.txt = "Rate ratio",
+ gap = 8,
+ col.grid = gray(0.85),
+ sides = c(1,2,4) )
> apc.lines( m1, frame.par=fp, ci=T, col="red", lwd=c(3,1,1) )
> lines( P.pt-fp[1], exp(P.eff)*fp[2], col=gray(0.0), lty="11", lwd=2 )
> lines( C.pt-fp[1], exp(C.eff)*fp[2], col=gray(0.0), lty="11", lwd=2 )

6. The fitted model gives an age-effect, a period effect and a cohort effect; the apc object
contains representations of these three effects as matrices with the age-values and the
estimated effects (with c.i.s) at these values and similarly for the period and cohort effects.

Prediction of the future rates will be based on extrapolations of the period and the cohort
effects. These must be linear in the sense that a linear function of the underlying scale
affects the prediction linearly.

Therefore we can make these extrapolations using the estimated effects, by simply applying
an appropriate linear function to the estimated values.

In this case we use an extrapolation through the period point 2000, and a point 30 years
prior to this, and a cohort point 1970 and a point 30 year prior to this.

Cross-sectional rates: The first task is the prediction of cross-sectional age-specific rates
in 2020.

First we extract the estimated age-specific rates, and define the prediction point and the
anchor points:

> A.pt <- m1$Age[,1]
> P.pt <- 2020
> P.rf <- 2000 - c(30,0)

The period effect only need one point as we are predicting the cross-sectional rates in 2020.
Then we compute the estimated period effect on the log-RR scale at the anchor points, and
use these values for creating the prediction at 2020 (P.pt)

> Pp <- approx( m1$Per[,1], log(m1$Per[,2]), P.rf )$y
> P.eff <- Pp[2] + (Pp[2]-Pp[1])/diff(P.rf)*(P.pt-P.rf[2])
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Figure 3.37: Estimates of age- period- and cohort effects with the linear extension of the period and
cohort effects used for prediction of future rates.

For the cohort effect we need to compute it at all cohorts represented in 2020. First we
compute the cohorts needed, set up a vector for the effects and then the reference points:

> C.pt <- P.pt - A.pt
> C.rf <- 1970 - c(30,0)
> C.eff <- numeric( length(C.pt) )

Then we can fill in the estimated cohort effects by interpolation for those cohorts that are
before 1970:

> C.eff[C.pt<C.rf[2]] <- approx( m1$Coh[,1], log(m1$Coh[,2]), C.pt[C.pt<C.rf[2]] )$y

Subsequently we get the log-RRs for the two anchor points and use these for prediction of
the cohorts after 1970:

> Cp <- approx( m1$Coh[,1], log(m1$Coh[,2]), C.rf )$y
> C.eff[C.pt>=C.rf[2]] <- Cp[2] + (Cp[2]-Cp[1])/diff(C.rf)*(C.pt[C.pt>C.rf[2]]-C.rf[2])

Finally, we can assemble the effects contributing to each of the ages represented, to give the
predicted age-specific rates in 2020:

> A.per.2020 <- exp( log(m1$Age[,2]) + P.eff + C.eff )

Longitudinal rates: We can now apply a similar machinery to predict the age-specific
rates for the 1950 cohort. The difference is now that the cohort effect is the same for all the
points, whereas the period effects differ.

> # Cohort point needed --- simple because the cohort is inside the data already
> C.pt <- 1960
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> C.eff <- approx( m1$Coh[,1], log(m1$Coh[,2]), C.pt )$y
> # Period points needed
> P.pt <- C.pt + A.pt
> P.rf <- 2000 - c(30,0)
> # Where to put the period effects
> P.eff <- numeric( length(P.pt) )
> P.eff[P.pt<P.rf[2]] <- approx( m1$Per[,1], log(m1$Per[,2]), P.pt[P.pt<P.rf[2]] )$y
> # Nowe we use the points from the interpolation
> Pp <- approx( m1$Per[,1], log(m1$Per[,2]), P.rf )$y
> P.eff[P.pt>=P.rf[2]] <- Pp[2] + (Pp[2]-Pp[1])/diff(P.rf)*(P.pt[P.pt>=P.rf[2]]-P.rf[2])
> # Note that the prediction of the log RRs are made based on the estimated RRs
> # that refer to the predicted age-specific rates.
> A.coh.1960 <- exp( log(m1$Age[,2]) + P.eff + C.eff )

Finally, we can plot the two predictions and the age-effect from the model, see figure 3.38

> matplot( A.pt, cbind( m1$Age[,2], A.coh.1960, A.per.2020 ),
+ type="l", lty=1, lwd=2, col=c("red","blue","black"),
+ log="y", xlab="Age", ylab="Predicted rates per 100,000" )
> abline( v=seq(30,90, 5), h=outer(1:9,1:3,function(x,y) x*10^y), col=gray(0.9) )
> abline( v=seq(30,90,10), h=outer(c(1,2,5),1:3,function(x,y) x*10^y), col=gray(0.8) )
> matlines( A.pt, cbind( m1$Age[,2], A.coh.1960, A.per.2020 ),
+ type="l", lty=1, lwd=5, col=c("red","blue","black") )
> box()

It is clear from the plot in figure 3.38 that the prediction of the cohort rates in the 1960
cohort are approximately proportional to the estimated age-effect. They are actually not,
but the prediction of the period effects are almost constant, so the disturbance from the
period effect over the lifespan of the 1960 cohort is minimal, and not visually detectable in
the graph.
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Figure 3.38: Predicted age-specific breast cancer rates at 2020 (black) and in the 1950 cohort (blue)
and the estimated age-effects.
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Chapter 4

The Epi manual (1.0.11)

apc.fit Fit an Age-Period-Cohort model to tabular data.

Description

Fits the classical five models to tabulated rate data (cases, person-years) classified by two of age, period,
cohort: Age, Age-drift, Age-Period, Age-Cohort and Age-period. There are no assumptions about the age,
period or cohort classes being of the same length, or that tabulation should be only by two of the variables.
Only requires that mean age and period for each tabulation unit is given.

Usage

apc.fit( data,

A,

P,

D,

Y,

ref.c,

ref.p,

dist = c("poisson","binomial"),

model = c("ns","bs","ls","factor"),

dr.extr = c("weighted","Holford"),

parm = c("ACP","APC","AdCP","AdPC","Ad-P-C","Ad-C-P","AC-P","AP-C"),

npar = c( A=5, P=5, C=5 ),

scale = 1,

alpha = 0.05,

print.AOV = TRUE )

Arguments

data Data frame with (at least) variables, A (age), P (period), D (cases, deaths) and Y

(person-years). Cohort (date of birth) is computed as P-A. If thsi argument is given the
arguments A, P, D and Y are ignored.

A Age; numerical vector with mean age at diagnosis for each unit.

P Period; numerical vector with mean date of diagnosis for each unit.

D Cases, deaths; numerical vector.

Y Person-years; numerical vector. Also used as denominator for binomial data, see the dist

argument.

ref.c Reference cohort, numerical. Defaults to median date of birth among cases. If used with
parm="AdCP" or parm="AdPC", the resdiual cohort effects will be 1 at ref.c
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ref.p Reference period, numerical. Defaults to median date of diagnosis among cases.

dist Distribution (or more precisely: Likelihood) used for modelling. if a binomial model us ised,
Y is assuemd to be the denominator; "binomial" gives a binomial model with logit link.

model Type of model fitted:

• ns fits a model with natural splines for each of the terms, with npar parameters for the
terms.

• bs fits a model with B-splines for each of the terms, with npar parameters for the
terms.

• ls fits a model with linear splines.

• factor fits a factor model with one parameter per value of A, P and C. npar is ignored
in this case.

dr.extr Character. How the drift parameter should be extracted from the age-period-cohort model.
"weighted" (default) lets the weighted average (by marginal no. cases, D) of the estimated
period and cohort effects have 0 slope. "Holford" uses the naive average over all values for
the estimated effects, disregarding the no. cases.

parm Character. Indicates the parametrization of the effects. The first four refer to the ML-fit of
the Age-Period-Cohort model, the last four give Age-effects from a smaller model and
residuals relative to this. If one of the latter is chosen, the argument dr.extr is ignored.
Possible values for parm are:

• "ACP": ML-estimates. Age-effects as rates for the reference cohort. Cohort effects as
RR relative to the reference cohort. Period effects constrained to be 0 on average with
0 slope.

• "APC": ML-estimates. Age-effects as rates for the reference period. Period effects as
RR relative to the reference period. Cohort effects constrained to be 0 on average with
0 slope.

• "AdCP": ML-estimates. Age-effects as rates for the reference cohort. Cohort and period
effects constrained to be 0 on average with 0 slope. These effects do not multiply to the
fitted rates, the drift is missing and needs to be included to produce the fitted values.

• "AdPC": ML-estimates. Age-effects as rates for the reference period. Cohort and period
effects constrained to be 0 on average with 0 slope. These effects do not multiply to the
fitted rates, the drift is missing and needs to be included to produce the fitted values.

• "Ad-C-P": Age effects are rates for the reference cohort in the Age-drift model (cohort
drift). Cohort effects are from the model with cohort alone, using log(fitted values)
from the Age-drift model as offset. Period effects are from the model with period alone
using log(fitted values) from the cohort model as offset.

• "Ad-P-C": Age effects are rates for the reference period in the Age-drift model (period
drift). Period effects are from the model with period alone, using log(fitted values)
from the Age-drift model as offset. Cohort effects are from the model with cohort alone
using log(fitted values) from the period model as offset.

• "AC-P": Age effects are rates for the reference cohort in the Age-Cohort model, cohort
effects are RR relative to the reference cohort. Period effects are from the model with
period alone, using log(fitted values) from the Age-Cohort model as offset.

• "AP-C": Age effects are rates for the reference period in the Age-Period model, period
effects are RR relative to the reference period. Cohort effects are from the model with
cohort alone, using log(fitted values) from the Age-Period model as offset.

npar The number of parameters to use for each of the terms in the model. It can be a list of three
numerical vectors, in which case these taken as the knots for the age, period and cohort
effect, the first and last element in each vector are used as the boundary knots.

alpha The significance level. Estimates are given with (1-alpha) confidence limits.

scale numeric(1), factor multiplied to the rate estimates before output.

print.AOV Should the analysis of deviance table for the models be printed?

Value

An object of class ”apc” (recognized by apc.lines and apc.plot) — a list with components:
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Age Matrix with 4 colums: A.pt with the ages (equals unique(A)) and three columns giving the
estimated rates with c.i.s.

Per Matrix with 4 colums: P.pt with the dates of diagnosis (equals unique(P)) and three
columns giving the estimated RRs with c.i.s.

Coh Matrix with 4 colums: C.pt with the dates of birth (equals unique(P-A)) and three columns
giving the estimated RRs with c.i.s.

Drift A 3 column matrix with drift-estimates and c.i.s: The first row is the ML-estimate of the
drift (as defined by drift), the second row is the estimate from the Age-drift model. For
the sequential parametrizations, only the latter is given.

Ref Numerical vector of length 2 with reference period and cohort. If ref.p or ref.c was not
supplied the corresponding element is NA.

AOV Analysis of deviance table comparing the five classical models.

Type Character string explaining the model and the parametrization.

Knots If model is one of "ns" or "bs", a list with three components: Age, Per, Coh, each one a
vector of knots. The max and the min are the boundary knots.

Author(s)

Bendix Carstensen, http://www.biostat.ku.dk/~bxc

References

The considerations behind the parametrizations used in this function are given in details in a preprint from
Department of Biostatistics in Copenhagen: http://www.pubhealth.ku.dk/bs/publikationer/rr-06-1.pdf,
later published as: B. Carstensen: Age-period-cohort models for the Lexis diagram. Statistics in Medicine, 10;
26(15):3018-45, 2007.

See Also

apc.frame, apc.lines, apc.plot.

Examples

library( Epi )

data(lungDK)

# Taylor a dataframe that meets the requirements

exd <- lungDK[,c("Ax","Px","D","Y")]

names(exd)[1:2] <- c("A","P")

# Two different ways of parametrizing the APC-model, ML

ex.H <- apc.fit( exd, npar=7, model="ns", dr.extr="Holford", parm="ACP", scale=10^5 )

ex.W <- apc.fit( exd, npar=7, model="ns", dr.extr="weighted", parm="ACP", scale=10^5 )

# Sequential fit, first AC, then P given AC.

ex.S <- apc.fit( exd, npar=7, model="ns", parm="AC-P", scale=10^5 )

# Show the estimated drifts

ex.H[["Drift"]]

ex.W[["Drift"]]

ex.S[["Drift"]]

# Plot the effects

fp <- apc.plot( ex.H )

apc.lines( ex.W, frame.par=fp, col="red" )

apc.lines( ex.S, frame.par=fp, col="blue" )

http://www.biostat.ku.dk/~bxc
http://www.pubhealth.ku.dk/bs/publikationer/rr-06-1.pdf
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apc.frame Produce an empty frame for display of parameter-estimates from Age-Period-
Cohort-models.

Description

A plot is generated where both the age-scale and the cohort/period scale is on the x-axis. The left vertical axis
will be a logarithmic rate scale referring to age-effects and the right a logarithmic rate-ratio scale of the same
relative extent as the left referring to the cohort and period effects (rate ratios).

Only an empty plot frame is generated. Curves or points must be added with points, lines or the special
utility function apc.lines.

Usage

apc.frame( a.lab,

cp.lab,

r.lab,

rr.lab = r.lab / rr.ref,

rr.ref = r.lab[length(r.lab)/2],

a.tic = a.lab,

cp.tic = cp.lab,

r.tic = r.lab,

rr.tic = r.tic / rr.ref,

tic.fac = 1.3,

a.txt = "Age",

cp.txt = "Calendar time",

r.txt = "Rate per 100,000 person-years",

rr.txt = "Rate ratio",

ref.line = TRUE,

gap = diff(range(c(a.lab, a.tic)))/3,

col.grid = gray(0.85),

sides = c(1,2,4) )

Arguments

a.lab Numerical vector of labels for the age-axis.

cp.lab Numerical vector of labels for the cohort-period axis.

r.lab Numerical vector of labels for the rate-axis (left vertical)

rr.lab Numerical vector of labels for the RR-axis (right vertical)

rr.ref At what level of the rate scale is the RR=1 to be.

a.tic Location of additional tick marks on the age-scale

cp.tic Location of additional tick marks on the cohort-period-scale

r.tic Location of additional tick marks on the rate-scale

rr.tic Location of additional tick marks on the RR-axis.

tic.fac Factor with which to diminish intermediate tick marks

a.txt Text for the age-axis (left part of horizontal axis).

cp.txt Text for the cohort/period axis (right part of horizontal axis).

r.txt Text for the rate axis (left vertical axis).

rr.txt Text for the rate-ratio axis (right vertical axis)

ref.line Logical. Should a reference line at RR=1 be drawn at the calendar time part of the plot?

gap Gap between the age-scale and the cohort-period scale

col.grid Colour of the grid put in the plot.

sides Numerical vector indicating on which sides axes should be drawn and annotated. This
option is aimed for multi-panel displays where axes only are put on the outer plots.
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Details

The function produces an empty plot frame for display of results from an age-period-cohort model, with
age-specific rates in the left side of the frame and cohort and period rate-ratio parameters in the right side of
the frame. There is a gap of gap between the age-axis and the calendar time axis, vertical grid lines at
c(a.lab,a.tic,cp.lab,cp.tic), and horizontal grid lines at c(r.lab,r.tic).

The function returns a numerical vector of length 2, with names c("cp.offset","RR.fac"). The y-axis for the
plot will be a rate scale for the age-effects, and the x-axis will be the age-scale. The cohort and period effects
are plotted by subtracting the first element (named "cp.offset") of the returned result form the
cohort/period, and multiplying the rate-ratios by the second element of the returned result (named "RR.fac").

Value

A numerical vector of length two, with names c("cp.offset","RR.fac"). The first is the offset for the cohort
period-axis, the second the multiplication factor for the rate-ratio scale.

Side-effect: A plot with axes and grid lines but no points or curves.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.pubhealth.ku.dk/~bxc/

References

http://www.pubhealth.ku.dk/~bxc/APC/notes.pdf

See Also

apc.lines,apc.lines

Examples

par( mar=c(4,4,1,4) )

res <-

apc.frame( a.lab=seq(30,90,20), cp.lab=seq(1880,2000,30), r.lab=c(1,2,5,10,20,50),

a.tic=seq(30,90,10), cp.tic=seq(1880,2000,10), r.tic=c(1:10,1:5*10),

gap=27 )

res

# What are the axes actually?

par(c("usr","xlog","ylog"))

# How to plot in the age-part: a point at (50,10)

points( 50, 10, pch=16, cex=2, col="blue" )

# How to plot in the cohort-period-part: a point at (1960,0.3)

points( 1960-res[1], 0.3*res[2], pch=16, cex=2, col="red" )

apc.lines Plot APC-estimates in an APC-frame.

