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Introduction

• Data analysis.

• Concepts behind follow-up studies.

(Probability theory).

• Empirical demography.

• Assignments / exercises.

• Your ID.
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Simple survival

In the simplest case, all persons start at time 0, the

designated origin of the timescale, which could be:

Age: Date of birth.

Time on study: Date of entry (randomization, . . . ).

Suppose we divide time into bands, and estimate the

probability of death in each band, π1, π2, π3, . . .
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Survival tree
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π̂i = Di/Ni i = 1, . . . , 3
Di deaths in, Ni no. alive at start of interval i.

πi conditional probability given survival till start of interval.
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Loss to follow–up (censoring)
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Subjects lost to follow–up in band 1 make no contribution to

estimation of π2 or π3, but what about the estimate of π1?
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Compensating loss to follow-up

With N subjects observed, D failures, and L lost to

follow–up, estimate depends on when losses occurred:

— if at the end of the band: D/N

— if at the start of the band: D/(N − L)
— unknown then compromise: D/(N − L/2) or:

π =
D + πL/2

N
=⇒ π = D/(N − L/2)

Known as the actuarial or life table method.
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Survival after Cervix cancer (C& H)
Stage I Stage II

Year N D L N D L

1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9
4 72 3 8 129 17 7
5 61 0 7 105 7 13
6 54 2 10 85 6 6
7 42 3 6 73 5 6
8 33 0 5 62 3 10
9 28 0 4 49 2 13

10 24 1 8 34 4 6

Estimated risk in year 1 for Stage I women is 5/107.5 = 0.0465
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Life table calculations year 1–4, stage I
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N D L N − 1
2L π 1− π

110 5 5 107.5 0.047 0.953
100 7 7 96.5 0.073 0.927
86 7 7 82.5 0.085 0.915
72 8 3 70.5 0.113 0.887

Cumulative survival probabilities:

1 year : 0.953

2 years: 0.953× 0.927 = 0.884

3 years: 0.884× 0.915 = 0.809

4 years: 0.809× 0.887 = 0.635
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Life table estimates for both stages
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Life tables in Stata: ltable

. use gcervix, clear

. list
time N status stage

1. 0 5 0 1
2. 0 5 1 1
3. 1 7 0 1
4. 1 7 1 1
5. 2 7 0 1
6. 2 7 1 1
7. 3 3 0 1
8. 3 8 1 1

...
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. ltable time status [freq=N] if stage==1

Beg. Std.
Interval Total Deaths Lost Survival Error [95% C.I.]
-----------------------------------------------------------
0 1 110 5 5 0.9535 0.0203 0.8919 0.9804
1 2 100 7 7 0.8843 0.0314 0.8052 0.9326
2 3 86 7 7 0.8093 0.0395 0.7170 0.8741
3 4 72 8 3 0.7175 0.0465 0.6146 0.7974
4 5 61 7 0 0.6351 0.0505 0.5273 0.7247
5 6 54 10 2 0.5153 0.0533 0.4064 0.6137
6 7 42 6 3 0.4390 0.0538 0.3321 0.5406
7 8 33 5 0 0.3724 0.0532 0.2694 0.4753
8 9 28 4 0 0.3192 0.0518 0.2211 0.4215
9 10 24 8 1 0.2106 0.0463 0.1282 0.3068
10 11 15 15 0 0.0000 . . .
-----------------------------------------------------------
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Late entry (left truncation)
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• Observation does not start at t = 0 for all subjects
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• Example:

In an Observational study of survival after operation, some

may enter the study some time after operation, because

their record had not been available earlier.

• Example:

Immigrants enter Australia in their mid-20s.

• Late entries in band 3 do not contribute to the estimates of

π1 and π2

• Why not (we know they didn’t die)?
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Independent censoring and truncation

• The comparison would be biased.

We would miss observation time and deaths among those

who died before they came to our knowledge.

• Only include observation time where an event occurrence

would have been recorded.

• Studies with censoring and truncation could give biased

answers, if not handled properly.
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• Bias could be caused by:

– Selective removal (censoring) of high risk subjects

– Selective import (late entry) of low risk subjects

• In epidemiology these would be termed selection biases

• If censoring or truncation has no effect on later failure rates

it is said to be independent censoring / truncation
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The Kaplan–Meier method

• Divide time into clicks, i.e very small time intervals, so no

censorings occur in the same click as events.

• Clicks with censorings contribute 1 to the cumulative

survival function.

• Clicks with 1 event each contribute 1− 1/N to the

cumulative survival function.
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• Tied events poses no problem:

1− 2
N

=
N − 2

N
=

N − 2
N − 1

×N − 1
N

= (1− 1
N − 1

)×(1− 1
N

)

• Censorings and events tied:

Convention is that events come before censorings.
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The Kaplan–Meier method

-

Time

× • × × •

50N = 49 46

6

1.0

Cumulative
survival

probability

Steps caused by multiplying by (1− 1/49) and (1− 1/46)
respectively
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Example calculation in Stata
. stset survmm, fail(status==1,2) scale(12)

failure event: status == 1 2
obs. time interval: (0, survmm]
exit on or before: failure

t for analysis: time/12
----------------------------------------------------------

53 total obs.
3 obs. end on or before enter()

----------------------------------------------------------
50 obs. remaining, representing
36 failures in single record/single failure data

197.4167 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 16.08333

Late entries (left truncation) is handled by stset through

the option enter.
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. sts list

failure _d: status == 1 2
analysis time _t: survmm/12

Beg. Net Survivor Std.
Time Total Fail Lost Function Error [95% Cf. Int.]

-----------------------------------------------------------
.0833 50 7 0 0.8600 0.0491 0.7286 0.9307
.1667 43 3 0 0.8000 0.0566 0.6602 0.8870
.25 40 2 0 0.7600 0.0604 0.6163 0.8559

...
3.083 21 1 0 0.4502 0.0716 0.3073 0.5828
3.417 20 1 0 0.4277 0.0715 0.2867 0.5613
3.5 19 0 1 0.4277 0.0715 0.2867 0.5613

3.833 18 1 0 0.4039 0.0714 0.2649 0.5386
4 17 1 1 0.3801 0.0710 0.2436 0.5156
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Kaplan–Meier plot using sts graph

Kaplan-Meier survival estimate
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Survival data: Censoring and truncation

• Right-censoring: It is only known that a person has lived

until time tx. The survival time is censored at time tx. The

time of death is in (tx,∞).

• Left-truncaton: A person is only known if he has survived

until time ti. Had he died before ti he would not have been

known.

Bias: Inclusion of survival time prior to the point where a

death would have been registered. Those who died did not

contribute anything, so only survival not death is included.
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Survival time distribution

Survival time is a stochastic variable T , with a distribution

characterized by the cumulative distribution function, F , and

density, f :

F (t) = P {death ≤ t} , f(t) = F ′(t) =
dF

dt

In survival terms it is more of interest to have the probability

to survive at least to time t, the survival function1

S(t) = 1− F (t)
1Pocock SJ, Clayton TC & Altman DG argue to use F in: Survival plots of time-

to-event outcomes in clinical trials: good practice and pitfalls. Lancet. 2002 May
11;359(9318):1686-9.
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For persons known to be alive at age t0, we have the

conditional survival function, given they are alive at time ti:

P {Alive at t | alive at ti} =
S(t)
S(ti)

If we want to know something specific about mortality

around age t, the limit:

P {Alive at t + h | alive at t} =
S(t + h)

S(t)
−→
h→0

1

is not very interesting for obvious reasons.
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Intensity or rate

P {event in (t, t + h] | alive at t} /h

=
F (t + h)− F (t)

S(t)h

= −S(t + h)− S(t)
S(t)h

−→
h→0

−d log S(t)
dt

= λ(t)

This is the intensity or hazard function for the distribution.

Characterizes the distribution as does f or F .

Theoretical counterpart of a rate.
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Relationships

−d log S(t)
dt

= λ(t)

m

S(t) = exp
(
−
∫ t

0
λ(u)du

)
= exp (−Λ(t))

Λ(t) =
∫ t

0 λ(s)ds is called the integrated intensity.

λ(t) = −d log(S(t))
dt

= −S ′(t)
S(t)

=
F ′(t)

1− F (t)
=

f(t)
S(t)

Staff course, CEBU Basics of survival data 24



The integrated intensity and cumulative risk

The integrated intensity

Λ(t) =
∫ t

0
λ(s)ds

is not an intensity, it is dimensionless.

The empirical counterpart of the integrated intensity is

known as the cumulative rate.
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The cumulative risk of an event (to time t) is:

P {Event before time t} = 1− S(t) = 1− e−Λ(t)

For small |x| (< 0.05), we have that 1− e−x ≈ x, so for

small values of the integrated intensity:

Cumulative risk to time t ≈ Λ(t) = Cumulative rate
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Estimation of the integrated intensity
Consider again the timescale in intervals:
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A näıve counterpart of the actuarial estimator of the survival

function would be (no name):

Λ(tn) =
n∑

i=1

Di

Ni − Li/2
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The Nelson-Aalen estimator

(“Aa” in Norwegian is the old (pre-1950) version of “Å”).

• Divide time into clicks, i.e very small time intervals, so no

censorings occur in the same click as events.

• Clicks with censorings contribute 0 to the integrated hazard

function.