Description

When an APC-frame has been produced by apc.frame, this function draws a set of estimates from an APC-fit
in the frame. An optional drift parameter can be added to the period parameters and subtracted from the
cohort and age parameters.

Usage

apc.lines( A, P, C,

scale = c("log","ln","rates","inc","RR"),

frame.par = NULL,

drift = 0,

c0 = median( C[,1] ),

http://www.pubhealth.ku.dk/~bxc/
http://www.pubhealth.ku.dk/~bxc/APC/notes.pdf
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a0 = median( A[,1] ),

p0 = c0 + a0,

ci = rep( FALSE, 3 ),

lwd = c(3,1,1),

lty = 1,

col = "black",

type = "l",

knots = FALSE,

... )

Arguments

A Age effects. A 4-column matrix with columns age, age-specific rates, lower and upper c.i. If
A is of class apc (see apc.fit, P, C, c0, a0 and p0 are ignored, and the estimates from there
plotted.

P Period effects. Rate-ratios. Same form as for the age-effects.

C Cohort effects. Rate-ratios. Same form as for the age-effects.

scale Are effects given on a log-scale? Character variable, one of "log", "ln", "rates", "inc",
"RR". If "log" or "ln" it is assumed that effects are log(rates) and log(RRs) otherwise the
actual effects are assumed given in A, P and C. If A is of class apc, it is assumed to be
"rates".

frame.par 2-element vector with the cohort-period offset and RR multiplicator. This will typically be
the result from the call of apc.frame. See this for details.

drift The drift parameter to be added to the period effect. If scale="log" this is assumed to be
on the log-scale, otherwise it is assumed to be a multiplicative factor per unit of the first
columns of A, P and C

c0 The cohort where the drift is assumed to be 0; the subtracted drift effect is
drift*(C[,1]-c0).

a0 The age where the drift is assumed to be 0.

p0 The period where the drift is assumed to be 0.

ci Should confidence interval be drawn. Logical or character. If character, any occurrence of
"a" or "A" produces confidence intervals for the age-effect. Similarly for period and cohort.

lwd Line widths for estimates, lower and upper confidence limits.

lty Linetypes for the three effects.

col Colours for the three effects.

type What type of lines / points should be used.

knots Should knots from the model be shown?

... Further parameters to be transmitted to matlines used for plotting the three sets of curves.

Details

The drawing of three effects in an APC-frame is a rather trivial task, and the main purpose of the utility is to
provide a function that easily adds the functionality of adding a drift so that several sets of lines can be easily
produced in the same frame.

Value

A list of three matrices with the effects plotted is returned invisibly.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.pubhealth.ku.dk/~bxc

See Also

\code{apc.frame}, \code{apc.frame}, \code{apc.frame}

http://www.pubhealth.ku.dk/~bxc
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apc.plot Plot the estimates from a fitted Age-Period-Cohort model

Description

This function plots the estimates created by apc.fit in a single graph. It just calls apc.frame after computing
some sensible values of the parameters, and subsequently plots the estimates using apc.lines.

Usage

apc.plot(obj, r.txt = "Rate", ...)

Arguments

obj An object of class apc.

r.txt The text to put on the vertical rate axis.

... Additional arguments passed on to apc.lines.

Value

A numerical vector of length two, with names c("cp.offset","RR.fac"). The first is the offset for the cohort
period-axis, the second the multiplication factor for the rate-ratio scale. Therefore, if you want to plot at (x,y)

in the right panel, use (x-res["cp.offset"],y/res["RR.fac"])=(x-res[1],y/res[2]). This vector should be
supplied for the parameter frame.par to apc.lines if more sets of estimates is plotted in the same graph.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.pubhealth.ku.dk/~bxc

See Also

\code{apc.lines} ,\code{apc.lines}, \code{apc.lines}

Examples

data( lungDK )

attach( lungDK )

apc1 <- apc.fit( A=Ax, P=Px, D=D, Y=Y/10^5 )

fp <- apc.plot( apc1 )

apc.lines( apc1, frame.par=fp, drift=1.01, col="red" )

for( i in 1:11 )

apc.lines( apc1, frame.par=fp, drift=1+(i-6)/100, col=rainbow(12)[i] )

bdendo A case-control study of endometrial cancer

Description

The bdendo data frame has 315 rows and 13 columns. These data concern a study in which each case of
endometrial cancer was matched with 4 controls. Matching was by date of birth (within one year), marital
status, and residence.

http://www.pubhealth.ku.dk/~bxc
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Format

This data frame contains the following columns:

set: Case-control set: a numeric vector
d: Case or control: a numeric vector (1=case, 0=control)

gall: Gall bladder disease: a factor with levels No Yes.
hyp: Hypertension: a factor with levels No Yes.
ob: Obesity: a factor with levels No Yes.
est: A factor with levels No Yes.
dur: Duration of conjugated oestrogen therapy: an ordered factor with levels 0 < 1 < 2 < 3 < 4.
non: Use of non oestrogen drugs: a factor with levels No Yes.

duration: Months of oestrogen therapy: a numeric vector.
age: A numeric vector.
cest: Conjugated oestrogen dose: an ordered factor with levels 0 < 1 < 2 < 3.

agegrp: A factor with levels 55-59 60-64 65-69 70-74 75-79 80-84

age3: a factor with levels <64 65-74 75+

Source

Breslow NE, and Day N, Statistical Methods in Cancer Research. Volume I: The Analysis of Case-Control
Studies. IARC Scientific Publications, IARC:Lyon, 1980.

Examples

data(bdendo)

bdendo11 A 1:1 subset of the endometrial cancer case-control study

Description

The bdendo11 data frame has 126 rows and 13 columns. This is a subset of the dataset bdendo in which each
case was matched with a single control.

Source

Breslow NE, and Day N, Statistical Methods in Cancer Research. Volume I: The Analysis of Case-Control
Studies. IARC Scientific Publications, IARC:Lyon, 1980.

Examples

data(bdendo11)

births Births in a London Hospital

Description

Data from 500 singleton births in a London Hospital

Usage

data(births)

Format

A data frame with 500 observations on the following 8 variables.
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id: Identity number for mother and baby.
bweight: Birth weight of baby.
lowbw: Indicator for birth weight less than 2500 g.

gestwks: Gestation period.
preterm: Indicator for gestation period less than 37 weeks.
matage: Maternal age.

hyp: Indicator for maternal hypertension.
sex: Sex of baby: 1:Male, 2:Female.

Source

Anonymous

References

Michael Hills and Bianca De Stavola (2002). A Short Introduction to Stata 8 for Biostatistics, Timberlake
Consultants Ltd http://www.timberlake.co.uk

Examples

data(births)

blcaIT Bladder cancer mortality in Italian males

Description

Number of deaths from bladder cancer and person-years in the Italian male population 1955–1979, in ages
25–79.

Format

A data frame with 55 observations on the following 4 variables:

age: Age at death. Left endpoint of age class
period: Period of death. Left endpoint of period

D: Number of deaths
Y: Number of person-years.

Examples

data(blcaIT)

brv Bereavement in an elderly cohort

Description

The brv data frame has 399 rows and 11 columns. The data concern the possible effect of marital bereavement
on subsequent mortality. They arose from a survey of the physical and mental health of a cohort of 75-year-olds
in one large general practice. These data concern mortality up to 1 January, 1990 (although further follow-up
has now taken place).

Subjects included all lived with a living spouse when they entered the study. There are three distinct groups of
such subjects: (1) those in which both members of the couple were over 75 and therefore included in the cohort,
(2) those whose spouse was below 75 (and was not, therefore, part of the main cohort study), and (3) those
living in larger households (that is, not just with their spouse).

http://www.timberlake.co.uk


116 cal.yr Epi manual

Format

This data frame contains the following columns:

id: subject identifier, a numeric vector
couple: couple identifier, a numeric vector

dob: date of birth, a date
doe: date of entry into follow-up study, a date
dox: date of exit from follow-up study, a date
dosp: date of death of spouse, a date (if the spouse was still alive at the end of follow-up, this was coded to January 1, 2000)
fail: status at end of follow-up, a numeric vector (0=alive,1=dead)
group: see Description, a numeric vector
disab: disability score, a numeric vector
health: perceived health status score, a numeric vector

sex: a factor with levels Male Female

Source

Jagger C, and Sutton CJ, Death after Marital Bereavement. Statistics in Medicine, 10:395-404, 1991. (Data
supplied by Carol Jagger).

Examples

data(brv)

cal.yr Functions to convert character, factor and various date objects into a number, and
vice versa.

Description

Dates are converted to a numerical value, giving the calendar year as a fractional number. 1 January 1970 is
converted to 1970.0, and other dates are converted by assuming that years are all 365.25 days long, so
inaccuracies may arise, for example, 1 Jan 2000 is converted to 1999.999. Differences between converted values
will be 1/365.25 of the difference between corresponding Date objects.

Usage

cal.yr( x, format="%Y-%m-%d", wh=NULL )

as.Date.cal.yr( x, ... )

as.Date.numeric( x, ..., unit="d" )

Arguments

x A factor or character vector, representing a date in format format, or an object of class
Date, POSIXlt, POSIXct, date, dates or chron (the latter two requires the chron package).
If x is a data frame, all variables in the data-frame which are of one the classes mentioned
are converted to class cal.yr. See arguemt wh, though.

format Format of the date values if x is factor or character. If this argument is supplied and x is a
datafame, all character variables are converted to class cal.yr. Factors in the dataframe
will be ignored.

wh Indices of the variables to convert if x is a data frame. Can be either a numerical or
character vector.

unit Which units are the date measured in, "y" for years, "d" for days.

... Arguments passed on from other methods.
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Value

cal.yr returns a numerical vector of the same length as x, of class c("cal.yr","numeric"). If x is a data
frame a dataframe with some of the columns converted to class "cal.yr" is returned.

as.Date.cal.yr and as.Date.numeric return Date objects.

Author(s)

Bendix Carstensen, Steno Diabetes Center & Dept. of Biostatistics, University of Copenhagen, 〈bxc@steno.dk〉,
http://www.pubhealth.ku.dk/~bxc

See Also

DateTimeClasses, Date

Examples

# Charcter vector of dates:

birth <- c("14/07/1852","01/04/1954","10/06/1987","16/05/1990",

"01/01/1996","01/01/1997","01/01/1998","01/01/1999")

# Proper conversion to class "Date":

birth.dat <- as.Date( birth, format="%d/%m/%Y" )

# Converson of character to class "cal.yr"

bt.yr <- cal.yr( birth, format="%d/%m/%Y" )

# Back to class "Date":

bt.dat <- as.Date( bt.yr )

# Numerical calculation of days since 1.1.1970:

days <- Days <- (bt.yr-1970)*365.25

# Blunt assignment of class:

class( Days ) <- "Date"

# Then data.frame() to get readable output of results:

data.frame( birth, birth.dat, bt.yr, bt.dat, days, Days, round(Days) )

ccwc Generate a nested case-control study

Description

Given the basic outcome variables for a cohort study: the time of entry to the cohort, the time of exit and the
reason for exit (”failure” or ”censoring”), this function computes risk sets and generates a matched case-control
study in which each case is compared with a set of controls randomly sampled from the appropriate risk set.
Other variables may be matched when selecting controls.

Usage

ccwc(entry=0, exit, fail, origin=0, controls=1, match=list(), include=list(), data=NULL, silent=F)

Arguments

entry Time of entry to follow-up

exit Time of exit from follow-up

fail Status on exit (1=Fail, 0=Censored)

origin Origin of analysis time scale

controls The number of controls to be selected for each case

match List of categorical variables on which to match cases and controls

include List of other variables to be carried across into the case-control study

data Data frame in which to look for input variables

silent If False, echos a . to the screen for each case-control set created; otherwise produces no
output.

http://www.pubhealth.ku.dk/~bxc
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Value

The case-control study, as a dataframe containing:

Set case-control set number

Map row number of record in input dataframe

Time failure time of the case in this set

Fail failure status (1=case, 0=control)

These are followed by the matching variables, and finally by the variables in the include list

Author(s)

David Clayton

References

Clayton and Hills, Statistical Models in Epidemiology, Oxford University Press, Oxford:1993.

See Also

Lexis

Examples

#

# For the diet and heart dataset, create a nested case-control study

# using the age scale and matching on job

#

data(diet)

dietcc <- ccwc(doe, dox, chd, origin=dob, controls=2, data=diet,

include=energy, match=job)

ci.cum Compute cumulative sum of estimates.

Description

Computes the cumulative sum of parameter functions and the standard error of it. Optionally the exponential
is applied to the parameter functions before it is cumulated.

Usage

ci.cum( obj,

ctr.mat = NULL,

subset = NULL,

intl = 1,

alpha = 0.05,

Exp = TRUE )

Arguments

obj A model object.

ctr.mat Contrast matrix defining the parameter functions from the parameters of the model.

subset Subset of the parameters of the model to which ctr.mat should be applied.

intl Interval length for the cumulation. Either a constant or a numerical vector of length
nrow(ctr.mat).

alpha Significance level used when computing confidence limits.

Exp Should the parameter function be exponentiated before it is cumulated?
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Details

The purpose of this function is to compute cumulative rate based on a model for the rates. If the model is a
multiplicative model for the rates, the purpose of ctr.mat is to return a vector of rates or log-rates when
applied to the coefficients of the model. If log-rates are returned, the they should be exponentiated before
cumulated, and the variances computed accordingly. Since log-linear models are the most common the Exp

parameter defaults to TRUE.

Value

A matrix with 4 columns: Estimate, lower and upper c.i. and standard error.

Author(s)

Bendix Carstensen, http://www.pubhealth.ku.dk/~bxc

See Also

See also ci.lin

Examples

# Packages required for this example

library( splines )

library( survival )

data( lung )

par( mfrow=c(1,2) )

# Plot the Kaplan-meier-estimator

plot( survfit( Surv( time, status==2 ) ~ 1, data=lung ) )

# Declare data as Lexis

lungL <- Lexis( exit=list("tfd"=time),

exit.status=(status==2)*1, data=lung )

summary( lungL )

# Cut the follow-up every 10 days

sL <- splitLexis( lungL, "tfd", breaks=seq(0,1100,10) )

str( sL )

summary( sL )

# Fit a Poisson model with a natural spline for the effect of time.

# Extract the variables needed

D <- status(sL, "exit")

Y <- dur(sL)

tB <- timeBand( sL, "tfd", "left" )

MM <- ns( tB, knots=c(50,100,200,400,700), intercept=TRUE )

mp <- glm( D ~ MM - 1 + offset(log(Y)),

family=poisson, eps=10^-8, maxit=25 )

# Contrast matrix to extract effects, i.e. matrix to multiply with the

# coefficients to produce the log-rates: unique rows of MM, in time order.

T.pt <- sort( unique( tB ) )

T.wh <- match( T.pt, tB )

Lambda <- ci.cum( mp, ctr.mat=MM[T.wh,], intl=diff(c(0,T.pt)) )

# Put the estimated survival function on top of the KM-estimator

matlines( c(0,T.pt[-1]), exp(-Lambda[,1:3]), lwd=c(3,1,1), lty=1, col="Red" )

# Extract and plot the fitted intensity function

lambda <- ci.lin( mp, ctr.mat=MM[T.wh,], Exp=TRUE )

http://www.pubhealth.ku.dk/~bxc
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matplot( T.pt, lambda[,5:7]*10^3, type="l", lwd=c(3,1,1), col="black", lty=1,

log="y", ylim=c(0.2,20) )

ci.lin Compute linear functions of parameters with s.e.

Description

For a given model object the function computes a linear function of the parameters and the corresponding
standard errors, p-values and confidence intervals.

Usage

ci.lin( obj,

ctr.mat = NULL,

subset = NULL,

diffs = FALSE,

fnam = !diffs,

vcov = FALSE,

alpha = 0.05,

Exp = FALSE )

Arguments

obj A model object (of class lm, glm, lme, coxph or polr).

ctr.mat Contrast matrix to be multiplied to the parameter vector, i.e. the desired linear function of
the parameters.

subset The subset of the parameters to be used. If given as a character vector, the elements are in
turn matched against the parameter names (using grep) to find the subset. Repeat
parameters may result from using a character vector. This is considered a facility.

diffs If TRUE, all differences between parameters in the subset are computed. ctr.mat is
ignored. If obj inherits from lm, and subset is given as a string subset is used to search
among the factors in the model and differences of all factor levels for the first match are
shown. If subset does not match any of the factors in the model, all pairwise differences
between parameters matching are returned.

fnam Should the common part of the parameter names be included with the annotation of
contrasts? Ignored if diffs==T. If a sting is supplied this will be prefixed to the labels.

vcov Should the covariance matrix of the set of parameters be returned? If this is set, Exp is
ignored.

alpha Significance level for the confidence intervals.

Exp If TRUE columns 5:6 are replaced with exp( columns 1,5,6 ).

Value

A matrix with number of rows and rownames as ctr.mat. The columns are Estimate, Std.Err, z, P, 2.5% and
97.5%. If vcov=TRUE a list with components est, the desired functional of the parameters and vcov, the
variance covariance matrix of this, is returned but not printed. If Exp==TRUE the confidence intervals for the
parameters are replaced with three columns: exp(estimate,c.i.).