• Clicks with 1 event each contribute 1/N to the integrated

hazard function.
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• Tied events: 2/N < 1/N + 1/(N − 1).

The former is used.

• Censorings and events tied:

Convention is that events come before censorings.
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Comparison to the Kaplan-Meier estimator

For each click with an event:

• KM multiplies 1− 1/N to the cumulative survival.

• NA adds 1/N to the integrated intensity, i.e. multiplies the

cumulative survival by e−1/N .

Note that e−1/N > 1− 1/N , by the convexity of the

exponential.

• In practical terms they are alike.
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Nelson-Aalen estimator in Stata
. sts list, na

failure _d: status == 1 2
analysis time _t: survmm/12

Beg. Net Nelson-Aalen Std.
Time Total Fail Lost Cum. Haz. Error [95% Cf. Int.]

-----------------------------------------------------------
.0833 50 7 0 0.1400 0.0529 0.0667 0.2937
.1667 43 3 0 0.2098 0.0665 0.1127 0.3905
.25 40 2 0 0.2598 0.0753 0.1472 0.4585

...
3.083 21 1 0 0.7723 0.1545 0.5218 1.1432
3.417 20 1 0 0.8223 0.1624 0.5584 1.2111
3.5 19 0 1 0.8223 0.1624 0.5584 1.2111

3.833 18 1 0 0.8779 0.1716 0.5984 1.2879
4 17 1 1 0.9367 0.1814 0.6408 1.3693
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Nelson-Aalen plot using sts graph, na

Nelson-Aalen cumulative hazard estimate

 

analysis time
0 5 10 15

0.00

0.50

1.00

1.50

2.00

Staff course, CEBU Basics of survival data 32



Survival analysis and medical demography

Population life tables

20 March 2003

Bendix Carstensen



Expected lifetime

Distribution of death times (age at death) has density f(a),
so the expectation of age at death, i.e. expected life time is:∫ ∞

0
af(a)da = −

∫ ∞

0
a(−f(a))da

= − [aS(a)]∞0 +
∫ ∞

0
S(a)da

=
∫ ∞

0
S(a)da

by integration by parts.
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This is used in population life tables to compute expected

lifetime at birth, but also expected residual life time given
survival to age a:

E[`res(a)] =
∫ ∞

a

S(t|alive at a)dt =
∫ ∞

a

S(t)/S(a)dt

In practice the integral is computed as a sum.
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Population life tables (DS, ABS)

These are cross-sectional life tables, based on the

age-specific mortality in one or two calendar years.

• Mortality rates, typically per 100, 000 p.y.

• Survival function.

• Expected residual life time at the beginning of the

age-class.

The expected residual life time for a new born is a much

used figure for comparing mortality between populations.

And for assessing population mortality trends.
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Population life table, DK 1997–98
Men Women

a S(a) λ(a) E[`res(a)] S(a) λ(a) E[`res(a)]

0 1.00000 567 73.68 1.00000 474 78.65
1 0.99433 67 73.10 0.99526 47 78.02
2 0.99366 38 72.15 0.99479 21 77.06
3 0.99329 25 71.18 0.99458 14 76.08
4 0.99304 25 70.19 0.99444 14 75.09
5 0.99279 21 69.21 0.99430 11 74.10
6 0.99258 17 68.23 0.99419 6 73.11
7 0.99242 14 67.24 0.99413 3 72.11
8 0.99227 15 66.25 0.99410 6 71.11
9 0.99213 14 65.26 0.99404 9 70.12

10 0.99199 17 64.26 0.99395 17 69.12
11 0.99181 19 63.28 0.99378 15 68.14
12 0.99162 16 62.29 0.99363 11 67.15
13 0.99147 18 61.30 0.99352 14 66.15
14 0.99129 25 60.31 0.99338 11 65.16
15 0.99104 45 59.32 0.99327 10 64.17
16 0.99059 50 58.35 0.99317 18 63.18
17 0.99009 52 57.38 0.99299 29 62.19
18 0.98957 85 56.41 0.99270 35 61.21
19 0.98873 79 55.46 0.99235 30 60.23
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20 0.98795 70 54.50 0.99205 35 59.24
21 0.98726 71 53.54 0.99170 31 58.27
22 0.98656 58 52.58 0.99139 23 57.28
23 0.98599 65 51.61 0.99117 26 56.30
24 0.98535 80 50.64 0.99091 25 55.31
25 0.98456 86 49.68 0.99066 27 54.32
26 0.98371 95 48.72 0.99039 28 53.34
27 0.98277 99 47.77 0.99012 34 52.35
28 0.98180 87 46.81 0.98978 41 51.37
29 0.98094 95 45.86 0.98938 41 50.39
30 0.98002 100 44.90 0.98898 46 49.41
31 0.97903 110 43.94 0.98852 54 48.43
32 0.97795 130 42.99 0.98799 57 47.46
33 0.97668 133 42.05 0.98743 54 46.49
34 0.97537 137 41.10 0.98689 63 45.51
35 0.97403 136 40.16 0.98627 82 44.54
36 0.97271 145 39.21 0.98546 84 43.58
37 0.97130 149 38.27 0.98463 87 42.61
38 0.96985 177 37.32 0.98377 102 41.65
39 0.96813 239 36.39 0.98277 129 40.69
40 0.96582 254 35.48 0.98150 154 39.74
41 0.96336 252 34.56 0.97999 156 38.80
42 0.96093 271 33.65 0.97846 162 37.86
43 0.95833 325 32.74 0.97687 190 36.93
44 0.95522 349 31.85 0.97502 220 35.99
45 0.95189 326 30.96 0.97287 225 35.07
46 0.94879 363 30.06 0.97068 216 34.15
47 0.94534 412 29.16 0.96858 252 33.22
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48 0.94145 437 28.28 0.96614 276 32.31
49 0.93733 484 27.40 0.96347 306 31.39
50 0.93279 516 26.53 0.96053 343 30.49
51 0.92798 549 25.67 0.95723 362 29.59
52 0.92289 626 24.81 0.95376 406 28.70
53 0.91711 681 23.96 0.94989 459 27.81
54 0.91087 711 23.12 0.94553 512 26.94
55 0.90439 798 22.28 0.94068 552 26.08
56 0.89717 878 21.46 0.93549 631 25.22
57 0.88929 962 20.65 0.92959 681 24.37
58 0.88074 1077 19.84 0.92326 685 23.54
59 0.87126 1240 19.05 0.91693 783 22.70
60 0.86045 1410 18.28 0.90975 899 21.87
61 0.84831 1513 17.54 0.90157 1003 21.07
62 0.83548 1709 16.80 0.89253 1104 20.27
63 0.82120 1940 16.08 0.88268 1276 19.49
64 0.80527 2086 15.39 0.87142 1428 18.74
65 0.78848 2264 14.71 0.85898 1512 18.00
66 0.77063 2551 14.04 0.84599 1702 17.27
67 0.75097 2833 13.39 0.83159 1900 16.56
68 0.72969 3052 12.77 0.81580 2024 15.87
69 0.70743 3390 12.15 0.79929 2166 15.19
70 0.68344 3650 11.56 0.78197 2401 14.52
71 0.65850 3863 10.98 0.76320 2611 13.86
72 0.63306 4352 10.40 0.74327 2732 13.22
73 0.60551 4855 9.86 0.72297 2993 12.58
74 0.57611 5379 9.33 0.70133 3286 11.95
75 0.54512 5974 8.83 0.67828 3523 11.34
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Men Women

a S(a) λ(a) E[`res(a)] S(a) λ(a) E[`res(a)]

76 0.51255 6385 8.36 0.65439 3870 10.74
77 0.47983 6921 7.90 0.62906 4245 10.15
78 0.44662 7470 7.45 0.60236 4606 9.58
79 0.41326 8262 7.01 0.57461 5104 9.01
80 0.37911 8953 6.60 0.54528 5654 8.47
81 0.34517 9778 6.20 0.51445 6219 7.95
82 0.31142 10890 5.82 0.48246 6891 7.44
83 0.27751 11624 5.47 0.44921 7590 6.96
84 0.24525 12660 5.12 0.41512 8473 6.49
85 0.21420 13808 4.79 0.37994 9437 6.04
86 0.18462 14881 4.47 0.34409 10388 5.62
87 0.15715 16188 4.17 0.30834 11604 5.21
88 0.13171 17999 3.88 0.27256 13118 4.83
89 0.10800 19766 3.62 0.23681 14174 4.49
90 0.08666 20911 3.39 0.20324 15504 4.14
91 0.06853 23496 3.15 0.17173 18000 3.81
92 0.05243 25337 2.97 0.14082 20009 3.54
93 0.03915 25634 2.80 0.11264 21312 3.30
94 0.02911 27599 2.60 0.08864 23462 3.06
95 0.02108 29587 2.39 0.06784 25649 2.84
96 0.01484 33753 2.19 0.05044 26944 2.65
97 0.00983 38851 2.05 0.03685 30178 2.44
98 0.00601 37882 2.04 0.02573 32773 2.28
99 0.00373 36433 1.98 0.01730 33149 2.15
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log2[mortality per 105 (40−85 years)]

Men: −14.289 + 0.135 age

Women: −14.923 + 0.135 age
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• Why was the logarithm to base 2 chosen for modelling the

mortality rates?

• What is the rate-ratio between males and females?

• How much older should a woman be in order to have the

same mortality as a man?
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• The log to base 2 was chosen, so one could easily compute

the doubling time for mortality:

If mortality should double, log2(mortality) must increase by

1, so age must increase by 1/0.135 = 7.41 years.

• log2(rate-ratio) between men and women is

−14.289− (−14.923) = 0.634, so the rate ratio is

20.634 = 1.55.

• In order to advance 0.634 in log2-mortality a woman must

advance 0.634/0.135 = 4.70 years in age. Thus men have

the same mortality as women that are 4.70 years older.
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Australian life tables

• If mortality should double, log2(mortality) must increase by

1, so age must increase by 1/0.144 = 6.94 years.

• log2(rate-ratio) between men and women is

−15.293− (−16.052) = 0.759, so the rate ratio is

20.634 = 1.69.

• In order to advance 0.759 in log2-mortality a woman must

advance 0.759/0.144 = 5.27 years in age. Thus men have

the same mortality as women that are 5.27 years older.
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At 40 years, the survival for men is 0.96582. So we want to

find the age at which the survival is half of this, i.e. 0.48291.

Survival at 76 is 0.51255 and at 77 0.47983.

The survival probability for the age-claas 76 is

0.47983/0.51255 = 0.93616 = e−λ1 so the mortality rate is

− log(0.93616) = 0.06597.

If it takes t to reduce 51255 to 48291 we have:

48291/51255 = 0.94217 = e−λt = e−0.06597t

then t = − log(0.94217)/0.06597 = 0.90298, so the age

sought is 76.903.
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Expected residual life time
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Definition of likelihood

Likelihood is the probability of the observed data given the

probability model which gave rise to these data.

It is used to compare candidate values for the parameters of

the model; the greater the probability of the observed data,

the more likely the parameter value.

Consider 10 persons follwed for the same period of time:

The data: F F S F S S S F S S

The model: P {F} = π, P {S} = 1− π
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Contribution to the likelihood is:

• ×π for a subject who fails

• ×(1− π) for a subject who survives

Total likelihood for π is:

π4(1− π)6

Function of model [parameter(s)] and data.
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Consecutive time bands

• Assume risk does not vary with time:

• Subdivide time into bands, and model as a sequence of

consecutive Bernoulli trials:

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

���������������

���������������

���������������

π F

S

π F

S

π F

S

1 2 3
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• They are not independent, but the likelihood contribution

is a product, for example:

(1− π)2π = P {S 1st band}
× P {S 2nd band| alive at start of 2nd}
× P {S 3rd band| alive at start of 3rd}

• Observations of one subject through one band behave as if

they were independent “atoms” of data.

• Break up your data into little pieces of follow-up for each

person and base inference on that.
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Estimating a rate heuristically

Total follow-up time Y years, with a total of D failures.

Divide time into clicks of length h years. The total number

of clicks is then N = Y/h, and D of them end in failure.

The estimated value of π, the probability of failure during

any one click, is D/N .

The estimated value of λ, the rate, the probability of failure

per unit time is:

λ̂ =
π

h
=

D

Nh
=

D

Y
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Likelihood for a constant rate

Follow-up of 2 subjects:

-

v
d = 0 (survivor)

d = 1 (failure)

Time
y0

Probability of surviving y years is exp(−λy) so the survivor

contributes −λy to the log likelihood.

Probability of failure in the last click of length h is π = λh,

so the contribution for the failure is

−λy + log(λh) = −λy + log(λ) + log(h)
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The last term does not involve λ, so is irrelevant.
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All subjects contribute −λy to the log-likelihhod.

Failures contribute an additional log(λ)

Adding these over a group of persons gives

D log(λ)− λY,

Y is the total follow-up time, and

D the total number of failures.

The log-likelihood is maximal for:

d`(λ)
dλ

=
D

λ
− Y = 0 ⇔ λ̂ =

D

Y
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Example: 7 failures in 500 person–years

The log likelihood is

7 log(λ)− 500λ

The maximum value of the log likelihood occurs at

λ = 7/500 = 0.014 per person-year.
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A 90% c.i. for λ may be found by reading off the values of λ

at which the log likelihood ratio has reduced to −1.353, i.e.

(7.0; 24.6)× 10−3 per person-year. (1.353 = χ2
0.90(1)/2)
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Empirical rates

The epidemiological definition of an empirical rate is:

No. events

risk-time

Small time-intervals for single individuals ⇒ almost never any

events, so empirical rates will either be 0, or very large.

For statistical modelling we define an empirical rate as a

pair: (d, y), the number of events (d ∈ {0, 1}) and the

length of the interval (y).

The log-likelihood contribution from an empirical rate is

d log(λ)− λy

Staff course, CEBU Likelihoods for rates 11



The modified life-table estimator

If deaths and censorings occur uniformly spaced over an

interval, the total risk time of N individuals with D deaths

and L censorings over an interval of length y is

(N −D/2− L/2)y thus the rate is estimated by:

λ̂ =
D

(N −D/2− L/2)y

and thus the cumulative rate over the interval by

Λ̂ =
Dy

(N −D/2− L/2)y
=

D

N −D/2− L/2
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The survival probability for the interval is then estimated by:

exp
(
− D

N −D/2− L/2

)

Multiplied together to

a cumulative survival

function, the resulting

estimator is called the

modified lifetable
estimator (crosses)
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Poisson likelihood

The log-likelihood for a rate, based on D deaths during Y

risk time is:

D log(λ)− λY

The log-likelihood for the parameter λ in a Poisson model

with mean λY , based on an observation of D is:

D log(λY )− λY = D log(λ) + D log(Y )− λY

Follow-up study observation: (D,Y )
Poisson observation: D, Y known constant.

Different models, same likelihood.
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Precision of maximum likelihood estimates

General principle of likelihood theory for a parameter θ:

var(θ̂) ≈ −
(
D2

θ

[
`(θ)

])−1
∣∣∣∣
θ=θ̂

i.e. the variance of an estimate is minus the inverse of the

2nd derivative of the log-likelihood evaluated at the estimate

(i.e. the maximum).
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Precision of the rate estimate

The Poisson log likelihood, as a function of θ = log(λ):

`(θ) = Dθ − eθY D2
θ(Dθ − eθY ) = −eθY = −λY

Inserting λ = λ̂ = D/Y gives −D, so:

s.e.(log(λ̂)) = 1/
√

D

In practical terms, it means the confidence intervals has the

form

log(λ̂)± 2/
√

D ⇔ λ
×
÷ e2/

√
D
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Late entries

The basic idea is to split time into intervals sufficiently small

for the assumption of constant rates to hold.

The likelihood contribution for a small interval is only
conditional on being alive (at risk of failure).

Thus late entries do not represent any problem for

constructing the likelihood.

Late entries (left truncation) is a design / data acquisition

problem.
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Time-varying rates

If we assume rates vary by time, the log-likelihood just

becomes a sum of terms with different λs for each interval

with different rates:

`(λ1, λ2) = D1 log(λ1)− λ1Y1 + D2 log(λ2)− λ2Y2

In fact there is no need to aggregate the single empirical

rates to (D,Y ), even if they have the same rate.

Keep the little “atoms” of observation, and just assign the

relevant time-period to each in the estimation.
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Observational unit in survival studies

The central unit of observation is (d, y), small pieces of

follow-up (many from each person).

Each one has covariates (x1, . . . , xp) associated with it, e.g.:

• Sex

• Genotype

• Current age

• Parity

• Calendar time

• Blood pressure

. . .
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Is time a response variable?

Yes and no.

Time comes in two guises:

1. The risk time, the small y-contributions to the empirical

rates.

This is (part of) the response variable.

2. The time scale, which may be time since entry, current

age, time since hire, . . . .

This is a covariate, whose effect we may take into the

model.
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Poisson-modelling

The Poisson-likelihood can accomodate the effect of

covariates through a regression model:

λ(x1, . . . , xp) = f(x1, . . . , xp)

Thus, the problem remaining is a purely technical problem:

Specification of a sensible form for f , that is

1. Interpretable — we should be able to formulate conclusions

in plain language based on estimates from the model.

2. Practicable — we should be able to estimate in the model

in finite time (i.e. use standard software).
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The most practicable Poisson model for rates is the

multiplicative:

log
(
λ(x1, . . . , xp)

)
= µ + β1x1 + · · ·+ βpxp = η, say.

The log-likelihood then becomes:

`(η) =
∑

all (d, y)-pairs

(dη − eηy)
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This log-likelihood can be maximized by programs doing

Poisson-likelihood estimation (generalized linear models):

• Pretend d is a Poisson observation.

• Specify the Poisson mean as:

λy = eηy = eη+log(y)

The latter requires that the variable log(y) be included with

the linear predictor with a fixed regression coefficient of 1.

This is in the GLM-jargon called an offset-variable.
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Example: Diet data

A dietary survey from England. Used extensively as example

in the book by Clayton & Hills2

Variables (amongst others):
d - indicator of coronary heart disease
y - years in the study

height - height in cm
eng3 - energy intake group (1500/2500/3000)

Available as Stata dataset on the course homepage.