Author(s)

Bendix Carstensen, http://www.pubhealth.ku.dk/~bxc

http://www.pubhealth.ku.dk/~bxc
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Examples

# Bogus data:

f <- factor( sample( letters[1:5], 200, replace=TRUE ) )

g <- factor( sample( letters[1:3], 200, replace=TRUE ) )

x <- rnorm( 200 )

y <- 7 + as.integer( f ) * 3 + 2 * x + 1.7 * rnorm( 200 )

# Fit a simple model:

mm <- lm( y ~ x + f + g )

ci.lin( mm )

ci.lin( mm, subset=3:6, diff=TRUE, fnam=FALSE )

ci.lin( mm, subset=3:6, diff=TRUE, fnam=TRUE )

ci.lin( mm, subset="f", diff=TRUE, fnam="f levels:" )

print( ci.lin( mm, subset="g", diff=TRUE, fnam="gee!:", vcov=TRUE ) )

# Use character defined subset to get ALL contrasts:

ci.lin( mm, subset="f", diff=TRUE )

ci.pd Compute confidence limits for a difference of two independent proportions.

Description

The usual formula for the c.i. of at difference of proportions is inaccurate. Newcombe has compared 11
methods and method 10 in his paper looks like a winner. It is implemented here.

Usage

ci.pd(aa, bb=NULL, cc=NULL, dd=NULL,

method = "Nc",

alpha = 0.05, conf.level=0.95,

digits = 3,

print = TRUE,

detail.labs = FALSE )

Arguments

aa Numeric vector of successes in sample 1. Can also be a matrix or array (see details).

bb Successes in sample 2.

cc Failures in sample 1.

dd Failures in sample 2.

method Method to use for calculation of confidence interval, see ”Details”.

alpha Significance level

conf.level Confidence level

print Should an account of the two by two table be printed.

digits How many digits should the result be rounded to if printed.

detail.labs Should the computing of probability differences be reported in the labels.

Details

Implements method 10 from Newcombe(1998) (method=”Nc”) or from Agresti & Caffo(2000) (method=”AC”).

aa, bb, cc and dd can be vectors. If aa is a matrix, the elements [1:2,1:2] are used, with successes aa[,1:2].
If aa is a three-way table or array, the elements aa[1:2,1:2,] are used.
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Value

A matrix with three columns: probability difference, lower and upper limit. The number of rows equals the
length of the vectors aa, bb, cc and dd or, if aa is a 3-way matrix, dim(aa)[3].

Author(s)

Bendix Carstensen, Esa Laara. http://www.biostat.ku.dk/~bxc

References

RG Newcombe: Interval estimation for the difference between independent proportions. Comparison of eleven
methods. Statistics in Medicine, 17, pp. 873-890, 1998.

A Agresti & B Caffo: Simple and effective confidence intervals for proportions and differences of proportions
result from adding two successes and two failures. The American Statistician, 54(4), pp. 280-288, 2000.

See Also

twoby2, binom.test

Examples

( a <- matrix( sample( 10:40, 4 ), 2, 2 ) )

ci.pd( a )

twoby2( t(a) )

prop.test( t(a) )

( A <- array( sample( 10:40, 20 ), dim=c(2,2,5) ) )

ci.pd( A )

ci.pd( A, detail.labs=TRUE, digits=3 )

contr.cum Contrast matrices

Description

Return a matrix of contrasts for factor coding.

Usage

contr.cum(n)

contr.diff(n)

contr.2nd(n)

contr.orth(n)

Arguments

n A vector of levels for a factor, or the number of levels.

Details

These functions are used for creating contrast matrices for use in fitting regression models. The columns of the
resulting matrices contain contrasts which can be used for coding a factor with n levels.

contr.cum gives a coding corresponding to successive differences between factor levels.

contr.diff gives a coding that correspond to the cumulative sum of the value for each level. This is not
meaningful in a model where the intercept is included, therefore n columns ia always returned.

contr.2nd gives contrasts corresponding to 2nd order differences between factor levels. Returns a matrix with
n-2 columns.

contr.orth gives a matrix with n-2 columns, which are mutually orthogonal and orthogonal to the matrix
cbind(1,1:n)

http://www.biostat.ku.dk/~bxc
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Value

A matrix with n rows and k columns, with k=n for contr.diff k=n-1 for contr.cum k=n-2 for contr.2nd and
contr.orth.

Author(s)

Bendix Carstensen

See Also

contr.treatment

Examples

contr.cum(6)

contr.2nd(6)

contr.diff(6)

contr.orth(6)

cutLexis Cut follow-up at a specified date for each person.

Description

Follow-up intervals in a Lexis object are divided into two sub-intervals: one before and one after an
intermediate event. The intermediate event may denote a change of state, in which case the entry and exit
status variables in the split Lexis object are modified.

Usage

cutLexis(data, cut, timescale = 1, new.state, progressive=FALSE,

precursor.states=NULL, count=FALSE)

countLexis(data, cut, timescale = 1)

Arguments

data A Lexis object.

cut A numeric vector with the times of the intermediate event. If a time is missing (NA) then the
event is assumed to occur at time Inf. cut can also be a dataframe, see details.

timescale The timescale that cut refers to.

new.state an optional vector, to be used when the cut point denotes a change of state. This may be a
single value, which is applied to all rows of data, or a vector with a separate value for each
row

progressive a logical flag that determines the changes to exit status. See Details below

precursor.states

an optional vector of states to be considered as ”less severe” than new.state. See Details
below

count logical indicating wheter the countLexis options should be used. Specifying count=TRUE

amounts to calling countLexis, and the arguments new.state, progressive and
precursor.states will be ignored.
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Details

The cutLexis function allows a number of different ways of specifying the cutpoints and of modifying the
status variable.

If the cut argument is a dataframe it must have columns lex.id, cut and new.state. The values of lex.id

must be unique. In this case it is assumed that each row represents a cutpoint (on the timescale indicated
innthe arument timescale). This cutpoint will be applied to all records in data with the corresponding
lex.id. This makes it possible to apply cutLexis to a split Lexis object.

If the new.state argument is omitted, then the subject is assumed to remain in the entry state. In this case, if
an interval is split, the entry status is carried forward to the cut point.

If a new.state argument is supplied then, by default, the status variable is only modified at the time of the cut
point. However, it is often useful to modify the status variable after the cutpoint when an important event
occurs. There are three distinct ways of doing this.

If the progressive=TRUE argument is given, then a ”progressive” model is assumed, in which the status can
either remain the same or increase during follow-up, but never decrease. In this case, if new.state=X, then any
exit status with a value less than X is replaced with X. This argument may only be used if the status variable is
numeric or an ordered factor. The Lexis object must already be progressive, so that there are no rows for which
the exit status is less than the entry status. If lex.Cst and lex.Xst are factors they must be ordered factors if
progressive=TRUE is given.

As an alternative to the progressive argument, an explicit vector of precursor states, that are considered less
severe than the new state, may be given. If new.state=X and precursor.states=c(Y,Z) then any exit status
of Y or Z in the second interval is replaced with X and all other values for the exit status are retained.

The countLexis function is a variant of cutLexis when the cutpoint marks a recurrent event, and the status
variable is used to count the number of events that have occurred. Times given in cut represent times of new
events. Splitting with countLexis augments the status variable by 1. If the entry status is X and the exit status
is Y before splitting, then after splitting the entry status is X, X+1 for the first and second intervals, respectively,
and the exit status is X+1, Y+1 respectively.

Value

A Lexis object, for which each follow-up interval containing the cut point is split into two rows: one before and
one after the cut point.

Note

The cutLexis function superficially resembles the splitLexis function. However, the splitLexis function
splits on a vector of common cut-points for all rows of the Lexis object, whereas the cutLexis function splits
on a single time point, which may be distinct for each row, and additionally modifies the status variables.

Author(s)

Bendix Carstensen, Steno Diabetes Center, 〈bxc@steno.dk〉, Martyn Plummer, IARC, 〈plummer@iarc.fr〉.

See Also

splitLexis, Lexis, summary.Lexis

Examples

# A small artificial example

xx <- Lexis( entry=list(age=c(17,24,33,29),per=c(1920,1933,1930,1929)),

duration=c(23,57,12,15), exit.status=c(1,2,1,2) )

xx

cut <- c(33,47,29,50)

cutLexis(xx, cut, new.state=3, precursor=1)

cutLexis(xx, cut, new.state=3, precursor=2)

cutLexis(xx, cut, new.state=3, precursor=1:2)

# The same as the last example

cutLexis(xx, cut, new.state=3)
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# The same example with a factor status variable

yy <- Lexis(entry = list(age=c(17,24,33,29),per=c(1920,1933,1930,1929)),

duration = c(23,57,12,15),

entry.status = factor(rep("alpha",4),

levels=c("alpha","beta","gamma")),

exit.status = factor(c("alpha","beta","alpha","beta"),

levels=c("alpha","beta","gamma")))

cutLexis(yy,c(33,47,29,50),precursor="alpha",new.state="gamma")

cutLexis(yy,c(33,47,29,50),precursor=c("alpha","beta"),new.state="aleph")

## Using a dataframe as cut argument

rl <- data.frame( lex.id=1:3, cut=c(19,53,26), timescale="age", new.state=3 )

rl

cutLexis( xx, rl )

cutLexis( xx, rl, precursor=1 )

cutLexis( xx, rl, precursor=0:2 )

## It is immaterial in what order splitting and cutting is done

xs <- splitLexis( xx, breaks=seq(0,100,10), time.scale="age" )

xs

xsC <- cutLexis(xs, rl, precursor=0 )

xC <- cutLexis( xx, rl, pre=0 )

xC

xCs <- splitLexis( xC, breaks=seq(0,100,10), time.scale="age" )

xCs==xsC

xCs

detrend Projection of a model matrix on to the orthogonal complement of a trend.

Description

The columns of the model matrix M is projected on the orthogonal complement to the matrix (1,t).
Orthogonality is defined w.r.t. an inner product defined by the weights weight.

Usage

detrend( M, t, weight = rep(1, nrow(M)) )

Arguments

M A model matrix.

t The trend defining a subspace. A numerical vector of length nrow(M)

weight Weights defining the inner product of vectors x and y as sum(x*w*y). A numerical vector of
length nrow(M), defaults to a vector of 1s.

Details

The functions is intended to be used in parametrization of age-period-cohort models.

Value

A full-rank matrix with columns orthogonal to (1,t).
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Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.pubhealth.ku.dk/~bxc, with help from Peter
Dalgaard.

See Also

projection.ip

diet Diet and heart data

Description

The diet data frame has 337 rows and 14 columns. The data concern a subsample of subjects drawn from
larger cohort studies of the incidence of coronary heart disease (CHD). These subjects had all completed a
7-day weighed dietary survey while taking part in validation studies of dietary questionnaire methods. Upon
the closure of the MRC Social Medicine Unit, from where these studies were directed, it was found that 46
CHD events had occurred in this group, thus allowing a serendipitous study of the relationship between diet
and the incidence of CHD.

Format

This data frame contains the following columns:

id: subject identifier, a numeric vector.
doe: date of entry into follow-up study, a Date variable.
dox: date of exit from the follow-up study, a Date variable.
dob: date of birth, a Date variable.
y: - number of years at risk, a numeric vector.

fail: status on exit, a numeric vector (codes 1, 3, 11, and 13 represent CHD events)
job: occupation, a factor with levels Driver Conductor Bank worker

month: month of dietary survey, a numeric vector
energy: total energy intake (KCal per day/100), a numeric vector
height: (cm), a numeric vector
weight: (kg), a numeric vector

fat: fat intake (g/day), a numeric vector
fibre: dietary fibre intake (g/day), a numeric vector

energy.grp: high daily energy intake, a factor with levels <=2750 KCal >2750 KCal

chd: CHD event, a numeric vector (1=CHD event, 0=no event)

Source

The data are described and used extensively by Clayton and Hills, Statistical Models in Epidemiology, Oxford
University Press, Oxford:1993. They were rescued from destruction by David Clayton and reentered from paper
printouts.

Examples

data(diet)

# Illustrate the follow-up in a Lexis diagram

Lexis.diagram( age=c(30,75), date=c(1965,1990),

entry.date=cal.yr(doe), exit.date=cal.yr(dox), birth.date=cal.yr(dob),

fail=(fail>0), pch.fail=c(NA,16), col.fail=c(NA,"red"), cex.fail=1.0,

data=diet )

http://www.pubhealth.ku.dk/~bxc
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DMconv Conversion to diabetes

Description

Data from a randomized intervention study (”Addition”) where persons with prediabetic conditions are followed
up for conversion to diabetes (DM). Conversion dates are interval censored. Original data are not published
yet, so id-numbers have been changed and all dates have been randomly perturbed.

Usage

data(DMconv)

Format

A data frame with 1519 observations on the following 6 variables.

id Person identifier

doe Date of entry, i.e. first visit.

dlw Date last seen well, i.e. last visit without DM.

dfi Date first seen ill, i.e. first visit with DM.

gtol Glucose tolerance. Factor with levels: 1=”IFG” (impaired fasting glucose), 2=”IGT” (impaired glucose
tolerance).

grp Randomization. Factor with levels: 1=”Intervention”, 2=”Control”.

Source

Signe Saetre Rasmussen, Steno Diabetes Center. The Addition Study.

Examples

data(DMconv)

str(DMconv)

head(DMconv)

effx.match Function to calculate effects for individually matched case-control studies

Description

The function calculates the effects of an exposure on a response, possibly stratified by a stratifying variable,
and/or controlled for one or more confounding variables.

Usage

effx.match(response,

exposure,

match,

strata=NULL,

control=NULL,

base=1,

digits=3,

alpha=0.05,

data=NULL)
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Arguments

response The response variable - must be numeric

exposure The exposure variable can be numeric or a factor

match The variable which identifies the matched sets

strata The strata stratifying variable - must be a factor

control The control variable(s). These are passed as a list if there are more than one of them.

base Baseline for the effects of a categorical exposure, default 1

digits Number of significant digits for the effects, default 3

alpha 1 - confidence level

data data refers to the data used to evaluate the function

Details

Effects are calculated odds ratios. The function is a wrapper for clogit, from the survival package. The k-1
effects for a categorical exposure with k levels are relative to a baseline which, by default, is the first level. The
effect of a metric (quantitative) exposure is calculated per unit of exposure. The exposure variable can be
numeric or a factor, but if it is an ordered factor the order will be ignored.

Value

comp1 Effects of exposure

comp2 Tests of significance

Author(s)

Michael Hills

References

www.mhills.pwp.blueyonder.co.uk

Examples

library(Epi)

library(survival)

data(bdendo)

# d is the case-control variable, set is the matching variable.

# The variable est is a factor and refers to estrogen use (no,yes)

# The variable hyp is a factor with 2 levels and refers to hypertension (no, yes)

# effect of est on the odds of being a case

effx.match(d,exposure=est,match=set,data=bdendo)

# effect of est on the odds of being a case, stratified by hyp

effx.match(d,exposure=est,match=set,strata=hyp,data=bdendo)

# effect of est on the odds of being a case, controlled for hyp

effx.match(d,exposure=est,match=set,control=hyp,data=bdendo)

effx Function to calculate effects

Description

The function calculates the effects of an exposure on a response, possibly stratified by a stratifying variable,
and/or controlled for one or more confounding variables.
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Usage

effx( response, type = "metric",

fup = NULL,

exposure,

strata = NULL,

control = NULL,

weights = NULL,

alpha = 0.05,

base = 1,

digits = 3,

data = NULL )

Arguments

response The response variable - must be numeric

type The type of responsetype - must be one of ”metric”, ”binary”, ”failure”, or ”count”

fup The fup variable contains the follow-up time for a failure response

exposure The exposure variable can be numeric or a factor

strata The strata stratifying variable - must be a factor

control The control variable(s) - these are passed as a list if there are more than one.

weights Frequency weights for binary response only

base Baseline for the effects of a categorical exposure, default 1

digits Number of significant digits for the effects, default 3

alpha 1 - confidence level

data data refers to the data used to evaluate the function

Details

The function is a wrapper for glm. Effects are calculated as differences in means for a metric response, odds
ratios for a binary response, and rate ratios for a failure or count response.

The k-1 effects for a categorical exposure with k levels are relative to a baseline which, by default, is the first
level. The effect of a metric (quantitative) exposure is calculated per unit of exposure.

The exposure variable can be numeric or a factor, but if it is an ordered factor the order will be ignored.

Value

comp1 Effects of exposure

comp2 Tests of significance

Author(s)

Michael Hills

References

www.mhills.pwp.blueyonder.co.uk

Examples

library(Epi)

data(births)

births$hyp <- factor(births$hyp,labels=c("normal","hyper"))

births$sex <- factor(births$sex,labels=c("M","F"))

# bweight is the birth weight of the baby in gms, and is a metric

# response (the default)
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# effect of hypertension on birth weight

effx(bweight,exposure=hyp,data=births)

# effect of hypertension on birth weight stratified by sex

effx(bweight,exposure=hyp,strata=sex,data=births)

# effect of hypertension on birth weight controlled for sex

effx(bweight,exposure=hyp,control=sex,data=births)

# effect of gestation time on birth weight

effx(bweight,exposure=gestwks,data=births)

# effect of gestation time on birth weight stratified by sex

effx(bweight,exposure=gestwks,strata=sex,data=births)

# effect of gestation time on birth weight controlled for sex

effx(bweight,exposure=gestwks,control=sex,data=births)

# lowbw is a binary response coded 1 for low birth weight and 0 otherwise

# effect of hypertension on low birth weight

effx(lowbw,type="binary",exposure=hyp,data=births)

# etc.

ewrates Rates of lung and nasal cancer mortality, and total mortality.

Description

England and Wales mortality rates from lung cancer, nasal cancer, and all causes 1936 - 1980. The 1936 rates
are repeated as 1931 rates in order to accomodate follow up for the nickel study.

Usage

data(ewrates)

Format

A data frame with 150 observations on the following 5 variables:

id: Subject identifier (numeric)
year Calendar period, 1931: 1931–35, 1936: 1936–40, . . .
age Age class: 10: 10–14, 15:15–19, . . .
lung Lung cancer mortality rate per 1,000,000 py.
nasal Nasal cancer mortality rate per 1,000,000 py.
other All cause mortality rate per 1,000,000 py.

Source

From Breslow and Day, Vol II, Appendix IX.

Examples

data(ewrates)

str(ewrates)

expand.data Function to expand data for regression analysis of interval censored data.

Description

This is a utility function.
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The original records with first.well, last.well and first.ill are expanded to multiple records; several for
each interval where the person is known to be well and one where the person is known to fail. At the same time
columns for the covariates needed to estimate rates and the response variable are generated.

Usage

expand.data(fu, formula, breaks, data)

Arguments

fu A 3-column matrix with first.well, last.well and first.ill in each row.

formula Model fromula, used to derive the model matrix.

breaks Defines the intervals in which the baseline rate is assumed constant. All follow-up before the
first and after the last break is discarded.

data Datafrem in which fu and formula is interpreted.

Value

Returns a list with three components

rates.frame Dataframe of covariates for estimation of the baseline rates — one per interval defined by
breaks.

cov.frame Dataframe for estimation of the covariate effects. A data-framed version of the designmatrix
from formula.

y Response vector.

Author(s)

Martyn Plummer, 〈plummer@iarc.fr〉

References

B Carstensen: Regression models for interval censored survival data: application to HIV infection in Danish
homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

See Also

Icens fit.mult fit.add

fit.add Fit an addive excess risk model to interval censored data.

Description

Utility function.

The model fitted assumes a piecewise constant intensity for the baseline, and that the covariates act additively
on the rate scale.

Usage

fit.add( y, rates.frame, cov.frame, start )

Arguments

y Binary vector of outcomes

rates.frame Dataframe expanded from the original data by expand.data, cooresponding to covariates for
the rate parameters.

cov.frame do., but covariates corresponding to the formula argument of Icens

start Starting values for the rate parameters. If not supplied, then starting values are generated.
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Value

A list with one component:

rates A glm object from a binomial model with log-link function.

Author(s)

Martyn Plummer, 〈plummer@iarc.fr〉

References

B Carstensen: Regression models for interval censored survival data: application to HIV infection in Danish
homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

CP Farrington: Interval censored survival data: a generalized linear modelling approach. Statistics in Medicine,
15(3):283-292, 1996.

See Also

Icens fit.mult

Examples

data( HIV.dk )

fit.baseline Fit a piecewise contsnt intesity model for interval censored data.

Description

Utility function

Fits a binomial model with logaritmic link, with y as outcome and covariates in rates.frame to estimate rates
in the inttervals between breaks.

Usage

fit.baseline( y, rates.frame, start )

Arguments

y Binary vector of outcomes

rates.frame Dataframe expanded from the original data by expand.data

start Starting values for the rate parameters. If not supplied, then starting values are generated.

Value

A glm object, with binomial error and logaritmic link.

Author(s)

Martyn Plummer, 〈plummer@iarc.fr〉

See Also

fit.add fit.mult
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fit.mult Fits a multiplicative relative risk model to interval censored data.

Description

Utility function.

The model fitted assumes a piecewise constant baseline rate in intervals specified by the argument breaks, and
a multiplicative relative risk function.

Usage

fit.mult( y, rates.frame, cov.frame, start )

Arguments

y Binary vector of outcomes

rates.frame Dataframe expanded from the original data by expand.data, cooresponding to covariates for
the rate parameters.

cov.frame do., but covariates corresponding to the formula argument of Icens

start Starting values for the rate parameters. If not supplied, then starting values are generated.

Details

The model is fitted by alternating between two generalized linear models where one estimates the underlying
rates in the intervals, and the other estimates the log-relative risks.

Value

A list with three components:

rates A glm object from a binomial model with log-link, estimating the baseline rates.

cov A glm object from a binomial model with complementary log-log link, estimating the
log-rate-ratios

niter Nuber of iterations, a scalar

Author(s)

Martyn Plummer, 〈plummer@iarc.fr〉, Bendix Carstensen, 〈bxc@steno.dk〉

References

B Carstensen: Regression models for interval censored survival data: application to HIV infection in Danish
homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

CP Farrington: Interval censored survival data: a generalized linear modelling approach. Statistics in Medicine,
15(3):283-292, 1996.

See Also

Icens fit.add

Examples

data( HIV.dk )
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float Calculate floated variances

Description

Given a fitted model object, the float() function calculates floating variances (a.k.a. quasi-variances) for a
given factor in the model.

Usage

float(object, factor, iter.max=50)

Arguments

object a fitted model object

factor character string giving the name of the factor of interest. If this is not given, the first factor
in the model is used.

iter.max Maximum number of iterations for EM algorithm

Details

The float() function implements the ”floating absolute risk” proposal of Easton, Peto and Babiker(1992). This
is an alternative way of presenting parameter estimates for factors in regression models, which avoids some of
the difficulties of treatment contrasts. It was originally designed for epidemiological studies of relative risk, but
the idea is widely applicable.

Treatment contrasts are not orthogonal. Consequently, the variances of treatment contrast estimates may be
inflated by a poor choice of reference level, and the correlations between them may also be high. The float()

function associates each level of the factor with a ”floating” variance (or quasi-variance), including the reference
level. Floating variances are not real variances, but they can be used to calculate the variance error of contrast
by treating each level as independent.

Plummer (2003) showed that floating variances can be derived from a covariance structure model applied to the
variance-covariance matrix of the contrast estimates. This model can be fitted by minimizing the
Kullback-Leibler information divergence between the true distribution of the parameter estimates and the
simplified distribution given by the covariance structure model. Fitting is done using the EM algorithm.

In order to check the goodness-of-fit of the floating variance model, the float() function compares the
standard errors predicted by the model with the standard errors derived from the true variance-covariance
matrix of the parameter contrasts. The maximum and minimum ratios between true and model-based standard
errors are calculated over all possible contrasts. These should be within 5 percent, or the use of the floating
variances may lead to invalid confidence intervals.

Value

An object of class floated. This is a list with the following components

coef A vector of coefficients. These are the same as the treatment contrasts but the reference
level is present with coefficient 0.

var A vector of floating (or quasi-) variances

limits The bounds on the accuracy of standard errors over all possible contrasts

Note

Menezes(1999) and Firth and Menezes (2004) take a slightly different approach to this problem, using a
pseudo-likelihood approach to fit the quasi-variance model. Their work is implemented in the package qvcalc.

Author(s)

Martyn Plummer
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References

Easton DF, Peto J and Babiker GAG (1991) Floating absolute risk: An alternative to relative risk in survival
and case control analysis avoiding an arbitrary reference group. Statistics in Medicine, 10, 1025-1035.

Firth D and Mezezes RX (2004) Quasi-variances. Biometrika 91, 65-80.

Menezes RX(1999) More useful standard errors for group and factor effects in generalized linear models.
D.Phil. Thesis, Department of Statistics, University of Oxford.

Plummer M (2003) Improved estimates of floating absolute risk, Statistics in Medicine, 23, 93-104.

See Also

ftrend, qvcalc

ftrend Fit a floating trend to a factor in generalized linear model

Description

Fits a ”floating trend” model to the given factor in a glm in a generalized linear model by centering covariates.

Usage

ftrend(object, ...)

Arguments

object fitted lm or glm object. The model must not have an intercept term

... arguments to the nlm function

Details

ftrend() calculates ”floating trend” estimates for factors in generalized linear models. This is an alternative to
treatment contrasts suggested by Greenland et al. (1999). If a regression model is fitted with no intercept term,
then contrasts are not used for the first factor in the model. Instead, there is one parameter for each level of
this factor. However, the interpretation of these parameters, and their variance-covariance matrix, depends on
the numerical coding used for the covariates. If an arbitrary constant is added to the covariate values, then the
variance matrix is changed.

The ftrend() function takes the fitted model and works out an optimal constant to add to the covariate values
so that the covariance matrix is approximately diagonal. The parameter estimates can then be treated as
approximately independent, thus simplifying their presentation. This is particularly useful for graphical display
of dose-response relationships (hence the name).

Greenland et al. (1999) originally suggested centring the covariates so that their weighted mean, using the
fitted weights from the model, is zero. This heuristic criterion is improved upon by ftrend() which uses the
same minimum information divergence criterion as used by Plummer (2003) for floating variance calculations.
ftrend() calls nlm() to do the minimization and will pass optional arguments to control it.

Value

A list with the following components

coef coefficients for model with adjusted covariates.

vcov Variance-covariance matrix of adjusted coefficients.

Note

The ”floating trend” method is an alternative to the ”floating absolute risk” method, which is implemented in
the function float().
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Author(s)

Martyn Plummer

References

Greenland S, Michels KB, Robins JM, Poole C and Willet WC (1999) Presenting statistical uncertainty in
trends and dose-response relations, American Journal of Epidemiology, 149, 1077-1086.

See Also

float

gmortDK Population mortality rates for Denmark in 5-years age groups.

Description

The gmortDK data frame has 418 rows and 21 columns.

Format

This data frame contains the following columns:

agr: Age group, 0:0–4, 5:5–9,..., 90:90+.
per: Calendar period, 38: 1938–42, 43: 1943–47, ..., 88:1988-92.
sex: Sex, 1: male, 2: female.
risk: Number of person-years in the Danish population.
dt: Number of deaths.
rt: Overall mortality rate in cases per 1000 person-years, i.e. rt=1000*dt/risk

Cause-specific mortality rates in cases per 1000 person-years:
r1: Infections
r2: Cancer.
r3: Tumors, benign, unspecific nature.
r4: Endocrine, metabolic.
r5: Blood.
r6: Nervous system, psychiatric.
r7: Cerebrovascular.
r8: Cardiac.
r9: Respiratory diseases, excl. cancer.
r10: Liver, excl. cancer.
r11: Digestive, other.
r12: Genitourinary.
r13: Ill-defined symptoms.
r14: All other, natural.
r15: Violent.

Source

Statistics Denmark, National board of health provided original data. Michael Andersson grouped the causes of
death.

See Also

thoro, mortDK

Examples

data(gmortDK)
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hivDK hivDK: seroconversion in a cohort of Danish men

Description

Data from a survey of HIV-positivity of a cohort of Danish men followed by regular tests from 1983 to 1989.

Usage

data(hivDK)

Format

A data frame with 297 observations on the following 7 variables.

id ID of the person

entry Date of entry to the study. Date variable.

well Date last seen seronegative. Date variable.

ill Date first seen seroconverted. Date variable.

bth Year of birth minus 1950.

pyr Annual number of sexual partners.

us Indicator of wheter the person has visited the USA.

Source

Mads Melbye, Statens Seruminstitut.

References

Becker N.G. and Melbye M.: Use of a log-linear model to compute the empirical survival curve from
interval-censored data, with application to data on tests for HIV-positivity, Australian Journal of Statistics, 33,
125–133, 1990.

Melbye M., Biggar R.J., Ebbesen P., Sarngadharan M.G., Weiss S.H., Gallo R.C. and Blattner W.A.:
Seroepidemiology of HTLV-III antibody in Danish homosexual men: prevalence, transmission and disease
outcome. British Medical Journal, 289, 573–575, 1984.

Examples

data(hivDK)

str(hivDK)

Icens Fits a regression model to interval censored data.

Description

The models fitted assumes a piecewise constant baseline rate in intervals specified by the argument breaks, and
for the covariates either a multiplicative relative risk function (default) or an additive excess risk function.

Usage

Icens( first.well, last.well, first.ill,

formula, model.type=c("MRR","AER"), breaks,

boot=FALSE, alpha=0.05, keep.sample=FALSE,

data )
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Arguments

first.well Time of entry to the study, i.e. the time first seen without event. Numerical vector.

last.well Time last seen without event. Numerical vector.

first.ill Time first seen with event. Numerical vector.

formula Model formula for the log relative risk.

model.type Which model should be fitted.

breaks Breakpoints between intervals in which the underlying timescale is assumed constant. Any
observation outside the range of breaks is discarded.

boot Should bootstrap be performed to produce confidence intervals for parameters. If a number
is given this will be the number of bootsrap samples. The default is 1000.

alpha 1 minus the confidence level.

keep.sample Should the bootstrap sample of the parameter values be returned?

data Data frame in which the times and formula are interpreted.

Details

The model is fitted by calling either fit.mult or fit.add.

Value

An object of class "Icens": a list with three components:

rates A glm object from a binomial model with log-link, estimating the baseline rates, and the
excess risk if "AER" is specfied.

cov A glm object from a binomial model with complementary log-log link, estimating the
log-rate-ratios. Only if "MRR" is specfied.

niter Nuber of iterations, a scalar

boot.ci If boot=TRUE, a 3-column matrix with estimates and 1-alpha confidence intervals for the
parameters in the model.

sample A matrix of the parameterestimates from the bootstrapping. Rows refer to parameters,
columns to bootstrap samples.

Author(s)

Martyn Plummer, 〈plummer@iarc.fr〉, Bendix Carstensen, 〈bxc@steno.dk〉

References

B Carstensen: Regression models for interval censored survival data: application to HIV infection in Danish
homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

CP Farrington: Interval censored survival data: a generalized linear modelling approach. Statistics in Medicine,
15(3):283-292, 1996.

See Also

fit.add fit.mult

Examples

data( hivDK )

# Convert the dates to fractional years so that rates are

# expressed in cases per year

for( i in 2:4 ) hivDK[,i] <- cal.yr( hivDK[,i] )

m.RR <- Icens( entry, well, ill,

model="MRR", formula=~pyr+us, breaks=seq(1980,1990,5),
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data=hivDK)

# Currently the MRR model returns a list with 2 glm objects.

round( ci.lin( m.RR$rates ), 4 )

round( ci.lin( m.RR$cov, Exp=TRUE ), 4 )

# There is actually a print method:

print( m.RR )

m.ER <- Icens( entry, well, ill,

model="AER", formula=~pyr+us, breaks=seq(1980,1990,5),

data=hivDK)

# There is actually a print method:

print( m.ER )

lep An unmatched case-control study of leprosy incidence

Description

The lep data frame has 1370 rows and 7 columns. This was an unmatched case-control study in which incident
cases of leprosy in a region of N. Malawi were compared with population controls.

Format

This data frame contains the following columns:

id: subject identifier: a numeric vector
d: case/control status: a numeric vector (1=case, 0=control)

age: a factor with levels 5-9 10-14 15-19 20-24 25-29 30-44 45+

sex: a factor with levels male, female
bcg: presence of vaccine scar, a factor with levels no yes

school: schooling, a factor with levels none 1-5yrs 6-8yrs sec/tert

house: housing, a factor with levels brick sunbrick wattle temp

Source

The study is described in more detail in Clayton and Hills, Statistical Models in Epidemiology, Oxford
University Press, Oxford:1993.

Examples

data(lep)

Lexis.diagram Plot a Lexis diagram

Description

Draws a Lexis diagram, optionally with life lines from a cohort, and with lifelines of a cohort if supplied.
Intended for presentation purposes.