2David Clayton & Michael Hills: Statistical models in epidemiology.
Oxford University Press, 1993
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. use diet

. xi: glm d i.eng3 height, family(poisson) lnoffset(y)

i.eng3 _Ieng3_1-3 (_Ieng3_1 for eng3==1500 omitted)
...
Generalized linear models No. of obs = 332
Optimization : ML: Newton-Raphson Residual df = 328

Scale param = 1
Deviance = 233.1298826 (1/df) Deviance = .7107618
Pearson = 1101.92786 (1/df) Pearson = 3.359536
Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]
Standard errors : OIM
Log likelihood = -161.5649413 AIC = .9973792
BIC = 209.9093428
--------------------------------------------------------------------

d | Coef. Std. Err. z P>|z| [95% Cf. Interval]
---------+----------------------------------------------------------
_Ieng3_2 | -.219921 .3434119 -0.64 0.522 -.8929959 .453154
_Ieng3_3 | -.8956376 .4529728 -1.98 0.048 -1.783448 -.0078271
height | -.0802306 .0221933 -3.62 0.000 -.1237286 -.0367326
_cons | 9.521837 3.719843 2.56 0.010 2.231078 16.8126

y | (exposure)
--------------------------------------------------------------------
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> library( foreign )
> diet <- read.dta( "../data/diet.dta" )
> m1 <- glm( d ~ factor( eng3 ) + height + offset( log( y ) ),
+ family=poisson, data=diet, eps=1e-07 )
> summary( m1 )

Call:
glm(formula = d ~ factor(eng3) + height + offset(log(y)),

family = poisson, data = diet, eps = 1e-07)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 9.52184 3.71968 2.560 0.0105
factor(eng3)2500 -0.21992 0.34339 -0.640 0.5219
factor(eng3)3000 -0.89564 0.45296 -1.977 0.0480
height -0.08023 0.02219 -3.615 0.0003

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 255.01 on 331 degrees of freedom
Residual deviance: 233.13 on 328 degrees of freedom
AIC: 331.13

Number of Fisher Scoring iterations: 6
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> names( summary( m1 ) )
[1] "call" "terms" "family" "deviance"
[5] "aic" "contrasts" "df.residual" "null.deviance"
[9] "df.null" "iter" "deviance.resid" "aic"
[13] "coefficients" "dispersion" "df" "cov.unscaled"
[17] "cov.scaled"
> cf <- m1$coef
> cv <- summary( m1 )$cov.u
> ctr <- c(0,1,-1,0)
> ctr %*% cf

[,1]
[1,] 0.6757167
> sqrt( t(ctr) %*% cv %*% ctr )

[,1]
[1,] 0.4147966
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Competing risks

You may die from more than one cause:
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Cause-specific intensities

λA(t) = lim
h→0

P {death from cause A in (t, t + h] | alive at t}
h

λB(t) = lim
h→0

P {death from cause B in (t, t + h] | alive at t}
h

λC(t) = lim
h→0

P {death from cause C in (t, t + h] | alive at t}
h

Total mortality rate:

λTotal(t) = lim
h→0

P {death from any cause in (t, t + h] | alive at t}
h
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P {death from any cause in (t, t + h] | alive at t}

= P {death from cause A in (t, t + h] | alive at t}+

P {death from cause B in (t, t + h] | alive at t}+

P {death from cause C in (t, t + h] | alive at t}

=⇒ λTotal(t) = λA(t) + λB(t) + λC(t)

Intensities are additive,

if they all refer to the same risk set, in this case “Alive”.
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Likelihood for competing risks

Data:

Y person years in “Alive”

DA deaths from cause A

DB deaths from cause B.

DC deaths from cause C.

Assume for simplicity that rates are constant.
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A survivor contributes to the log-likelohood:

log(P {Survival for a time of y}) = −(λA + λB + λC)y

A death from cause A contributes an additional log(λA), etc.

The total log-likelihood is then:

`(λA, λB, λC) = DA log(λA) + DB log(λB) + DC log(λC)

−(λA + λB + λC)Y

= [DA log(λA)− λAY ] +

[DB log(λB)− λBY ] +

[DC log(λC)− λCY ]
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The log-likelihood is made up of three contributions:

One for cause A, one for cause B and one for cause C.

Deaths are the cause-specific deaths, but the person-years are

the same in all contributions.

Time varying rates:

This is the same business as with one rate; use time intervals

sufficiently small to justify an assumtion of constant rate

(intensity).
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Practical implications

Analysis of the individual cause-specific rates effectively uses

the same dataset for all causes, because the person-years are

the same.

Thus the little “atoms” of data (the empirical rates (d, y)
from each individual) will be the same for all analyses except

for those where deaths occur.

Analysis of cause A: Contributions (1, y) only for those

intervals where a cause A death occurs.

Intervals with cause B or C deaths contribute only (0, y)
— for the analysis of cause A treated as censorings.
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Competing risks are analysed by considering the cause

specific rates separately. We shall return to the possibility of

modelling the rates jointly.

Merely a technical issue.

Staff course, CEBU Competing risks 8



Assumptions in competing risks

“Classical” way of looking at survival data:

description of the distribution of time to death.

For competing risks that would require three variables:

TA, TB and TC, representing times to death from each of the

three causes.

But at most one of these is observed.

Often it is stated that these must be assumed independent in

order to make the likelihoods machinery work.

If they are independent, it works, but is is not necessary.
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An excellent account of these problems (and a counter

example to the independence of survival times) are given in:

PK Andersen, SZ Abildstrøm & S Rosthøj:

Competing risks as a multistate model,
Research report 2001/12,

Department of Biostatistics, University of Copenhagen

Available as .ps-file at:

http://www.biostat.ku.dk/publ-e.htm

The paper also contains a guide for the practitioner.
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Competing risk problems

The problems with competing risk models comes when

estimated intensities (rates) are used to produce probability

statements.

Classical set-up in cancer-registries:

Well Lung cancer-
λ

P {Lung cancer before age 75} = 1− e−Λ(75)

This is not quite right.
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How the world really looks
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Illness-death model. Little boxes with arrows.
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How many get lung cancer before age a?

P {Lung cancer before age 75} 6= 1− e−Λ(75)

does not take the possibility of death prior to lung cancer

into account.

1− e−Λ(75) often stated as the probaility of lung cancer before

age 75, assuming all other acuses of death absent.

Lung cancer rates are however observed in a mortal

population.

If all other causes of death were absent, this would assume

that lung cancer rates remained the same.
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P {Lung cancer before age a}

=
∫ a

0
P {Lung cancer at age u}du

=
∫ a

0
P {Lung cancer in age (u, u + du] | alive at u}

×P {alive at u}du

=
∫ a

0
λ(u) exp

(
−
∫ u

0
µ(s) + λ(s)ds

)
du
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Probability of lungcancer

The rates are easily plotted for inspection in R:

matplot( age, 1000*cbind( D/Y, lung/Y ),
log="y", type="l", lty=1, lwd=3,
ylim=c(0.01,100), xlab="Age",
ylab="Rates per 1000 person-years" )
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The probablility that a person contacts lung cancer before

age a is (cf. the lecture notes):∫ a

0
λ(u) exp

(
−
∫ u

0
µ(s) + λ(s)ds

)
du

=
∫ a

0
λ(u) exp

(
−
(
M(u) + Λ(u)

))
du

M(u) is the cumulative mortality rate

Λ(u) is the cumulative lung cancer incidence rate.
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R-commands needed to do the calculations:

cr.death <- cumsum( D/Y )
cr.lung <- cumsum( lung/Y )
p.simple <- 1 - exp( -cr.lung )
p.lung <- cumsum( lung/Y *

exp( -(cr.death+cr.lung) ) )
matplot( age, cbind( cr.lung, p.simple, p.lung ),

type="l", lty=1, lwd=2*c(1,2,3),
col="black", xlab="Age",
ylab="Probability of lung cancer" )
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The assumption behind the calculation and the statement

“6% of Danish males will get lung cancer” is that the lung

cancer rates and the mortality rates in the file applies to a

cohort of men. But they are cross-sectional rates, so the

assumption is one of steady state of mortality rates (which is

dubious) and lung cancer incidence rates (which is appaling).
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Likelihood for a rate

Empirical rate: (d, y) — (outcome,risk time) for a small

piece of follow up.

Small enough to warrant assumption of constant rate.

Log-likelihood:

d log(λ)− λy

Each empirical rate has its own set of covariates attaced.

Fixed: Sex, Genotype

Varying: Parity, Medical history,

Calendar time, Time since entry, Attained age.
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Lexis-diagram

Calendar time

A
ge

1960 1970 1980 1990 2000
40

50
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80

●

●
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Named after the German

statistician and economist

William Lexis (1837–1914),

who in the book:

“Einleitung in die Theorie der

Bevölkerungsstatistik” (Karl

J. Trübner, Strassburg, 1875)

developed the ideas of

simultaneously classifying

persons by age and calendar

time, using this type of

diagram.
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Several timescales

Modelling the effect of several timescales:

Follow-up time must be subdivided by all of them:

FROM the registration of:

Entry, Exit times and Failure status

and the definition of the scales by:

Origin (when is time 0), Scale (units) and Cutpoints

(subdivisions)

TO the set of empirical rates (d, y)
each with all covariates attached to it:

(
(d, y), z

)
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Cohort studies — medical demography

• Long follow up time. Constant rates not applicable.