Usage

Lexis.diagram( age = c( 0, 60),

alab = "Age",

date = c( 1940, 2000 ),

dlab = "Calendar time",
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int = 5,

lab.int = 2*int,

col.life = "black",

lwd.life = 2,

age.grid = TRUE,

date.grid = TRUE,

coh.grid = FALSE,

col.grid = gray(0.7),

lwd.grid = 1,

las = 1,

entry.date = NA,

entry.age = NA,

exit.date = NA,

exit.age = NA,

risk.time = NA,

birth.date = NA,

fail = NA,

cex.fail = 1.1,

pch.fail = c(NA,16),

col.fail = rep( col.life, 2 ),

data = NULL, ... )

Arguments

age Numerical vector of length 2, giving the age-range for the diagram

alab Label on the age-axis.

date Numerical vector of length 2, giving the calendar time-range for the diagram

dlab label on the calendar time axis.

int The interval between grid lines in the diagram. If a vector of length two is given, the first
value will be used for spacing of age-grid and the second for spacing of the date grid.

lab.int The interval between labelling of the grids.

col.life Colour of the life lines.

lwd.life Width of the life lines.

age.grid Should grid lines be drawn for age?

date.grid Should grid lines be drawn for date?

coh.grid Should grid lines be drawn for birth cohorts (diagonals)?

col.grid Colour of the grid lines.

lwd.grid Width of the grid lines.

las How are the axis labels plotted?
entry.date, entry.age, exit.date, exit.age, risk.time, birth.date

Numerical vectors defining lifelines to be plotted in the diagram. At least three must be
given to produce lines. Not all subsets of three will suffice, the given subset has to define life
lines. If insufficient data is given, no life lines are produced.

fail Logical of event status at exit for the persons whose life lines are plotted.

pch.fail Symbols at the end of the life lines for censorings (fail==0) and failures (fail != 0).

cex.fail Expansion of the status marks at the end of life lines.

col.fail Character vector of length 2 giving the colour of the failure marks for censorings and
failures respectively.

data Dataframe in which to interpret the arguments.

... Arguments to be passed on to the initial call to plot.

Details

The default unit for supplied variables are (calendar) years. If any of the variables entry.date, exit.date or
birth.date are of class ”Date” or if any of the variables entry.age, exit.age or risk.time are of class
”difftime”, they will be converted to calendar years, and plotted correctly in the diagram. The returned
dataframe will then have colums of classes ”Date” and ”difftime”.
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Value

If sufficient information on lifelines is given, a data frame with one row per person and columns with entry ages
and dates, birth date, risk time and status filled in.

Side effect: a plot of a Lexis diagram is produced with the life lines in it is produced. This will be the main
reason for using the function. If the primary aim is to illustrate follow-up of a cohort, then it is better to
represent the follow-up in a Lexis object, and use the generic plot.Lexis function.

Author(s)

Bendix Carstensen, http://www.biostat.ku.dk/~bxc

See Also

Life.lines, Lexis.lines

Examples

Lexis.diagram( entry.age = c(3,30,45),

risk.time = c(25,5,14),

birth.date = c(1970,1931,1925.7),

fail = c(TRUE,TRUE,FALSE) )

LL <- Lexis.diagram( entry.age = sample( 0:50, 17, replace=TRUE ),

risk.time = sample( 5:40, 17, r=TRUE),

birth.date = sample( 1910:1980, 17, r=TRUE ),

fail = sample( 0:1, 17, r=TRUE ),

cex.fail = 1.1,

lwd.life = 2 )

# Identify the persons' entry and exits

text( LL$exit.date, LL$exit.age, paste(1:nrow(LL)), col="red", font=2, adj=c(0,1) )

text( LL$entry.date, LL$entry.age, paste(1:nrow(LL)), col="blue", font=2, adj=c(1,0) )

data( nickel )

attach( nickel )

LL <- Lexis.diagram( age=c(10,100), date=c(1900,1990),

entry.age=age1st, exit.age=ageout, birth.date=dob,

fail=(icd %in% c(162,163)), lwd.life=1,

cex.fail=0.8, col.fail=c("green","red") )

abline( v=1934, col="blue" )

nickel[1:10,]

LL[1:10,]

Lexis.lines Draw life lines in a Lexis diagram.

Description

Add life lines to a Lexis diagram.

Usage

Lexis.lines( entry.date = NA,

exit.date = NA,

birth.date = NA,

entry.age = NA,

exit.age = NA,

risk.time = NA,

col.life = "black",

lwd.life = 2,

fail = NA,

cex.fail = 1,

http://www.biostat.ku.dk/~bxc
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pch.fail = c(NA, 16),

col.fail = col.life,

data = NULL )

Arguments
entry.date, entry.age, exit.date, exit.age, risk.time, birth.date

Numerical vectors defining lifelines to be plotted in the diagram. At least three must be
given to produce lines. Not all subsets of three will suffice, the given subset has to define life
lines. If insufficient data is given, no life lines are produced.

col.life Colour of the life lines.

lwd.life Width of the life lines.

fail Logical of event status at exit for the persons whose life lines are plotted.

cex.fail The size of the status marks at the end of life lines.

pch.fail The status marks at the end of the life lines.

col.fail Colour of the marks for censorings and failures respectively.

data Data frame in which to interpret values.

Value

If sufficient information on lifelines is given, a data frame with one row per person and columns with entry ages
and dates, birth date, risk time and status filled in.

Side effect: Life lines are added to an existing Lexis diagram. Lexis.lines adds life lines to an existing plot.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.biostat.ku.dk/~bxc

See Also

Lexis.diagram, Life.lines

Examples

Lexis.diagram( entry.age = c(3,30,45),

risk.time = c(25,5,14),

birth.date = c(1970,1931,1925.7),

fail = c(TRUE,TRUE,FALSE) )

Lexis.lines( entry.age = sample( 0:50, 100, replace=TRUE ),

risk.time = sample( 5:40, 100, r=TRUE),

birth.date = sample( 1910:1980, 100, r=TRUE ),

fail = sample(0:1,100,r=TRUE),

cex.fail = 0.5,

lwd.life = 1 )

Lexis Create a Lexis object

Description

Create an object of class Lexis to represent follow-up on multiple time scales.

Usage

Lexis(entry, exit, duration, entry.status = 0, exit.status = 0, id, data,

merge=TRUE, states )

http://www.biostat.ku.dk/~bxc
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Arguments

entry a named list of entry times. Each element of the list is a numeric variable representing the
entry time on the named time scale. All time scales must have the same units (e.g. years).

exit a named list of exit times.

duration a numeric vector giving the duration of follow-up.

entry.status a vector or a factor giving the status at entry

exit.status a vector or factor giving status at exit. Any change in status during follow-up is assumed to
take place exactly at the exit time.

id a vector giving a unique identity value for each row of the Lexis object.

data an optional data frame, list, or environment containing the variables. If not found in data,
the variables are taken from the environment from which Lexis was called.

merge a logical flag. If TRUE then the data argument will be coerced to a data frame and then
merged with the resulting Lexis object.

states A vector of labels for the states. If given, the state variables lex.Cst and lex.Xst are
returned as factors with identical levels attributes.

Details

The analysis of long-term population-based follow-up studies typically requires multiple time scales to be taken
into account, such as age, calender time, or time since an event. A Lexis object is a data frame with additional
attributes that allows these multiple time dimensions of follow-up to be managed.

Separate variables for current end exit state allows representation of multistate data.

Lexis objects are named after the German demographer Wilhelm Lexis (1837-1914), who is credited with the
invention of the ”Lexis diagram” for representing population dynamics simultaneously by age, period and
cohort.

The Lexis function creates a minimal Lexis object with only those variables required to define the follow-up
history in each row. Additional variables can be merged into the Lexis object using the merge method for
Lexis objects. This is the default.

There are also merge, subset and transform methods for Lexis objects. They work as the corresponding
methods for data-frames but ensures that the result is a Lexis object.

Value

An object of class Lexis. This is represented as a data frame with a column for each time scale, and additional
columns with the following names:

lex.id Identification of the inidvidual

lex.dur Duration of follow-up

lex.Cst Entry status (Current state), i.e. the state in which the follow up takes place.

lex.Xst Exit status (eXit state), i.e. that state taken up after dur in lex.Cst.

If merge=TRUE then the Lexis object will also contain all variables from the data argument.

Note

Only two of the three arguments entry, exit and duration need to be given. If the third parameter is missing,
it is imputed. If duration is given, it must be the same on all time scales.

entry, exit must be numeric, using Date variables will cause some of the utilites to crash. Transformation by
cal.yr is recommended.

If only either exit or duration are supplied it is assumed that entry is 0. This is only meaningful (and
therefore checked) if there is only one timescale.

If any of entry.status or exit.status are of mode character, they will both be converted to factors.

If entry.status is not given, then its class is automatically set to that of exit.status. If exit.status is
factor, the value of entry.status is set to the first level. This may be highly undesirable, and therefore noted.
For example, if exit.status is character the first level will be the first in the alphabetical ordering; slightly
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unfortunate if values are c("Well","Diseased"). If exit.status is logical, the value of entry.status set to
FALSE.

If entry.status or exit.status are factors or character, the corresponding state variables in the returned
Lexis object, lex.Cst and lex.Xst will be (unordered) factors with identical levels, namely the union of the
levels of entry.status and exit.status.

Author(s)

Martyn Plummer

See Also

plot.Lexis, splitLexis, cutLexis, merge.Lexis, subset.Lexis, transform.Lexis, summary.Lexis,
timeScales, timeBand, entry, exit, dur

Examples

# A small bogus cohort

xcoh <- structure( list( id = c("A", "B", "C"),

birth = c("14/07/1952", "01/04/1954", "10/06/1987"),

entry = c("04/08/1965", "08/09/1972", "23/12/1991"),

exit = c("27/06/1997", "23/05/1995", "24/07/1998"),

fail = c(1, 0, 1) ),

.Names = c("id", "birth", "entry", "exit", "fail"),

row.names = c("1", "2", "3"),

class = "data.frame" )

# Convert the character dates into numerical variables (fractional years)

xcoh$bt <- cal.yr( xcoh$birth, format="%d/%m/%Y" )

xcoh$en <- cal.yr( xcoh$entry, format="%d/%m/%Y" )

xcoh$ex <- cal.yr( xcoh$exit , format="%d/%m/%Y" )

# See how it looks

xcoh

# Define as Lexis object with timescales calendar time and age

Lcoh <- Lexis( entry = list( per=en ),

exit = list( per=ex, age=ex-bt ),

exit.status = fail,

data = xcoh )

Lcoh

# Using character states may have undesired effects:

xcoh$Fail <- c("Dead","Well","Dead")

Lexis( entry = list( per=en ),

exit = list( per=ex, age=ex-bt ),

exit.status = Fail,

data = xcoh )

# unless you order the levels correctly

( xcoh$Fail <- factor( xcoh$Fail, levels=c("Well","Dead") ) )

Lexis( entry = list( per=en ),

exit = list( per=ex, age=ex-bt ),

exit.status = Fail,

data = xcoh )
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Life.lines Compute dates/ages for life lines in a Lexis diagram

Description

Fills out the missing information for follow up of persons in a Lexis diagram if sufficient information is given.

Usage

Life.lines( entry.date = NA,

exit.date = NA,

birth.date = NA,

entry.age = NA,

exit.age = NA,

risk.time = NA )

Arguments
entry.date, exit.date,birth.date, entry.age, exit.age, risk.time

Vectors defining lifelines to be plotted in the diagram. At least three must be given to
produce a result. Not all subsets of three will suffice, the given subset has to define life lines.
If insufficient data is given, nothing is returned and a warning is given.

Value

Data frame with variables entry.date, entry.age, exit.date, exit.age, risk.time, birth.date, with all
entries computed for each person. If any of entry.date, exit.date or birth.date are of class Date or if any of
entry.age, exit.age or risk.time are of class difftime the date variables will be of class Date and the other
three of class difftime.

See Also

Lexis.diagram, Lexis.lines

Examples

( Life.lines( entry.age = c(3,30,45),

risk.time = c(25,5,14),

birth.date = c(1970,1931,1925.7) ) )

# Draw a Lexis diagram

Lexis.diagram()

# Compute entry and exit age and date.

( LL <- Life.lines( entry.age = c(3,30,45),

risk.time = c(25,5,14),

birth.date = c(1970,1931,1925.7) ) )

segments( LL[,1], LL[,2], LL[,3], LL[,4] ) # Plot the life lines.

# Compute entry and exit age and date, supplying a date variable

bd <- ( c(1970,1931,1925.7) - 1970 ) * 365.25

class( bd ) <- "Date"

( Life.lines( entry.age = c(3,30,45),

risk.time = c(25,5,14),

birth.date = bd ) )
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lungDK Male lung cancer incidence in Denmark

Description

Male lung cancer cases and population riks time in Denmark, for the period 1943–1992 in ages 40–89.

Usage

data(lungDK)

Format

A data frame with 220 observations on the following 9 variables.

A5: Left end point of the age interval, a numeric vector.
P5: Left enpoint of the period interval, a numeric vector.
C5: Left enpoint of the birth cohort interval, a numeric vector.
up: Indicator of upper trianges of each age by period rectangle in the Lexis diagram. (up=(P5-A5-C5)/5).
Ax: The mean age of diagnois (at risk) in the triangle.
Px: The mean date of diagnosis (at risk) in the triangle.
Cx: The mean date of birth in the triangle, a numeric vector.
D: Number of diagnosed cases of male lung cancer.
Y: Risk time in the male population, person-years.

Details

Cases and person-years are tabulated by age and date of diagnosis (period) as well as date of birth (cohort) in
5-year classes. Each observation in the dataframe correponds to a triangle in a Lexis diagram. Triangles are
classified by age and date of diagnosis, period of diagnosis and date of birth, all in 5-year groupings.

Source

The Danish Cancer Registry and Statistics Denmark.

References

For a more thorough exposition of statistical inference in the Lexis diagram, see:
http://staff.pubhealth.ku.dk/~bxc/APC/notes.pdf

Examples

data( lungDK )

# Draw a Lexis diagram and show the number of cases in it.

attach( lungDK )

Lexis.diagram( age=c(40,90), date=c(1943,1993), coh.grid=TRUE )

text( Px, Ax, paste( D ), cex=0.7 )

merge.data.frame Merge data frame with a Lexis object

Description

Merge two data frames, or a data frame with a Lexis object.

Usage

## S3 method for class 'data.frame':
merge(x, y, ...)

http://staff.pubhealth.ku.dk/~bxc/APC/notes.pdf
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Arguments

x, y data frames, or objects to be coerced into one

... optional arguments for the merge method

Details

This version of merge.default masks the one in the base. It ensures that, if either x or y is a Lexis object,
then merge.Lexis is called.

Value

A merged Lexis object or data frame.

Author(s)

Martyn Plummer

See Also

Lexis

merge.Lexis Merge a Lexis object with a data frame

Description

Merge additional variables from a data frame into a Lexis object.

Usage

## S3 method for class 'Lexis':
merge(x, y, id, by, ...)

Arguments

x an object of class Lexis

y a data frame

id the name of the variable in y to use for matching against the variable lex.id in x.

by if matching is not done by id, a vector of variable names common to both x and y

... optional arguments to be passed to merge.data.frame

Details

A Lexis object can be considered as an augmented data frame in which some variables are time-dependent
variables representing follow-up. The Lexis function produces a minimal object containing only these
time-dependent variables. Additional variables may be added to a Lexis object using the merge method.

Value

A Lexis object with additional columns taken from the merged data frame.

Note

The variable given as the by.y argument must not contain any duplicate values in the data frame y.

Author(s)

Martyn Plummer
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See Also

merge.data.frame, subset.Lexis

mh Mantel-Haenszel analyses of cohort and case-control studies

Description

This function carries out Mantel-Haenszel comparisons in tabulated data derived from both cohort and
case-control studies.

Usage

mh(cases, denom, compare=1, levels=c(1, 2), by=NULL,

cohort=!is.integer(denom), confidence=0.9)

Arguments

cases the table of case frequencies (a multiway array).

denom the denominator table. For cohort studies this should be a table of person-years observation,
while for case-control studies it should be a table of control frequencies.

compare the dimension of the table which defines the comparison groups (can be referred to either by
number or by name). The default is the first dimension of the table.

levels a vector identifying (either by number or by name) the two groups to be compared. The
default is the first two levels of the selected dimension.

by the dimensions not to be collapsed in the Mantel-Haenszel computations. Thus, this
argument defines the structure of the resulting tables of estimates and tests.

cohort an indicator whether the data derive from a cohort or a case-control study. If the
denominator table is stored as an integer, a case-control study is assumed.

confidence the approximate coverage probability for the confidence intervals to be computed.

Details

Multiway tables of data are accepted and any two levels of any dimension can be chosen as defining the
comparison groups. The rate (odds) ratio estimates and the associated significance tests may be collapsed over
all the remaining dimensions of the table, or over selected dimensions only, so that tables of estimates and tests
are computed.

Value

A list giving tables of rate (odds) ratio estimates, their standard errors (on a log scale), lower and upper
confidence limits, chi-squared tests (1 degree of freedom) and the corresponding p-values. The result list also
includes numerator and denominator of the Mantel-Haenszel estimates (q, r), and score test statistics and score
variance (u, v).

Side Effects

None

References

Clayton, D. and Hills, M. : Statistical Models in Epidemiology, Oxford University Press (1993).