• Several timescales are of interest:

– Current age.

– Time on study.

– Time since exposure inception / cessation.

– Cumulative exposure.

– Calendar time.

• Delayed entry times due to data collection.

Example: Welsh Nickel Refinery study:
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R. Doll, L.G. Morgan & F.E. Speizer:

Cancers of the lung and nasal sinuses in nickel workers.

Br.J.Cancer, 24, 1970:

“Men employed in a nickel refinery in South Wales were

investigated to determine whether the risk of developing

carcinoma of the bronchi and nasal sinuses, which had been

associated with the refining of nickel, are still present.

The data obtained were also used to compare the effect of

age at exposure on susceptibility to cancer induction and to

determine the rate of change of mortality after exposure to a

carcinogenic agent has ceased”
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Welsh nickel refinery workers

Data in Stata:

. list in 1/6, nodis

id icd expos dob doe dox do1st
3 0 5 1889.019 1934.246 1982 1906.5
4 162 5 1885.978 1934.246 1949.249 1909.164
6 163 10 1881.255 1934.246 1935.419 1906.5
8 527 9 1886.34 1934.246 1956.019 1911.06
9 150 0 1879.5 1934.246 1956.344 1909.458
10 163 2 1889.915 1934.246 1952.456 1911.203

Follow-up started 1 Apr 1934 for all persons.
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id icd expos dob doe dox do1st
3 0 5 1889.019 1934.246 1982 1906.5
4 162 5 1885.978 1934.246 1949.249 1909.164

• Person no. 3, born 7 Jan 1889, and hired 3 Jul 1906 (when

aged 17.48 years), he was 45.22 years at start of follow-up.

He ceased to be at risk 31 Dec 1981, when he was 92.98

years old and still alive (icd=0).

• Person no. 4, born 23 Dec 1885, and hired 1 Mar 1909

(when aged 23.19 years), he was 45.27 years at start of

follow-up. He ceased to be at risk 1 Apr 1949, when he

was 63.27 years old, because he died from lungcancer

(icd=162).
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Follow-up starts at 1 Apr 1934.

Some of the variables are constant throughout follow-up (e.g.

sex), some vary deterministically (e.g. age and date) others

require active registration to determine the values at a point

in time.

In the Welsh nickel refinery the manufacturing process was

changed in 1925, and relevant exposure is considered absent

after this date. Cumulative exposure (expos) is therefore

constant after 1925, and hence also throughout the follow-up.
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Follow-up for 6 persons: Lexis diagram
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Red is time of

exposure,

black is the follow-up.

Persons died before 1

Apr 1934 are not

included in the study.
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Time scale exercise

• Name timescales that may be used in this study.

• List relevant covariates.

• Which covariates are constant and which vary with the

follow-up of the individuals?
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Cumulative exposure

Time in a job

Cumulative radiation dose

Cumulative no. cigarettes

Time employed in nickel refinery:

• Does not necessarily increase all the time.

• Does not increase in the same way for all individuals.
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Cohort with 3 persons:

Id Bdate Entry eXit St
1 14/07/52 04/08/65 27/06/97 1
2 01/04/54 08/09/72 23/05/95 0
3 10/06/87 23/12/91 24/07/98 1

• Define strata: 10-years intervals of current age.

• Split Y for every subject accordingly

• Treat each segment as a separate unit of observation.

• Keep track of exit status in each interval.

Staff course, CEBU Cohort studies and multiple timescales 14



Splitting the follow up

subj. 1 subj. 2 subj. 3

Age at Entry: 13.06 18.44 4.54
Age at eXit: 44.95 41.14 11.12

Status at exit: Dead Alive Dead

Y 31.89 22.70 6.58
D 1 0 1
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subj. 1 subj. 2 subj. 3
∑

Age Y D Y D Y D Y D

0– 0.00 0 0.00 0 5.46 0 5.46 0
10– 6.94 0 1.56 0 1.12 1 8.62 1
20– 10.00 0 10.00 0 0.00 0 20.00 0
30– 10.00 0 10.00 0 0.00 0 20.00 0
40– 4.95 1 1.14 0 0.00 0 6.09 1

∑
31.89 1 22.70 0 6.58 1 60.17 2
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Software for splitting the records

R: The function Lexis by David Clayton.

Stata: The function stsplit.
Originally written by David Clayton & Michael Hills, under

the name stlexis.

SAS: The macro %Lexis by Bendix Carstensen

R-function and SAS-macro, as well as example programs

xLexis.xxx, xxx ∈ {sas, R, do} are available at

http://www.biostat.ku.dk/~bxc/Lexis.
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Splitting the follow-up with R:

Split by 10-year calendar time and 5-year age bands:

> source( "Lexis.R" )
...
> xcoh
id birth entry exit fail bt ent ex

1 A 14/07/1952 04/08/1965 27/06/1997 1 1952.531 1965.588 1997.484
2 B 01/04/1954 08/09/1972 23/05/1995 0 1954.245 1972.685 1995.387
3 C 10/06/1987 23/12/1991 24/07/1998 1 1987.436 1991.973 1998.557
> x2 <-
+ Lexis( entry = ent,
+ exit = ex,
+ fail = fail,
+ scale = 1,
+ origin = list( per=0, age=bt ),
+ breaks = list( per=seq(1900,2000,10), age=seq(0,80,5) ),
+ include = list( bt, en, ex, id ),
+ data = xcoh )
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> x2
Expand Entry Exit Fail per age bt en ex id

1 1 1965.588 1967.531 0 1960 10 1952.531 1965.588 1997.484 A
2 1 1967.531 1970.000 0 1960 15 1952.531 1965.588 1997.484 A
3 1 1970.000 1972.531 0 1970 15 1952.531 1965.588 1997.484 A
4 1 1972.531 1977.531 0 1970 20 1952.531 1965.588 1997.484 A
5 1 1977.531 1980.000 0 1970 25 1952.531 1965.588 1997.484 A
6 1 1980.000 1982.531 0 1980 25 1952.531 1965.588 1997.484 A
7 1 1982.531 1987.531 0 1980 30 1952.531 1965.588 1997.484 A
8 1 1987.531 1990.000 0 1980 35 1952.531 1965.588 1997.484 A
9 1 1990.000 1992.531 0 1990 35 1952.531 1965.588 1997.484 A
10 1 1992.531 1997.484 1 1990 40 1952.531 1965.588 1997.484 A
11 2 1972.685 1974.245 0 1970 15 1954.245 1972.685 1995.387 B
12 2 1974.245 1979.245 0 1970 20 1954.245 1972.685 1995.387 B
13 2 1979.245 1980.000 0 1970 25 1954.245 1972.685 1995.387 B
14 2 1980.000 1984.245 0 1980 25 1954.245 1972.685 1995.387 B
15 2 1984.245 1989.245 0 1980 30 1954.245 1972.685 1995.387 B
16 2 1989.245 1990.000 0 1980 35 1954.245 1972.685 1995.387 B
17 2 1990.000 1994.245 0 1990 35 1954.245 1972.685 1995.387 B
18 2 1994.245 1995.387 0 1990 40 1954.245 1972.685 1995.387 B
19 3 1991.973 1992.436 0 1990 0 1987.436 1991.973 1998.557 C
20 3 1992.436 1997.436 0 1990 5 1987.436 1991.973 1998.557 C
21 3 1997.436 1998.557 1 1990 10 1987.436 1991.973 1998.557 C
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Splitting the follow-up with Stata:

Split by 10 year calendar time and 5-year age-bands:

. stset ex,
fail( fail )
entry( ent )
origin( time d(01jan1900) )
scale( 365.25 )

id( id )
. stsplit per, at( 0(10)100 )
. stsplit age, after( bth ) at( 0(5)90 )

id bth ent ex age per _t0 _t _d
A 14jul1952 04aug1965 14jul1967 10 60 65.588 67.531 0
A 14jul1952 04aug1965 01jan1970 15 60 67.531 70.000 0
A 14jul1952 04aug1965 14jul1972 15 70 70.000 72.531 0
A 14jul1952 04aug1965 14jul1977 20 70 72.531 77.531 0
A 14jul1952 04aug1965 02jan1980 25 70 77.531 80.000 0
A 14jul1952 04aug1965 14jul1982 25 80 80.000 82.531 0
A 14jul1952 04aug1965 14jul1987 30 80 82.531 87.531 0
A 14jul1952 04aug1965 01jan1990 35 80 87.531 90.000 0
A 14jul1952 04aug1965 14jul1992 35 90 90.000 92.531 0
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A 14jul1952 04aug1965 27jun1997 40 90 92.531 97.484 1
B 01apr1954 08sep1972 01apr1974 15 70 72.684 74.245 0
B 01apr1954 08sep1972 01apr1979 20 70 74.245 79.245 0
B 01apr1954 08sep1972 02jan1980 25 70 79.245 80.000 0
B 01apr1954 08sep1972 31mar1984 25 80 80.000 84.245 0
B 01apr1954 08sep1972 31mar1989 30 80 84.245 89.245 0
B 01apr1954 08sep1972 01jan1990 35 80 89.245 90.000 0
B 01apr1954 08sep1972 01apr1994 35 90 90.000 94.245 0
B 01apr1954 08sep1972 23may1995 40 90 94.245 95.387 0
C 10jun1987 23dec1991 09jun1992 0 90 91.973 92.436 0
C 10jun1987 23dec1991 09jun1997 5 90 92.436 97.436 0
C 10jun1987 23dec1991 24jul1998 10 90 97.436 98.557 1
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Analysis of the Nickel refinery study
. use ../data/nickel, clear
. stset dox, entry(doe) origin(time 0) fail(icd==162,163) id(id)

id: id
failure event: icd == 162 163

obs. time interval: (dox[_n-1], dox]
enter on or after: time doe
exit on or before: failure
------------------------------------------------------------------------------