See Also

Lexis
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Examples

# If d and y are 3-way tables of cases and person-years

# observation formed by tabulation by two confounders

# (named "C1" and "C2") an exposure of interest ("E"),

# the following command will calculate an overall

# Mantel-Haenszel comparison of the first two exposure

# groups.

#

# Generate some bogus data

dnam <- list( E=c("low","medium","high"), C1=letters[1:2], C2=LETTERS[1:4] )

d <- array( sample( 2:80, 24),

dimnames=dnam, dim=sapply( dnam, length ) )

y <- array( abs( rnorm( 24, 227, 50 ) ),

dimnames=dnam, dim=sapply( dnam, length ) )

mh(d, y, compare="E")

#

# Or, if exposure levels named "low" and "high" are to be

# compared and these are not the first two levels of E :

#

mh(d, y, compare="E", levels=c("low", "high"))

#

# If we wish to carry out an analysis which controls for C1,

# but examines the results at each level of C2:

#

mh(d, y, compare="E", by="C2")

#

# It is also possible to look at rate ratios for every

# combination of C1 and C2 :

#

mh(d, y, compare="E", by=c("C1", "C2"))

#

# If dimensions and levels of the table are unnamed, they must

# be referred to by number.

#

mortDK Population mortality rates for Denmark in 1-year age-classes.

Description

The mortDK data frame has 1820 rows and 21 columns.

Format

This data frame contains the following columns:

age: Age class, 0–89, 90:90+.
per: Calendar period, 38: 1938–42, 43: 1943–47, ..., 88:1988-92.
sex: Sex, 1: male, 2: female.
risk: Number of person-years in the Danish population.
dt: Number of deaths.
rt: Overall mortality rate in cases per 1000 person-years, i.e. rt=1000*dt/risk

Cause-specific mortality rates in cases per 1000 person-years:
r1: Infections
r2: Cancer.
r3: Tumors, benign, unspecific nature.
r4: Endocrine, metabolic.
r5: Blood.
r6: Nervous system, psychiatric.
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r7: Cerebrovascular.
r8: Cardiac.
r9: Respiratory diseases, excl. cancer.
r10: Liver, excl. cancer.
r11: Digestive, other.
r12: Genitourinary.
r13: Ill-defined symptoms.
r14: All other, natural.
r15: Violent.

Source

Statistics Denmark, National board of health provided original data. Michael Andersson grouped the causes of
death.

See Also

thoro, gmortDK

Examples

data(mortDK)

ncut Function to group a variable in intervals.

Description

Cuts a continuous variable in intervals. As opposed to cut which returns a factor, ncut returns a numeric
variable.

Usage

ncut(x, breaks, type="left" )

Arguments

x A numerical vector.

breaks Vector of breakpoints. NA will results for values below min(x) if type="left", for values
above max(x) if type="right" and for values outside range(x) if type="mid"

type Character: one of c("left","right","mid"), indicating whether the left, right or midpoint
of the intervals defined in breaks is returned.

Details

The function uses the base function findInterval.

Value

A numerical vector of the same length as x.

Author(s)

Bendix Carstensen, Steno Diabetes Center, 〈bxc@steno.dk〉, http://www.biostat.ku.dk/~bxc/, with essential
input from Martyn Plummer, IARC.

See Also

cut, findInterval

http://www.biostat.ku.dk/~bxc/


Age-Period-Cohort models nice 151

Examples

br <- c(-2,0,1,2.5)

x <- c( rnorm( 10 ), br, -3, 3 )

cbind( x, l=ncut( x, breaks=br, type="l" ),

m=ncut( x, breaks=br, type="m" ),

r=ncut( x, breaks=br, type="r" ) )[order(x),]

x <- rnorm( 200 )

plot( x, ncut( x, breaks=br, type="l" ), pch=16, col="blue", ylim=range(x) )

abline( 0, 1 )

abline( v=br )

points( x, ncut( x, breaks=br, type="r" ), pch=16, col="red" )

points( x, ncut( x, breaks=br, type="m" ), pch=16, col="green" )

nice Nice breakpoints

Description

The function calls pretty for linear scale. For a log-scale nice are computed using a set of specified number in a
decade.

Usage

nice(x, log = F, lpos = c(1, 2, 5), ...)

Arguments

x Numerical vector to

log Logical. Is the scale logartimic?

lpos Numeric. Numbers between 1 and 10 giving the desired breakpoints in this interval.

... Arguments passed on to pretty if log=FALSE

Value

A vector of breakpoints.

Author(s)

Bendix Carstensen, 〈bxc@steno.dk〉, http://www.biostat.ku.dk/~bxc

See Also

pretty

Examples

nice( exp( rnorm( 100 ) ), log=TRUE )

http://www.biostat.ku.dk/~bxc
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nickel A Cohort of Nickel Smelters in South Wales

Description

The nickel data frame has 679 rows and 7 columns. The data concern a cohort of nickel smelting workers in
South Wales and are taken from Breslow and Day, Volume 2. For comparison purposes, England and Wales
mortality rates (per 1,000,000 per annum) from lung cancer (ICDs 162 and 163), nasal cancer (ICD 160), and
all causes, by age group and calendar period, are supplied in the dataset ewrates.

Format

This data frame contains the following columns:

id: Subject identifier (numeric)
icd: ICD cause of death if dead, 0 otherwise (numeric)

exposure: Exposure index for workplace (numeric)
dob: Date of birth (numeric)

age1st: Age at first exposure (numeric)
agein: Age at start of follow-up (numeric)
ageout: Age at end of follow-up (numeric)

Source

Breslow NE, and Day N, Statistical Methods in Cancer Research. Volume II: The Design and Analysis of
Cohort Studies. IARC Scientific Publications, IARC:Lyon, 1987.

Examples

data(nickel)

str(nickel)

pctab Create percentages in a table

Description

Computes percentages and a margin of totals along a given margin of a table.

Usage

pctab(TT, margin = length(dim(TT)), dec=1)

Arguments

TT A table or array object

margin Which margin should be the the total?

dec How many decimals should be printed?

Value

A table, where all dimensions except the one specified margin has two extra levels named ”All” (where all
entries are 100) and ”N”. The function prints the table with dec decimals.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.biostat.ku.dk/~bxc.

http://www.biostat.ku.dk/~bxc


Age-Period-Cohort models plot.Lexis 153

See Also

addmargins

Examples

Aye <- sample( c("Yes","Si","Oui"), 177, replace=TRUE )

Bee <- sample( c("Hum","Buzz"), 177, replace=TRUE )

Sea <- sample( c("White","Black","Red","Dead"), 177, replace=TRUE )

A <- table( Aye, Bee, Sea )

A

ftable( pctab( A ) )

ftable( pctab( addmargins( A, 1 ), 3 ) )

round( ftable( pctab( addmargins( A, 1 ), 3 ), row.vars=3 ), 1)

plot.Lexis Lexis diagrams

Description

The follow-up histories represented by a Lexis object can be plotted using one or two dimensions. The two
dimensional plot is a Lexis diagram showing follow-up time simultaneously on two time scales.

Usage

## S3 method for class 'Lexis':
plot(x, time.scale = NULL, breaks="lightgray", ...)

## S3 method for class 'Lexis':
points(x, time.scale = NULL, ...)

## S3 method for class 'Lexis':
lines(x, time.scale = NULL, ...)

Arguments

x An object of class Lexis

time.scale A vector of length 1 or 2 giving the time scales to be plotted either by name or numerical
order

breaks a string giving the colour of grid lines to be drawn when plotting a split Lexis object. Grid
lines can be suppressed by supplying the value NULL to the breaks argument

... Further graphical parameters to be passed to the plotting methods.

Grids can be drawn (behind the life lines) using the following parameters in plot:

• grid If logical, a background grid is set up using the axis ticks. If a list, the first
component is used as positions for the vertical lines and the last as positions for the
horizontal. If a nunerical vector, grids on both axes are set up using the distance
between the numbers.

• col.grid="lightgray" Color of the background grid.

• lty.grid=2 Line type for the grid.

• coh.grid=FALSE Should a 45 degree grid be plotted?

Details

The plot method for Lexis objects traces “life lines” from the start to the end of follow-up. The points method
plots points at the end of the life lines.

If time.scale is of length 1, the life lines are drawn horizontally, with the time scale on the X axis and the id
value on the Y axis. If time.scale is of length 2, a Lexis diagram is produced, with diagonal life lines plotted
against both time scales simultaneously.

If lex has been split along one of the time axes by a call to splitLexis, then vertical or horizontal grid lines
are plotted (on top of the life lines) at the break points.
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Author(s)

Martyn Plummer

See Also

Lexis, splitLexis

Examples

# A small bogus cohort

xcoh <- structure( list( id = c("A", "B", "C"),

birth = c("14/07/1952", "01/04/1954", "10/06/1987"),

entry = c("04/08/1965", "08/09/1972", "23/12/1991"),

exit = c("27/06/1997", "23/05/1995", "24/07/1998"),

fail = c(1, 0, 1) ),

.Names = c("id", "birth", "entry", "exit", "fail"),

row.names = c("1", "2", "3"),

class = "data.frame" )

# Convert the character dates into numerical variables (fractional years)

xcoh$bt <- cal.yr( xcoh$birth, format="%d/%m/%Y" )

xcoh$en <- cal.yr( xcoh$entry, format="%d/%m/%Y" )

xcoh$ex <- cal.yr( xcoh$exit , format="%d/%m/%Y" )

# See how it looks

xcoh

# Define as Lexis object with timescales calendar time and age

Lcoh <- Lexis( entry = list( per=en ),

exit = list( per=ex, age=ex-bt ),

exit.status = fail,

data = xcoh )

# Default plot of follow-up

plot( Lcoh )

# With a grid and deaths as endpoints

plot( Lcoh, grid=0:10*10, col="black" )

points( Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1] )

# With a lot of bells and whistles:

plot( Lcoh, grid=0:20*5, col="black", xaxs="i", yaxs="i",

xlim=c(1960,2010), ylim=c(0,50), lwd=3, las=1 )

points( Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1], col="red", cex=1.5 )

plotEst Plot estimates with confidence limits

Description

Plots parameter estimates with confidence intervals, annotated with parameter names. A dot is plotted at the
estimate and a horizontal line extending from the lower to the upper limit is superimposed.

Usage

plotEst( ests,

y = dim(ests)[1]:1,

txt = rownames(ests),

txtpos = y,

ylim = range(y)-c(0.5,0),

xlab = "",
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xtic = nice(ests[!is.na(ests)], log = xlog),

xlim = range( xtic ),

xlog = FALSE,

pch = 16,

cex = 1,

lwd = 2,

col = "black",

col.lines = col,

col.points = col,

vref = NULL,

grid = FALSE,

col.grid = gray(0.9),

restore.par = TRUE )

linesEst( ests, y = dim(ests)[1]:1, pch = 16, cex = 1, lwd = 2,

col="black", col.lines=col, col.points=col )

pointsEst( ests, y = dim(ests)[1]:1, pch = 16, cex = 1, lwd = 2,

col="black", col.lines=col, col.points=col )

Arguments

ests Matrix with three columns: Estimate, lower limit, upper limit. If a model object is supplied,
ci.lin is invoked for this object first.

y Vertical position of the lines.

txt Annotation of the estimates.

txtpos Vertical position of the text. Defaults to y.

ylim Extent of the vertical axis.

xlab Annotation of the horizontal axis.

xtic Location of tickmarks on the x-axis.

xlim Extent of the x-axis.

xlog Should the x-axis be logarithmic?

pch What symbol should be used?

cex Expansion of the symbol.

col Colour of the points and lines.

col.lines Colour of the lines.

col.points Colour of the symbol.

lwd Thickness of the lines.

vref Where should vertical reference line(s) be drawn?

grid If TRUE, vertical gridlines are drawn at the tickmarks. If a numerical vector is given
vertical lines are drawn at grid.

col.grid Colour of the vertical gridlines

restore.par Should the graphics parameters be restored? If set to FALSE the coordinate system will still
be available for additional plotting, and par("mai") will still have the very large value set in
order to make room for the labelling of the estimates.

Details

plotEst make a news plot, whereas linesEst and pointsEst (identical functions) adds to an existing plot.

Value

NULL
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Author(s)

Bendix Carstensen, 〈bxc@steno.dk〉, http://www.pubhealth.ku.dk/~bxc

See Also

ci.lin

Examples

# Bogus data and a linear model

f <- factor( sample( letters[1:5], 100, replace=TRUE ) )

x <- rnorm( 100 )

y <- 5 + 2 * as.integer( f ) + 0.8 * x + rnorm(100) * 2

m1 <- lm( y ~ f )

# Produce some confidence intervals for contrast to first level

( cf <- summary( m1 )$coef[2:5,1:2] %*% rbind( c(1,1,1), 1.96*(c(0,-1,1) ) ) )

# Plots with increasing amount of bells and whistles

par( mfcol=c(3,2), mar=c(3,3,2,1) )

plotEst( cf )

plotEst( cf, grid=TRUE )

plotEst( cf, grid=TRUE, cex=2, lwd=3 )

plotEst( cf, grid=TRUE, cex=2, col.points="red", col.lines="green" )

plotEst( cf, grid=TRUE, cex=2, col.points="red", col.lines="green",

xlog=TRUE, xtic=c(1:8), xlim=c(0.8,6) )

rownames( cf )[1] <- "Contrast to fa:\n\n fb"

plotEst( cf, grid=TRUE, cex=2, col.points=rainbow(4), col.lines=rainbow(4), vref=1 )

plotevent Plot Equivalence Classes

Description

For interval censored data, segments of times between last.well and first.ill are plotted for each conversion in
the data. It also plots the equivalence classes.

Usage

plotevent(last.well, first.ill, data)

Arguments

last.well Time at which the individuals are last seen negative for the event

first.ill Time at which the individuals are first seen positive for the event

data Data with a transversal shape

Details

last.well and first.ill should be written as character in the function.

Value

Graph

Author(s)

Delphine Maucort-Boulch, Bendix Carstensen, Martyn Plummer

http://www.pubhealth.ku.dk/~bxc
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References

Carstensen B. Regression models for interval censored survival data: application to HIV infection in Danish
homosexual men.Stat Med. 1996 Oct 30;15(20):2177-89.

Lindsey JC, Ryan LM. Tutorial in biostatistics methods for interval-censored data.Stat Med. 1998 Jan
30;17(2):219-38.

See Also

Icens

projection.ip Projection of columns of a matrix.

Description

Projects the columns of the matrix M on the space spanned by the columns of the matrix X, with respect to the
inner product defined by weight: <x|y>=sum(x*w*y).

Usage

projection.ip(X, M, orth = FALSE, weight = rep(1, nrow(X)))

Arguments

X Matrix defining the space to project onto.

M Matrix of columns to be projected. Must have the same number of rows as X.

orth Should the projection be on the orthogonal complement to span(X)?

weight Weights defining the inner product. Numerical vector of length nrow(X).

Value

A matrix of full rank with columns in span(X).

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.pubhealth.ku.dk/~bxc, with help from Peter
Dalgaard.

See Also

detrend

rateplot Functions to plot rates from a table classified by age and calendar time (period)

Description

Produces plots of rates versus age, connected within period or cohort (Aplot), rates versus period connected
within age-groups (Pplot) and rates and rates versus date of birth cohort (Cplot). rateplot is a wrapper for
these, allowing to produce the four classical displays with a single call.

http://www.pubhealth.ku.dk/~bxc
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Usage

rateplot( rates,

which = c("ap","ac","pa","ca"),

age = as.numeric( dimnames( rates )[[1]] ),

per = as.numeric( dimnames( rates )[[2]] ),

grid = FALSE,

a.grid = grid,

p.grid = grid,

c.grid = grid,

ygrid = grid,

col.grid = gray( 0.9 ),

a.lim = range( age, na.rm=TRUE ) + c(0,diff( range( age ) )/30),

p.lim = range( per, na.rm=TRUE ) + c(0,diff( range( age ) )/30),

c.lim = NULL,

ylim = range( rates[rates>0], na.rm=TRUE ),

at = NULL,

labels = paste( at ),

a.lab = "Age at diagnosis",

p.lab = "Date of diagnosis",

c.lab = "Date of birth",

ylab = "Rates",

type = "l",

lwd = 2,

lty = 1,

log.ax = "y",

las = 1,

ann = FALSE,

a.ann = ann,

p.ann = ann,

c.ann = ann,

xannx = 1/20,

cex.ann = 0.8,

a.thin = seq( 1, length( age ), 2 ),

p.thin = seq( 1, length( per ), 2 ),

c.thin = seq( 2, length( age ) + length( per ) - 1, 2 ),

col = par( "fg" ),

a.col = col,

p.col = col,

c.col = col,

... )

Aplot( rates, age = as.numeric( dimnames( rates )[[1]] ),

per = as.numeric( dimnames( rates )[[2]] ), grid = FALSE,

a.grid = grid, ygrid = grid, col.grid = gray( 0.9 ),

a.lim = range( age, na.rm=TRUE ), ylim = range( rates[rates>0], na.rm=TRUE ),

at = NULL, labels = paste( at ), a.lab = names( dimnames( rates ) )[1],

ylab = deparse( substitute( rates ) ), type = "l", lwd = 2, lty = 1,

col = par( "fg" ), log.ax = "y", las = 1, c.col = col, p.col = col,

c.ann = FALSE, p.ann = FALSE, xannx = 1/20, cex.ann = 0.8,

c.thin = seq( 2, length( age ) + length( per ) - 1, 2 ),

p.thin = seq( 1, length( per ), 2 ), p.lines = TRUE,

c.lines = !p.lines, ... )

Pplot( rates, age = as.numeric( dimnames( rates )[[1]] ),

per = as.numeric( dimnames( rates )[[2]] ), grid = FALSE,

p.grid = grid, ygrid = grid, col.grid = gray( 0.9 ),

p.lim = range( per, na.rm=TRUE ) + c(0,diff(range(per))/30),

ylim = range( rates[rates>0], na.rm=TRUE ), p.lab = names( dimnames( rates ) )[2],

ylab = deparse( substitute( rates ) ), at = NULL, labels = paste( at ),

type = "l", lwd = 2, lty = 1, col = par( "fg" ), log.ax = "y",



Age-Period-Cohort models rateplot 159

las = 1, ann = FALSE, cex.ann = 0.8, xannx = 1/20,

a.thin = seq( 1, length( age ), 2 ), ... )

Cplot( rates, age = as.numeric( rownames( rates ) ),

per = as.numeric( colnames( rates ) ), grid = FALSE,

c.grid = grid, ygrid = grid, col.grid = gray( 0.9 ),

c.lim = NULL, ylim = range( rates[rates>0], na.rm=TRUE ),

at = NULL, labels = paste( at ), c.lab = names( dimnames( rates ) )[2],

ylab = deparse( substitute( rates ) ), type = "l", lwd = 2, lty = 1,

col = par( "fg" ), log.ax = "y", las = 1, xannx = 1/20, ann = FALSE,

cex.ann = 0.8, a.thin = seq( 1, length( age ), 2 ), ... )

Arguments

rates A two-dimensional table (or array) with rates to be plotted. It is assumed that the first
dimension is age and the second is period.

which A character vector with elements from c("ap","ac","apc","pa","ca"), indication which
plots should be produced. One plot per element is produced. The first letter indicates the
x-axis of the plot, the remaining which groups should be connected, i.e. "pa" will plot rates
versus period and connect age-classes, and "apc" will plot rates versus age, and connect
both periods and cohorts.

age Numerical vector giving the means of the age-classes. Defaults to the rownames of rates as
numeric.

per Numerical vector giving the means of the periods. Defaults to the columnnames of rates as
numeric.

grid Logical indicating whether a background grid should be drawn.

a.grid Logical indicating whether a background grid on the age-axis should be drawn. If numerical
it indicates the age-coordinates of the grid.

p.grid do. for the period.

c.grid do. for the cohort.

ygrid do. for the rate-dimension.

col.grid The colour of the grid.

a.lim Range for the age-axis.

p.lim Range for the period-axis.

c.lim Range for the cohort-axis.

ylim Range for the y-axis (rates).

at Position of labels on the y-axis (rates).

labels Labels to put on the y-axis (rates).

a.lab Text on the age-axis. Defaults to ”Age”.

p.lab Text on the period-axis. Defaults to ”Date of diagnosis”.

c.lab Text on the cohort-axis. Defaults to ”Date of birth”.

ylab Text on the rate-axis. Defaults to the name of the rate-table.

type How should the curves be plotted. Defaults to "l".

lwd Width of the lines. Defaults to 2.

lty Which type of lines should be used. Defaults to 1, a solid line.

log.ax Character with letters from "apcyr", indicating which axes should be logarithmic. "y" and
"r" both refer to the rate scale. Defaults to "y".

las see par.

ann Should the curves be annotated?

a.ann Logical indicating whether age-curves should be annotated.
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p.ann do. for period-curves.

c.ann do. for cohort-curves.

xannx The fraction that the x-axis is expanded when curves are annotated.

cex.ann Expansion factor for characters annotating curves.

a.thin Vector of integers indicating which of the age-classes should be labelled.

p.thin do. for the periods.

c.thin do. for the cohorts.

col Colours for the curves.

a.col Colours for the age-curves.

p.col do. for the period-curves.

c.col do. for the cohort-curves.

p.lines Should rates from the same period be connected?

c.lines Should rates from the same cohort be connected?

... Additional arguments pssed on to matlines when plotting the curves.

Details

Zero values of the rates are ignored. They are neiter in the plot nor in the calculation of the axis ranges.

Value

NULL. The function is used for its side-effect, the plot.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.pubhealth.ku.dk/~bxc/

See Also

apc.frame

Examples

data( blcaIT )

attach(blcaIT)

# Table of rates:

bl.rate <- tapply( D, list(age,period), sum ) /

tapply( Y, list(age,period), sum )

bl.rate

# The four classical plots:

par( mfrow=c(2,2) )

rateplot( bl.rate*10^6 )

# The labels on the vertical axis could be nicer:

rateplot( bl.rate*10^6, at=10^(-1:3), labels=c(0.1,1,10,100,1000) )

# More bells an whistles

par( mfrow=c(1,3), mar=c(3,3,1,1), oma=c(0,3,0,0), mgp=c(3,1,0)/1.6 )

rateplot( bl.rate*10^6, ylab="", ann=TRUE, which=c("AC","PA","CA"),

at=10^(-1:3), labels=c(0.1,1,10,100,1000),

col=topo.colors(11), cex.ann=1.2 )

http://www.pubhealth.ku.dk/~bxc/
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Relevel Reorder and combine levels of a factor

Description

The levels of a factor are re-ordered so that the levels specified by ref is first and the others are moved down.
This is useful for contr.treatment contrasts which take the first level as the reference. Levels may also be
combined.

Usage

Relevel(f, ref, first = TRUE, collapse="+" )

Arguments

f An unordered factor

ref The names or numbers of levels to be the first. If ref is a list, factor levels mentioned in
each list element are combined. If the list is named the names are used as new factor levels.

first Should the levels mentioned in ref come before those not?

collapse String used when collapsing factor levels.

Value

An unordered factor.

Examples

ff <- factor( sample( letters[1:5], 100, replace=TRUE ) )

table( ff, Relevel( ff, list( AB=1:2, "Dee"=4, c(3,5) ) ) )

table( ff, rr=Relevel( ff, list( 5:4, Z=c("c","a") ), coll="-und-", first=FALSE ) )

ROC Function to compute and draw ROC-curves.

Description

Computes sensitivity, specificity and positive and negative predictive values for a test based on dichotomizing
along the variable test, for prediction of stat. Alternatively a model formula may given, in which case the the
linear predictor is the test variable and the response is taken as the true status variable. Plots curves of these
and a ROC-curve.

Usage

ROC( test = NULL,

stat = NULL,

form = NULL,

plot = c("sp", "ROC"),

PS = is.null(test),

PV = TRUE,

MX = TRUE,

MI = TRUE,

AUC = TRUE,

grid = seq(0,100,10),

col.grid = gray( 0.9 ),

cuts = NULL,

lwd = 2,

data = parent.frame(),

... )
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Arguments

test Numerical variable used for prediction.

stat Logical variable of true status.

form Formula used in a logistic regression. If this is given, test and stat are ignored. If not
given then both test and stat must be supplied.

plot Character variable. If ”sp”, the a plot of sensitivity, specificity and predictive values against
test is produced, if ”ROC” a ROC-curve is plotted. Both may be given.

PS logical, if TRUE the x-axis in the plot ”ps”-plot is the the predicted probability for
stat==TRUE, otherwise it is the scale of test if this is given otherwise the scale of the
linear predictor from the logistic regression.

PV Should sensitivity, specificity and predictive values at the optimal cutpoint be given on the
ROC plot?

MX Should the “optimal cutpoint” (i.e. where sens+spec is maximal) be indicated on the ROC
curve?

MI Should model summary from the logistic regression model be printed in the plot?

AUC Should the area under the curve (AUC) be printed in the ROC plot?

grid Numeric or logical. If FALSE no background grid is drawn. Otherwise a grid is drawn on
both axes at grid percent.

col.grid Colour of the grid lines drawn.

cuts Points on the test-scale to be annotated on the ROC-curve.

lwd Thickness of the curves

data Data frame in which to interpret the variables.

... Additional arguments for the plotting of the ROC-curve. Passed on to plot

Value

A list with two components:

res dataframe with variables sn, sp, pvp, pvn and fv. The latter is the unique values of test (for
PS==FALSE ) or linear predictor from the logistic regression

lr glm object with the logistic regression result used for construction of the ROC curve

0, 1 or 2 plots are produced according to the setting of plot.

Author(s)

Bendix Carstensen, Steno Diabetes Center & University of Copenhagen, http://www.biostat.ku.dk/~bxc

Examples

x <- rnorm( 100 )

z <- rnorm( 100 )

w <- rnorm( 100 )

tigol <- function( x ) 1 - ( 1 + exp( x ) )^(-1)

y <- rbinom( 100, 1, tigol( 0.3 + 3*x + 5*z + 7*w ) )

ROC( form = y ~ x + z, plot="ROC" )

S.typh Salmonella Typhimurium outbreak 1996 in Denmark.

Description

Matched case-control study of food poisoning.

Format

A data frame with 136 observations on the following 15 variables:

http://www.biostat.ku.dk/~bxc
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id: Person identification
set: Matched set indicator
case: Case-control status (1:case, 0:control
age: Age of individual
sex: Sex of individual (1:male, 2:female)

abroad: Within the last two weeks visited abroad (1:yes, 0:no)
beef: Within the last two weeks eaten beef
pork: Within the last two weeks eaten pork
veal: Within the last two weeks eaten veal

poultry: Within the last two weeks eaten poultry
liverp: Within the last two weeks eaten liverpaste

veg: Within the last two weeks eaten vegetables
fruit: Within the last two weeks eaten fruit
egg: Within the last two weeks eaten eggs

plant7: Within the last two weeks eaten meat from plant no. 7

Details

In the fall of 1996 an unusually large number of Salmonella Typhimurium cases were recorded in Fyn county in
Denmark. The Danish Zoonosis Centre set up a matched case-control study to find the sources. Cases and two
age-, sex- and residency-matched controls were telephone interviewed about their food intake during the last
two weeks.

The participants were asked at which retailer(s) they had purchased meat. Retailers were independently of this
linked to meat processing plants, and thus participants were linked to meat processing plants. This way
persons could be linked to (amongst other) plant no 7.

Source

Tine Hald.

References

Molbak K and Hald T: Salmonella Typhimurium outbreak in late summer 1996. A Case-control study. (In
Danish: Salmonella typhimurium udbrud paa Fyn sensommeren 1996. En case-kontrol undersogelse.) Ugeskrift
for Laeger., 159(36):5372-7, 1997.

Examples

data(S.typh)

splitLexis Split follow-up time in a Lexis object

Description

The splitLexis function divides each row of a Lexis object into disjoint follow-up intervals according to the
supplied break points.

Usage

splitLexis(lex, breaks, time.scale, tol=.Machine$double.eps^0.5)

Arguments

lex an object of class Lexis

breaks a vector of break points

time.scale the name or number of the time scale to be split

tol numeric value >= 0. Intervals shorter than this value are dropped
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Value

An object of class Lexis with multiple rows for each row of the argument lex. Each row of the new Lexis

object contains the part of the follow-up interval that falls inside one of the time bands defined by the break
points.

The variables representing the various time scales, are appropriately updated in the new Lexis object. The
entry and exit status variables are also updated according to the rule that the entry status is retained until the
end of follow-up. All other variables are considered to represent variables that are constant in time, and so are
replicated across all rows having the same id value.

Note

The splitLexis() function divides follow-up time into intervals using breakpoints that are common to all rows
of the Lexis object. To split a Lexis object by break points that are unique to each row, use the cut.Lexis

function.

Author(s)

Martyn Plummer

See Also

timeBand, cutLexis, summary.Lexis

Examples

# A small bogus cohort

xcoh <- structure( list( id = c("A", "B", "C"),

birth = c("14/07/1952", "01/04/1954", "10/06/1987"),

entry = c("04/08/1965", "08/09/1972", "23/12/1991"),

exit = c("27/06/1997", "23/05/1995", "24/07/1998"),

fail = c(1, 0, 1) ),

.Names = c("id", "birth", "entry", "exit", "fail"),

row.names = c("1", "2", "3"),

class = "data.frame" )

# Convert the character dates into numerical variables (fractional years)

xcoh$bt <- cal.yr( xcoh$birth, format="%d/%m/%Y" )

xcoh$en <- cal.yr( xcoh$entry, format="%d/%m/%Y" )

xcoh$ex <- cal.yr( xcoh$exit , format="%d/%m/%Y" )

# See how it looks

xcoh

# Define as Lexis object with timescales calendar time and age

Lcoh <- Lexis( entry = list( per=en ),

exit = list( per=ex, age=ex-bt ),

exit.status = fail,

data = xcoh )

# Default plot of follow-up

plot( Lcoh )

# With a grid and deaths as endpoints

plot( Lcoh, grid=0:10*10, col="black" )

points( Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1] )

# With a lot of bells and whistles:

plot( Lcoh, grid=0:20*5, col="black", xaxs="i", yaxs="i",

xlim=c(1960,2010), ylim=c(0,50), lwd=3, las=1 )

points( Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1], col="red", cex=1.5 )

# Split time along two time-axes
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( x2 <- splitLexis( Lcoh, breaks = seq(1900,2000,5), time.scale="per") )

( x2 <- splitLexis( x2, breaks = seq(0,80,5), time.scale="age" ) )

str( x2 )

# Tabulate the cases and the person-years

summary( x2 )

tapply( status(x2,"exit")==1, list( timeBand(x2,"age","left"),

timeBand(x2,"per","left") ), sum )

tapply( dur(x2), list( timeBand(x2,"age","left"),

timeBand(x2,"per","left") ), sum )

start.Lexis Time series methods for Lexis objects

Description

Extract the entry time, exit time, status, or duration of follow-up from a Lexis object.

Usage

entry(x, time.scale = NULL)

exit(x, time.scale = NULL)

status(x, at="exit")

dur(x)

Arguments

x an object of class Lexis.

time.scale a string or integer indicating the time scale. If omitted, all times scales are used.

at string indicating the time point(s) at which status is to be measured.

Value

The entry and exit functions return a vector of entry times and exit times, respectively, on the requested time
scale. If multiple time scales are requested, then a matrix is returned.

The status function returns a vector giving the status at entry or exit and dur returns a vector with the
lengths of the follow-up intervals.

Author(s)

Martyn Plummer

See Also

Lexis

stattable.funs Special functions for use in stat.table

Description

These functions may be used as contents arguments to the function stat.table. They are defined internally
in stat.table and have no independent existence.

Usage

count(id)

ratio(d,y,scale=1, na.rm=TRUE)

percent(...)
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Arguments

id numeric vector in which identical values identify the same individual.

d, y numeric vectors of equal length (d for Deaths, y for person-Years)

scale a scalar giving a value by which the ratio should be multiplied

na.rm a logical value indicating whether NA values should be stripped before computation proceeds.

... a list of variables taken from the index argument to stat.table

Value

When used as a contents argument to stat.table, these functions create the following tables:

this-is-escaped-codenormal-bracket30bracket-normal

If given without argument (count()) it returns a contingency table of counts. If given an id

argument it returns a table of the number of different values of id in each cell, i.e. how
many persons contribute in each cell.

this-is-escaped-codenormal-bracket36bracket-normal

returns a table of values scale * sum(d)/sum(y)

this-is-escaped-codenormal-bracket40bracket-normal

returns a table of percentages of the classifying variables. Variables that are in the index

argument to stat.table but not in the call to percent are used to define strata, within
which the percentages add up to 100.

Author(s)

Martyn Plummer

See Also

stat.table

stat.table Tables of summary statistics

Description

stat.table creates tabular summaries of the data, using a limited set of functions. A list of index variables is
used to cross-classify summary statistics. It does NOT work inside with()!

Usage

stat.table(index, contents = count(), data, margins = FALSE)

## S3 method for class 'stat.table':
print(x, width=7, digits,...)

Arguments

index A factor, or list of factors, used for cross-classification. If the list is named, then the names
will be used when printing the table. This feature can be used to give informative labels to
the variables.

contents A function call, or list of function calls. Only a limited set of functions may be called (See
Details below). If the list is named, then the names will be used when printing the table.

data an optional data frame containing the variables to be tabulated. If this is omitted, the
variables will be searched for in the calling environment.

margins a logical scalar or vector indicating which marginal tables are to be calculated. If a vector,
it should be the same length as the index argument: values corresponding to TRUE will be
retained in marginal tables.
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x an object of class stat.table.

width a scalar giving the minimum column width when printing.

digits a scalar, or named vector, giving the number of digits to print after the decimal point. If a
named vector is used, the names should correspond to one of the permitted functions (See
Details below) and all results obtained with that function will be printed with the same
precision.

... further arguments passed to other print methods.

Details

This function is similar to tapply, with some enhancements: multiple summaries of multiple variables may be
mixed in the same table; marginal tables may be calculated; columns and rows may be given informative labels;
pretty printing may be controlled by the associated print method.

This function is not a replacement for tapply as it also has some limitations. The only functions that may be
used in the contents argument are: count, mean, weighted.mean, sum, quantile, median, IQR, max, min, ratio,
and percent.