679 total obs.
0 exclusions

------------------------------------------------------------------------------
679 obs. remaining, representing
679 subjects
137 failures in single failure-per-subject data

15348.06 total analysis time at risk, at risk from t = 0
earliest observed entry t = 1934.246

last observed exit t = 1982.912

. stsplit date, at(1900(5)2000)
(3327 observations (episodes) created)

. stsplit age, after(dob) at(0(5)90)
(3094 observations (episodes) created)
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. list id dob doe dox date age _t0 _t _d in 1/20, nodis
id dob doe dox date age _t0 _t _d
3 1889.019 1934.246 1935 1930 45 1934.246 1935.000 0
3 1889.019 1934.246 1939.019 1935 45 1935.000 1939.019 0
3 1889.019 1934.246 1940 1935 50 1939.019 1940.000 0
3 1889.019 1934.246 1944.019 1940 50 1940.000 1944.019 0
3 1889.019 1934.246 1945 1940 55 1944.019 1945.000 0
3 1889.019 1934.246 1949.019 1945 55 1945.000 1949.019 0
3 1889.019 1934.246 1950 1945 60 1949.019 1950.000 0
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. gen Y = _t-_t0

. gen a1 = ( age - 60 )

. gen a2 = ( age - 60 )^2

. gen d1 = ( date - 1960 )

. gen d2 = ( date - 1960 )^2

. glm _d a1 a2 d1 d2 expos, family(poisson) lnoffset(Y)

Generalized linear models No. of obs = 7100
Optimization : ML: Newton-Raphson Residual df = 7094
-------------------------------------------------------------------

_d | Coef. Std. Err. z P>|z| [95% Cf. Interval]
-------+-----------------------------------------------------------

a1 | .0108726 .0127122 0.86 0.392 -.0140428 .0357881
a2 | -.0027659 .0008146 -3.40 0.001 -.0043625 -.0011694
d1 | -.011218 .0171422 -0.65 0.513 -.044816 .0223801
d2 | -.0014201 .0007319 -1.94 0.052 -.0028546 .0000144

expos | .0928812 .0205795 4.51 0.000 .0525461 .1332164
_cons | -4.383049 .1506798 -29.09 0.000 -4.678376 -4.087722

Y | (exposure)
-------------------------------------------------------------------

What is the meaning of _cons -4.383049?
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Can any of the parameters be removed from the model?
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Time since entry

Implicit assumption in cohort studies:

All covariates are known at any point of follow up.

The precise history of the person is assumed known at any

one timepoint.

In practise many covariates are only measured at entry, for

example smoking status.

In analysis these are assumed constant throughout follow-up.
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The quality of the used covariate (=the entry value) declines

with time since follow-up:

Accuracy in covariates decrease by time since entry.

If time since entry is not in a model, follow-up with different

quality of data is pooled.
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Cohorts where all are exposed

Do mortality rates in cohort differ from those of an external
population?

• Occupational cohorts

• Patient cohorts

Compared with reference rates obtained from:

• Population statistics (mortality rates)

• Disease registers (hospital discharges, cancer)
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Accounting for age composition

• Compare rates in a study group with a standard set of

age–specific rates

• Reference rates are normally based on large numbers of

cases, so they can be assumed to be known

• Calculate “expected” number of cases, E, if the standard

rates had applied in our study group, and compare this

with the observed number of cases, D

SMR = D/E s.e.(log[SMR]) = 1/
√

D
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Statistical model for SMR

The rate in the cohort is assumed to be proportional to the

rates in the population:

λcoh(t) = θλpop(t)

The time t is normally the combination of

current age, calendar time and sex.

The population rates are assumed known without error

classified by age, calendar time and sex.

θ is the Rate-Ratio between the cohort and the general

population.
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Likelihood for SMR

For empirical rates (d, y) the log-likelihood is:

d log(λcoh)−λcohy = d log(θλpop)−θλpopy = d log(θ)−θ(λpopy)

omitting d log(λpop) which does not depend on θ.

This is the likelihood for a theoretical rate θ, based on an

empirical rate (d, λpopy).

Thus under the assumption that θ is constant the maximum

likelihood estimate is:

θ̂ =
D

λpopY
=

Observed

Expected
= SMR
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SMR is the maximum likelihood estimator of the mortality

rate ratio between the cohort and the population.
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Expected numbers in practice

• From the file with expanded follow-up data:

– y — The risk time in the record

– age class — The ageclass of the record

– period — The period of the record

– sex — The sex of the record

• From the file with reference rates:

– λR — The reference rate.

– age class — The ageclass of the population rate

– periode — The period of the population rate

– sex — The sex of the population rate
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• Population rates are matched up to the follow-up data, and

expected numbers are computed as:

e = λpop(a, p, s)× y

There are always two datasets in play with SMR:

1. The cohort dataset with follow-up information on a

number of individuals.

This is the dataset that must be split, to match with

2. The rate dataset with disease or death rates of a reference

population.

Staff course, CEBU Cohort studies and multiple timescales 35



SMR-calculations in Stata

1. Take a look at the population rate file. Determine the age

and period classes.

2. sort the population rates by age, period and sex.

3. clear memory and get the cohort data.

4. stset the cohort data and stsplit them by age and

period in classes as those of the available population rates.

5. sort the split data by age, period and sex (in the same

way as the file of population rate was sorted)
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6. merge the cohort data with the population rate file.

7. generate the number of expected cases by multiplying the

cohort risk time with the rates.

The final result is a (very small) number of expected cases

attached to every little piece of follow-up.

But when tabulated over the entire dataset it gives the

number of deaths one would have expected to see in the

cohort if it were subjected to population mortality rates.
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SMR-calculations in Stata
* Look at the population rate file and sort it
. use pop
. sort agr per sex
. save popsort

* Switch to cohort, split follow-up and sort it
. use cohort, clear
. stset exit, enter(entry) fail(st) id(id)

origin(bdate) scale(365.25)
. stsplit agr, at(0(5)90)
. stsplit per, after(time=d(01jan1900)) at(0(5)100)
. sort agr per sex

* Merge the two files together
. merge agr per sex using popsort

* Keep only records with data from both sources
. keep if _merge==3
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* Compute SMRs
. strate , smr(poprate)
. strate expos, smr(poprate)

* Generate expected numbers
. generate e_c = ( _t - _t0 ) * poprate

* Then we can do modelling
. glm _d expos sex, lnoffset( e_c )
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SMR-calculations in R
> Poprat <- read.dta( "../data/ewrates.dta" )
> Nickel <- read.dta( "../data/nickel.dta" )
>
> # Split time along two time-axes
> #
> Nsplit <-
+ Lexis( entry = doe, exit = dox, fail = (icd %in% c(162,163) ),
+ origin = list( year=0, age=dob ),
+ breaks = list( year=seq(1931,1981,5), age=seq(0,85,5) ),
+ include = list( expos ), data = Nickel )
> # Merge with the population rates
> #
> Nall <- merge( Nsplit, Poprat )
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> M1 <- glm( Fail ~ I(age-60) + I((age-60)^2) + I(year-1960) + I((year-1960)^2) +
+ expos + offset( log( (Exit-Entry)*lung/10^5 ) ),
+ family=poisson, eps=10^-8, data=Nall )
round( summary( M1 )$coef, 6 )

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.095333 0.152962 -7.160808 0.000000
I(age - 60) -0.026431 0.013639 -1.937944 0.052630
I((age - 60)^2) -0.000581 0.000857 -0.677683 0.497972
I(year - 1960) -0.048145 0.017156 -2.806348 0.005011
I((year - 1960)^2) -0.000050 0.000677 -0.074108 0.940925
expos 0.089864 0.020648 4.352281 0.000013

What is the meaning of: (Intercept) -1.095333 ?
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Relative survival rates

Well - Cancer

Cancer death

Other death

�
�

�
�

�
�

�
�

�
�

��3

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQs

λcancer

λother

What is the relative survival of cancer patients:

What is the the survival at t after the diagnosis, compared to

what it would have been without cancer diagnosis?
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Compare the survival for the group of cancer patients as it

would have been had they died according to population rates:

Compute the expected survival for each patient from

diagnosis and average these (on the probability scale).

This is the expected survival for this group of patients.

Divide the observed survival with the expected survival.

The observed survival will always be larger than the expected.
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Expected survival

Assuming λother(t) is not affected by cancer diagnosis, the

expected survival function is:

SE(t) = exp

(
−
∫ diagnosis+t

diagnosis

λother(u)du

)

The observed survival function is:

SObs(t) = exp

(
−
∫ diagnosis+t

diagnosis

λother(u) + λcancer(u)du

)
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The relative survival rate, RSR (which is a proportion!):

RSR(t) =
SObs(t)
SE(t)

= exp

(
−
∫ diagnosis+t

diagnosis

λcancer(u)du

)

So RSR is based on the concept:

“what if the non-cancer mortality were absent”.

If cause of death were easy to establish, we could just

estimate λcancer(t) and work it out.

For cancer patients the cause of death is not well recorded.

Staff course, CEBU Cohort studies and multiple timescales 46



Take λother to be the population mortality,

so the model becomes an additive hazards model for the

total mortality of cancer patients:

λ(t) = λpop + λcancer

The likelihood for an empirical rate is then:

`(λcancer) = d log(λpop + λcancer)− (λpop + λcancer)y

This corresponds to a likelihood for a Poisson variate with

mean (λpop + λcancer)y.

Possible to model the λcancer as a function of covariates, if we

can fit a Poisson model with identity link function.
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These are known as excess risk models, and there is large

literature on them. They are closely related to Aalen’s

additive hazards model.

Aalen O.O. (1989). A linear regression model for the analysis of

lifetimes. Statistics in medicine, 8, 907–925.

Aranda-Ordaz F.J. (1983). An extension of the proportional-hazards

model for grouped data. Biometrics, 39, 109–117

Ederer F., Axtell L.M. and Cutler S.J. (1961). The relative survival rate:

a statistical methodology. National Cancer Institute Monographs, 6,

101–121.

Hakulinen T. and Tenkanen L. (1987). Regression analysis of relative

survival rates. Applied Statistics, 36, 309–317.
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Survival analysis and medical demography

The Cox model

11 April 2003

Bendix Carstensen



Modelling the hazard

The Cox-model allows the rate to depend not only on time,

but also on covariates, as in regression analysis:

λi(t) = λ0(t) exp(β1x1i + β2x2i + · · · )

If a person has covariate values 0, i.e. x1i = x2i = · · · = 0,

then this persons hazard (mortality rate) is λ0(t).

The function λ0(t) is called the baseline hazard, and not

restricted to have any particular form. Hence the name

“semiprametric” for this type model.

Note that this is where a choice of timescale is needed.
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Components of the Cox-model

λi(t) = λ0(t) exp(β1x1i + β2x2i + · · · )
There are two components in a Cox-model:

1. The baseline hazard, λ0(t), a function of time. Hazard of a

person with all covariates=0.

2. The relative risk (rate ratio) function,

RR = exp(β1x1i + β2x2i + · · · ) = eηi

Usually summarized by the parameter estimates β1, β2, . . .

and their standard errors.
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Interpretation of the regression parameters

Two persons, A and B with covariate values

x1A, x2A, x3A, x1B, x2B, x3B, . . .

Hazard ratio between A and B:

λA(t)
λB(t)

=
λ0(t)RRA

λ0(t)RRB
=

RRA

RRB

= exp[(β1x1A + β2x2A + · · · )− (β1x1B + β2x2B + · · · )]
= exp[(β1(x1A − x1B) + β1(x1A − x1B) + · · · ]
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Thus the rate ratio, or hazard ratio is constant, independent

of time, i.e. the hazard rates for A and B are proportional.

Hence the name proportional hazards model.

If A and B have identical values for all covariates except x1,

the the rate ratio is:

RRA vs. B = exp[β1(x1A − x1B)]

Thus β1 is the log rate ratio per unit change in variable x1.
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Exercise on Cox regression coefficients

A Cox mode is fitted and the cofficient to the variable

holding the blood pressure in mmHg is:

β̂BP = 0.0357

What is the rate ratio associated with an increase of 1

mmHg?

What is the rate ratio associated with an increase of 10

mmHg?
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Exercise on Cox regression coefficients

Categorical covariates:

The variable sex is coded 1 for men and 0 for women.

A Cox mode is fitted and the cofficient to the variable is:

β̂sex = 0.712

What is the rate ratio between men and women?

What is the rate ratio between women and men?
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The baseline survival function

Recall the relation between the hazard λ(t) and the survival

function S(t):

S(t) = exp
(
−
∫ t

0
λ(s) ds

)
= exp (−Λ(t))

The quantity Λ(t) =
∫ t

0 λ(s) ds is the cumulative hazard.

An estimate of the cumulative baseline hazard, can be

transformed to an estimate of the baseline survival function,

i.e.

the expected survival for a person with all covariates = 0.
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Estimation of the baseline

The baseline is usually estimated using the Breslow-estimator

of the cumulative hazard:

Λ0(t) =
∑
j≤t

1∑
i∈Rj

eηi

Note that if ηj = 0 for all persons this is the Nelson-Aalen

estimator of the cumulative hazard.
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For a person with covariates x1i, x2i, . . . we have:

Λi(t) = Λ0(t) exp[β1x1i + β2x2i + · · · ]

Si(t) = exp[−Λi(t)]

= exp[−Λ0(t)RRi]

= S0(t)RRi

The survival function for a person is the baseline survival

raised to the power of RRi, the rate-ratio function.
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Baseline survival curve

If we get an estimate of the baseline survival function,

S0(t) = exp[−Λ0(t)] this will refer to a person with all

covariate values = 0.

This does not necessarily correspond to anything sensible.

Make sure that covariates are centered around sensible

values, in order to make the baseline meaningful.

If we instead of age use age-60, then a person with a 0
value of the covariate will be aged 60 and not 0.
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Estimation in Stata

As an example we use the Finnish colon cancer data, with

survival in months since diagnosis in survmm, exit status in

status (dead are coded 1 or 2), stage of disease in stage
and age at diagnosis in age.

As for the Kaplan-Meier analysis, the first thing to do is to
declare data as survival time data using stset:

. stset survmm, fail(status==1,2) scale(12)

The scale(12) transforms the survival time from months to

years.
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. stcox age

failure _d: status == 1 2
analysis time _t: survmm/12

No. of subjects = 14713 Number of obs = 14713
No. of failures = 10067
Time at risk = 57793.66667 LR chi2(1) = 1084.33
Log likelihood = -89480.384 Prob > chi2 = 0.0000
_t |
_d | Haz. Ratio z P>|z| [95% Conf. Interval]
----+-------------------------------------------------
age | 1.029548 31.47 0.000 1.027682 1.031416
------------------------------------------------------

The number 1.029 refers to the hazard ratio between two

persons that differ one year in age at diagnosis.
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The hazard ratio between two persons that differ 10 years in
age at diagnosis would be 1.02910 = 1.338. This can be
directly computed by Stata by rescaling age:

. gen a10 =age/10

. stcox a10
------------------------------------------------------------
_t |
_d | Haz. Ratio Std. Err. z P>|z| [95% Conf. Int.]
----+-------------------------------------------------------
a10 | 1.338025 .0123806 31.47 0.000 1.313978 1.362512
------------------------------------------------------------

Thus, for evey 10 years older colon cancer patients are, their

mortality increases by 34%.
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Estimation of the baseline hazard

The baseline survival function, S0(t) = exp[−Λ0(t)] refers to

a person with all covariate values = 0, but this does not

necessarily correspond to anything sensible.

Only if we center all variables around a sensible value; e.g.
recode age by:

. replace age = ( age - 60 ) / 10

This will make 60 the reference age and make the regression

coefficient refer to an age-difference of 10 years.
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Using the xi:-notation for generating dummy variables in

Stata, the corresponding baseline hazard will be the one for

the reference category.

The way to get the baseline survival and cumulative hazard
in Stata is:

. xi: stcox i.period i.stage, basech(L0) basesurv(S0)

this will create two new variables S0 and L0 that contains the

baseline survival and baseline cumulative hazard.

They can then be plotted against the survival time. The

scaled version of the survival time is in _t:
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graph S0 t, xlabel(0(5)25) ylabel(0(0.2)1)
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graph L0 t, xlabel(0(5)25) ylabel(0(0.2)1)
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Testing the assumption of proportionality

It is possible to relax the assumption about proportional

hazards, by making a stratified model:

λ(t, x) = λs(t)× RRx

Here we allow different baseline hazards for different levels of

s, but maintain that the effect of other covariates (x) is the

same across levels of s

This is in other regression models called an interaction
between time and the stratification variable.
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. xi: stcox i.period, strata(stage) basech(sL0)
basesurv(sS0) sch(sr*)

. stphtest

Test of proportional hazards assumption
Time: Time

| chi2 df Prob>chi2
------------+-------------------------------------
global test | 11.98 3 0.0075
--------------------------------------------------

The sch(sr*) saves a set of residuals (Schoenfeld residuals)

needed in order to make a test of the proportionality

assumption, which is tested by the command stphtest.

So the proportionality assumtion does not hold in this case.
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graph S0 t, xlabel(0(5)25) ylabel(0(0.2)1)

_t
0

5
10

15
20

25

0.2.4.6.81

Staff course, CEBU The Cox model 20



graph L0 t, xlabel(0(5)25) ylog
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The Cox-likelihood

Cox devised the partial likelihood for the parameters

β = (β1, . . . , βp) in the linear predictor

ηi = β1x1i + · · ·+ βpxpi:

`(β) =
∑

death times

log

(
eηdeath∑
i∈Rt

eηi

)

where Rt is the risk set at time t,

i.e. the set of individuals at risk at time t.
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The Cox-likelihood as profile likelihood

Regression parameters describing the effect of covariates

(other than the chosen underlying time scale).