The count() function, which is the default, simply creates a contingency table of counts. The other functions
are applied to each cell created by combinations of the index variables.

Value

An object of class stat.table, which is a multi-dimensional array. A print method is available to create
formatted one-way and two-way tables.

Note

The permitted functions in the contents list are defined inside stat.table. They have the same interface as the
functions callable from the command line, except for two differences. If there is an argument na.rm then its
default value is always TRUE. A second difference is that the quantile function can only produce a single
quantile in each call.

Author(s)

Martyn Plummer

See Also

table, tapply, mean, weighted.mean, sum, quantile, median, IQR, max, min, ratio, percent, count

Examples

data(warpbreaks)

# A one-way table

stat.table(tension,list(count(),mean(breaks)),data=warpbreaks)

# The same table with informative labels

stat.table(index=list("Tension level"=tension),list(N=count(),

"mean number of breaks"=mean(breaks)),data=warpbreaks)

# A two-way table

stat.table(index=list(tension,wool),mean(breaks),data=warpbreaks)

# The same table with margins over tension, but not wool

stat.table(index=list(tension,wool),mean(breaks),data=warpbreaks,

margins=c(TRUE, FALSE))

# A table of column percentages

stat.table(list(tension,wool), percent(tension), data=warpbreaks)

# Cell percentages, with margins

stat.table(list(tension,wool),percent(tension,wool), margin=TRUE,

data=warpbreaks)
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# A table with multiple statistics

# Note how each statistic has its own default precision

a <- stat.table(index=list(wool,tension),

contents=list(count(),mean(breaks),percent (wool)),

data=warpbreaks)

print(a)

# Print the percentages rounded to the nearest integer

print(a, digits=c(percent=0))

# An Epidemiological example with follow-up time

data(nickel)

str(nickel)

# Make a grouped version of the exposure variable

nickel$egr <- cut( nickel$exposure, breaks=c(0, 0.5, 5, 10, 100), right=FALSE )

stat.table( egr, list( count(), percent(egr), mean( age1st ) ), data=nickel )

# Split the follow-up time by current age

nickel.ex <-

W.Lexis( entry=agein, exit=ageout, fail=icd %in% c(162,163),

origin=0, breaks=seq(0,100,20),

include=list( id, exposure, egr, age1st, icd ), data=nickel )

str( nickel.ex )

# Table of rates

stat.table( Time, list( n=count(), N=count(id), D=sum(Fail),

"Rate/1000"=ratio(Fail,Exit-Entry,1000) ),

margin=1, data=nickel.ex )

# Two-way table of rates and no. persons contributing

stat.table( list(age=Time, Exposure=egr),

list( N=count(id), D=sum(Fail), Y=sum((Exit-Entry)/1000),

Rate=ratio(Fail,Exit-Entry,1000) ),

margin=TRUE, data=nickel.ex )

subset.Lexis Subsetting Lexis objects

Description

Return subsets of Lexis objects which meet conditions

Usage

## S3 method for class 'Lexis':
subset(x, ...)

Arguments

x an object of class Lexis

... additional arguments to be passed to subset.data.frame

Details

The subset method for Lexis objects works exactly as the method for data frames.

Value

A Lexis object with selected rows and columns.



Age-Period-Cohort models summary.Lexis 169

Author(s)

Martyn Plummer

See Also

Lexis, merge.Lexis

summary.Lexis Summarize transitions and risk time from a Lexis object

Description

A two-way table of records and transitions classified by states (lex.Cst and lex.Xst), as well the risk time in
each state.

Usage

## S3 method for class 'Lexis':
summary( object, simplify=TRUE, scale=1, ... )

## S3 method for class 'summary.Lexis':
print( x, ..., digits=2 )

Arguments

object A Lexis object.

x A summary.Lexis object.

simplify Should rows with 0 follow-up time be dropped?

scale Scaling factor for the rates. The calculated rates are multiplied by this number.

digits How many digits should be used for printing?

... Other parameters - ignored

Value

An object of class summary.Lexis, a list with two components, Transitions and Rates, each one a matrix with
rows classified by states where persons spend time, and columns classified by stated to which persons transit.
The Transitions contains number of transitions and has two extra columns of total number events and total
risk time attached. The Rates contians the transitions rates.

Author(s)

Bendix Carstensen, 〈bxc@steno.dk〉

Examples

data( nickel )

# Lung cancer deaths and other deaths are coded 1 and 2

nic <- Lexis( data=nickel,

entry=list(age=agein),

exit=list(age=ageout,cal=ageout+dob,tfh=ageout-age1st),

exit.status=factor( (icd > 0) + (icd %in% c(162,163)),

labels=c("Alive","Other","Lung") ) )

str( nic )

head( nic )

summary( nic )
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tabplot Graphical display of a 2-way contingency table

Description

Entries in a table are plotted as rectangles proportional to the entry in the table. Width of rectangles are
proportional to column totals, height proportional to entries within each column, hence areas are proportional
to entries in the table.

Usage

tabplot( M,

col,

border = "black",

lwd = 2,

collabs = TRUE,

rowlabs = NULL,

equal = FALSE,

las = 1,

main = NULL,

cex.main = 1.0,

vaxis = FALSE )

Arguments

M Two-way table

col colors to use for coloring within each column. Defaults to a grayscale. May also be a
function that takes an integer argument, as e.g. rainbow().

border color of borders around rectangles.

lwd width of the lines around rectangles.

collabs should colums be labelled.

rowlabs character ”r” or ”l”: rows labelled on left or right side

equal should colums be plotted of equal width? If yes a plot similar to that obtainable from
barplot is the result.

las how should labelling be rotated.

main heading for the plot

cex.main character expansion for the heading.

vaxis should a vertical axis be drawn. If character it gives the side where it is drawn.

Details

The function offers a few more facilities for two-way tables than mosaicplot, but is restricted to two-way tables
as input.

Value

NULL. The function is used for its sideeffects.

Author(s)

Bendix Carstensen, Steno Diabetes Center & Dept. of Biostatistics, University of Copenhagen 〈bxc@steno.dk〉,
http://www.pubhealth.ku.dk/~bxc

See Also

See Also barplot, plot.table, mosaicplot

http://www.pubhealth.ku.dk/~bxc
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Examples

b <- sample( letters[1:4], 300, replace=TRUE, prob=c(3,1,2,4)/10 )

a <- rnorm( 300 ) - as.integer( factor( b ) ) / 8

tb <- table( cut( a, -3:2 ), b )

tabplot( tb )

tabplot( tb, rowlabs="right", col=heat.colors )

# Very similar plots

ptb <- sweep( tb, 2, apply( tb, 2, sum ), "/" )

par( mfrow=c(2,2) )

barplot( ptb, space=0 )

tabplot( tb, equal=TRUE, lwd=1 )

tabplot( tb, equal=TRUE, lwd=1, rowlabs="l" )

tabplot( tb, equal=FALSE, lwd=1, rowlabs="l" )

thoro Thorotrast Study

Description

The thoro data frame has 2470 rows and 14 columns. Each row represents one patient that have had cerebral
angiography (X-ray of the brain) with an injected contrast medium, either Thorotrast or another one (the
controls).

Format

This data frame contains the following columns:

id: Identification of person.
sex: Sex, 1: male / 2: female.

birthdat: Date of birth, Date variable.
contrast: Group, 1: Thorotrast / 2: Control.
injecdat: Date of contrast injection, Date variable.
volume: Injected volume of Thorotrast in ml. Control patients have a 0 in this variable.
exitdat: Date of exit from the study, Date variable.
exitstat: Status at exit, 1: dead / 2: alive, censored at closing of study, 20 February 1992 / 3: censored alive at some earlier date.

cause: Cause of death. See causes in the helpfile for gmortDK

liverdat: Date of liver cancer diagnosis, Date variable.
liver: Indicator of liver cancer diagnosis. Not all livercancers are histologically verified, hence liver >= hepcc + chola + hmang

hepcc: Hepatocellular carcinoma at liverdat.
chola: Cholangiocellular carcinoma at liverdat.
hmang: Haemangisarcoma carcinoma at liverdat.

Source

M Andersson, M Vyberg, J Visfeldt, B Carstensen & HH Storm: Primary liver tumours among Danish patients
exposed to Thorotrast. Radiation Research, 137, pp. 262–273, 1994.

M Andersson, B Carstensen HH Storm: Mortality and cancer incidence after cerebral angiography. Radiation
Research, 142, pp. 305–320, 1995.

See Also

mortDK, gmortDK

Examples

data(thoro)

str(thoro)
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timeBand Extract time band data from a split Lexis object

Description

The break points of a Lexis object (created by a call to splitLexis) divide the follow-up intervals into time
bands along a given time scale. The breaks function returns the break points, for a given time scale, and the
timeBand classifies each row (=follow-up interval) into one of the time bands.

Usage

timeBand(lex, time.scale, type="integer")

breaks(lex, time.scale)

Arguments

lex an object of class Lexis

time.scale a character or integer vector of length 1 identifying the time scale of interest

type a string that determines how the time bands are labelled. See Details below

Details

Time bands may be labelled in various ways according to the type argument. The permitted values of the type

argument, and the corresponding return values are:

”integer” a numeric vector with integer codes starting from 0.

”factor” a factor (unordered) with labels ”(left,right]”

”left” the left-hand limit of the time band

”middle” the midpoint of the time band

”right” the right-hand limit of the time band

Value

The breaks function returns a vector of break points for the Lexis object, or NULL if no break points have
been defined by a call to splitLexis. The timeBand function returns a numeric vector or factor, depending on
the value of the type argument.

Note

A newly created Lexis object has no break points defined. In this case, breaks will return NULL, and
timeBand will a vector of zeros.

Author(s)

Martyn Plummer

See Also

Lexis

Examples

data(diet)

diet <- cal.yr(diet)

diet.lex <- Lexis(entry=list(period=doe),

exit=list(period=dox, age=dox-dob),

exit.status=chd,

data=diet)
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diet.split <- splitLexis(diet.lex, breaks=seq(40,70,5), "age" )

age.left <- timeBand(diet.split, "age", "left")

table(age.left)

age.fact <- timeBand(diet.split, "age", "factor")

table(age.fact)

age.mid <- timeBand(diet.split, "age", "mid")

table(age.mid)

timeScales The time scales of a Lexis object

Description

Function to get the names of the time scales of a Lexis object.

Usage

timeScales(x)

Arguments

x an object of class Lexis

Value

A character vector containing the names of the variables in x that represent the time scales

Author(s)

Martyn Plummer

See Also

Lexis, splitLexis

transform.Lexis Transform a Lexis objects

Description

Transform a Lexis object

Usage

## S3 method for class 'Lexis':
transform(`_data`, ...)

Arguments

_data an object of class Lexis.

... additional arguments to be passed to transform.data.frame.

Details

The transform method for Lexis objects works exactly as the method for data frames.

Value

A transformed Lexis object.
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Author(s)

Martyn Plummer

See Also

Lexis, merge.Lexis, subset.Lexis

twoby2 Analysis of a two by two table

Description

Computes the usual measures of association in a 2 by 2 table with confidence intervals. Also produces
asymtotic and exact tests. Assumes that comparison of probability of the first column level between levels of
the row variable is of interest. Output requires that the input matrix has meaningful row and column labels.

Usage

twoby2(exposure, outcome,

alpha = 0.05, print = TRUE, dec = 4,

conf.level = 1-alpha, F.lim = 10000)

Arguments

exposure If a table the analysis is based on the first two rows and first two columns of this. If a
variable, this variable is tabulated against

outcome as the second variable

alpha Significance level

print Should the results be printed?

dec Number of decimals in the printout.

conf.level 1-alpha

F.lim If the table total exceeds F.lim, Fisher’s exact test is not computed

Value

A list with elements:

table The analysed 2 x 2 table augmented with probabilities and confidence intervals. The
confidence intervals for the probabilities are computed using the normal approximation to
the log-odds. Confidence intervals for the difference of proportions are computed using
method 10 from Newcombe, Stat.Med. 1998, 17, pp.873 ff.

measures A table of Odds-ratios and relative risk with confidence intervals.

p.value Exact p-value for the null hypothesis of OR=1

Author(s)

Mark Myatt. Modified by Bendix Carstensen.

Examples

Treat <- sample(c("A","B"), 50, rep=TRUE )

Resp <- c("Yes","No")[1+rbinom(50,1,0.3+0.2*(Treat=="A"))]

twoby2( Treat, Resp )

twoby2( table( Treat, Resp )[,2:1] ) # Comparison the other way round
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W.Lexis Split follow-up time in cohort studies.

Description

This is an old version of time-splitting. Consult the new version, Lexis.

For cohort input data the follow-up time is chopped in pieces along several time scales, and a dataframe of
follow-up intervals is returned. Entry and exit times are assumed to be in the same timescale (the input time
scale).

Usage

W.Lexis( entry = 0,

exit,

fail,

origin = 0,

scale = 1,

breaks,

include = NULL,

data = NULL )

Arguments

entry Date of entry on the input timescale. Numerical variable.

exit Date of exit on the input timescale. Numerical variable.

fail Failure indicator.

origin Origin of the output timescale(s) on the input timescale. If for example the input timescale
is calendar time and the output timescale is (current) age, the the origin is date of birth. If
more than one timescale is used for splitting time this is a list. Elements of the list must be
named and must have the same names as those in scale and breaks.

scale Scale of the output timescale(s) relative to the input timescale. Elements of the list must be
named and have the same names as those in origin and breaks.

breaks Points on the output scale where the follow-up is cut. If more than one timescale is used for
splitting time this is a list. Elements of the list must be named and must have the same
names as those in origin and scale.

include List of variables to carry unchanged from the original dataframe to the output dataframe.

data Dataframe in which to interpret the arguments.

Details

The data is assumed to be a dataframe describing the follow-up of a cohort, giving entry and exit time (on the
input timescale) for each individual as well as the exit status (failure status, fail). The purpose of the function
is to split each individual’s follow-up time along a number of timescales for example age, calendar time, time
since entry etc. Any follow-up time before the first break on any timescale or after the last break on any of
these timescales (the output timescales) is discarded.

NOTE: If a person has his/her exit before the first break or his entry after the last break on any of the
timescales the function will crash.

Value

A dataframe with one row per follow-up interval. The data frame includes all variables given in the argument
include, replicated across all intervals from the same individual. In addition, the dataframe has the following
variables:

Expand A numerical vector with values in 1:nrows(data), pointing at the rows of the input data
frame that is expanded to the output intervals.
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Entry Date of entry for each interval. On the input time scale.

Exit Date of exit for each interval. On the input time scale.

Fail Exit status for each interval. Coded 0 for censoring, for the last follow-up interval for each
person it takes the value of fail.

Time If origin, scale or breaks were given as vectors this gives the left endpoints of the
intervals on the output scale.

If origin, scale or breaks, were given as lists, there is no variable Time in the dataframe,
instead variables with the same names as the list elements of these will be in the dataframe.
The variables have values corresponding to the left endpoints of the intervals on the
respective output time scales.

Author(s)

David Clayton, approx. 2000. Small modifications by Bendix Carstensen.

References

This function has approximately the same functionality as stsplit in Stata and the SAS-macro %Lexis

(http://www.biostat.ku.dk/~bxc/Lexis/Lexis.sas). It has been attempted to keep argument names similar
between the three functions.

See Also

Lexis,Lexis.diagram

Examples

# A small bogus cohort

#

xcoh <- structure( list( id = c("A", "B", "C"),

birth = c("14/07/1952", "01/04/1954", "10/06/1987"),

entry = c("04/08/1965", "08/09/1972", "23/12/1991"),

exit = c("27/06/1997", "23/05/1995", "24/07/1998"),

fail = c(1, 0, 1) ),

.Names = c("id", "birth", "entry", "exit", "fail"),

row.names = c("1", "2", "3"),

class = "data.frame" )

# Convert the character dates into numerical variables (fractional years)

#

xcoh$bt <- cal.yr( xcoh$birth, format="%d/%m/%Y" )

xcoh$en <- cal.yr( xcoh$entry, format="%d/%m/%Y" )

xcoh$ex <- cal.yr( xcoh$exit , format="%d/%m/%Y" )

# See how it looks

#

xcoh

# Split time along one time-axis

#

W.Lexis( entry = en,

exit = ex,

fail = fail,

scale = 1,

origin = bt,

breaks = seq( 5, 40, 5 ),

include = list( bt, en, ex, id ),

data = xcoh )

# Split time along two time-axes

http://www.biostat.ku.dk/~bxc/Lexis/Lexis.sas
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#

( x2 <-

W.Lexis( entry = en,

exit = ex,

fail = fail,

scale = 1,

origin = list( per=0, age=bt ),

breaks = list( per=seq(1900,2000,10), age=seq(0,80,5) ),

include = list( bt, en, ex, id ),

data = xcoh ) )

# Tabulate the cases and the person-years

#

tapply( x2$Fail, list( x2$age, x2$per ), sum )

tapply( x2$Exit - x2$Entry, list( x2$age, x2$per ), sum )
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