One parameter per death time to describe the effect of time

(i.e. the chosen timescale).

log
(
λ(t, xi)

)
= log

(
λ0(t)

)
+ β1x1i + · · ·+ βpxpi = αt + ηi

Suppose the time-scale has been divided into small

timeintervals with at most one death in each.

Assume w.l.o.g. the y for these emiprical rates are 1.
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The log-likelihood contributions that contain information on

a specific time-scale parameter α, relating to time t say, will

be contributions from the empirical rate (1, 1) with the death

at time t, and all the empirical rates (0, 1) from all the other

individuals that were at risk at time t.

Note: There is one contribution from each person at risk to

this part of the log-likelihood:

`t(α, β) =
∑
i∈Rt

{
di(α + ηi)− eα+ηi

}
= α + ηdeath − eα

∑
i∈Rt

eηi

where ηdeath is the linear predictor for the person that died.
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The derivative w.r.t. α is:

Dα`(α, β) = 1− eα
∑
i∈Rt

eηi = 0 ⇔ eα =
1∑

i∈Rt
eηi

If this estimate is fed back into the log-likelihood for α, we

get the profile likelihood (with α “profiled out”):

log

(
1∑

i∈Rt
eηi

)
+ ηdeath − 1 = log

(
eηdeath∑
i∈Rt

eηi

)
− 1

which is the same as the contribution from time t to Cox’s

partial likelihood.
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Implications for modelling

The model set up could have been formulated as one where

there was a separate timescale parameter for each

time-interval.

For those intervals on the time-scale where no deaths occur

the estimate of the α will be −∞, and so these intervals will

not contribute to the log-likelihood.

The Cox-model can be estimated by standard

Poisson-regression-software by splitting the data finely and

specifying the model as having one rate parameter per time

interval. The results will be the same, also for the s.e..
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Example in Stata
. set matsize 150
. use ../data/ping-pong
(Written by R. )
. stset exit, entry(entry) id(id) fail(event)

id: id
failure event: event ~= 0 & event ~= .

obs. time interval: (exit[_n-1], exit]
enter on or after: time entry
exit on or before: failure

-------------------------------------------------------------------
60 total obs.
0 exclusions

-------------------------------------------------------------------
60 obs. remaining, representing
60 subjects
37 failures in single failure-per-subject data

2960 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 122
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. stcox ping pong, nohr
_d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

------+------------------------------------------------------------
ping | -.5161977 .3892 -1.33 0.185 -1.279016 .2466203
pong | -.6945726 .17471 -3.98 0.000 -1.036998 -.3521473
-------------------------------------------------------------------

. stsplit time, at(1(1)125)
(2741 observations (episodes) created)
. gen risk = _t-_t0
. xi: glm _d i.time ping pong, family(Poisson) lnoffset(risk)

_d | Coef. Std. Err. z P>|z| [95% Cf. Interval]
-----------+-------------------------------------------------------
_Itime_2 | -.9301846 12246.85 -0.00 1.000 -24004.32 24002.46
_Itime_3 | -.8332 11546.38 -0.00 1.000 -22631.31 22629.65
...

_Itime_121 | 18.37402 9999.272 0.00 0.999 -19579.84 19616.59
_Itime_122 | -1.098276 14141.62 -0.00 1.000 -27718.17 27715.97

ping | -.5161977 .3891999 -1.33 0.185 -1.279015 .2466201
pong | -.6945726 .17471 -3.98 0.000 -1.036998 -.3521474
_cons | -18.40874 9999.272 -0.00 0.999 -19616.62 19579.8
risk | (exposure)

-------------------------------------------------------------------
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Example in R

Artificial data ping-pong.dta

> library( survival )
> library( splines )
> ds <- read.dta( file="../data/ping-pong.dta" )
> dx <- Lexis( entry=entry, exit=exit, fail=event,
+ breaks=sort( unique( c( ds$entry, ds$exit ) ) ),
+ data=ds, include=list( id, ping, pong ) )
> c.res <- coxph( Surv( entry, exit, event ) ~ ping + pong, data=ds,
+ method="breslow", eps=10^-8, iter.max=25 )
> p.res <- glm( Fail ~ factor( Time ) - 1 + ping + pong +

offset( log(Exit-Entry) ),
+ family=poisson, data=dx,
+ eps=10^-8, maxit=25 )
> s.res <- glm( Fail ~ bs( Time, df=5 ) + ping + pong + offset( log(Exit-Entry) ),
+ family=poisson, data=dx,
+ eps=10^-8, maxit=25 ) )
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> cr <- ci.lin( c.res )[,1:2]
> pr <- ci.lin( p.res, subset=length( coef( p.res ) )-1:0 )[,1:2]
> sr <- ci.lin( s.res, subset=length( coef( s.res ) )-1:0 )[,1:2]
> all <- cbind(
+ rbind( cr[1,], pr[1,], sr[1,], (cr/pr)[1,], (cr/sr)[1,] ),
+ rbind( cr[2,], pr[2,], sr[2,], (cr/pr)[2,], (cr/sr)[2,] ) )
> rownames( all ) <- c("Cox","Poisson","Spline","C/P","C/S")
> colnames( all ) <- paste( rep( rownames( pr ), rep( 2, 2 ) ),
+ rep( c("Est","SE"), 2 ) )
> print( round( all, 5 ) )

ping Est ping SE pong Est pong SE
Cox -0.51620 0.38920 -0.69457 0.17471
Poisson -0.51620 0.38920 -0.69457 0.17471
Spline -0.47706 0.38693 -0.65151 0.16702
C/P 1.00000 1.00000 1.00000 1.00000
C/S 1.08203 1.00587 1.06610 1.04601
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Summary of methods

• Likelihood is a product of contributions from single

empirical rates (d, y), each represneting the data from a

small interval of follow-up.

• The correspondng data-layout requires split of follow-up for

each person.

• Modelling is specification of sensible (interpretable,

practical) parametric models for covariates associated with

each empirical rate.
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• The effect of timescales should not in principle be more

complicated to model that that of e.g. blood pressure or

height.

• Time lends itself to detailed modelling because of the

structure of the likelihood function as a product at separate

terms for each time.

This is not the case for any other covariate. But it does

not necessarily make the exploitation of the fact sensible let

alone desirable in practical biostatistics.
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Practical comparison of Cox and Poisson

Simulate 300 datasets of 200 persons, followed for 10 years

with a baseline hazard which constant or neither constant nor

monotone, and two covariates ping and pong with relative

risks of 4 and 0.25, respectively.

For each dataset split data in 20 intervals over the follow-up

time and fit:

• Cox-model (to the original 300 obs dataset)

• Poisson model with a 5-parameter parametric basline.

• Poisson model assuming constant baseline.
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Conslusion

• Cox-model and Poisson model gives the same results.

• Even with very few parameters to accomodate the time

effect.

• Modelling of the effect of time must be proper.
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Types of estimates: Survival function

The Cox-model allows estimation of a survival function for a

person with a given set of covariates.

Confidence intervals well described.

Usually calculated as c.i. for

Λ(t) = − log(S(t))

or

log(Λ(t)) = log(− log(S(t)))
and then backtransformed.
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With a parametric model we estimate log(λ(t)) as a linear

function of parameters.

Hence we can estimate λ(t) and the cumulative sum

(integral), as e.g.:

Λ̂(t) =
∑

exp(α̂t)× l

where αt is the constant log-rate in an interval around t.

But standard errors of Λ in this formulation is a major

headache...
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The underlying rate

A large litterature is concerned with smoothing

survival/cumulative hazards in order to produce estimates of

the underlying hazard function.

This is like crossing the river to water the horses.

The underlying hazard is best estimated directly by a

parametric model jointly with the relative risks associated

with covariates.
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Example of baseline problems
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Why are the two survival estimates so different?
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Which model

• Cox-model:

– Survival function estimates desired. (No late entries).

– One well-defined (major) time scale.

– Religiously founded obsession with overparametrization.

• Poisson-model:

– Hazard function estimates desired.

– Any number of time scales.

– Sound judgement of parametrization.
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Survival function for whom?

Estimating a survival function from a Cox-model requires a

specification of a set of covariates:

• Stata: All set to 0.

• R/ Splus: The population mean of parameters.

• SAS: The population mean of parameters.

All choices may be problematic.
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Relative survival revisited

Compute the expected survival for each patient from

diagnosis and average these (on the probability scale).

This is the expected survival for this group of patients:

1
n

∑
i

Sipop(t) =
1
n

∑
i

exp(−Λipop(t))

Observed survival:

1
n

∑
i

Ŝi(t) =
1
n

∑
i

exp(−Λ̂i(t))
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Relative survival

The classical relative survival does:

RSR =
1
n

∑
i exp(−Λ̂i(t))

1
n

∑
i exp(−Λipop(t))

The excess risk modelling does:

exp(−1
n

∑
i Λ̂i(t))

exp(−1
n

∑
i Λipop(t))

Not the same thing. But the modelling possibilities in the

latter may be preferable.
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Incidence rates of IDDM in Denmark
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Incidence rates of IDDM in Denmark
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Incidence rates of IDDM in Denmark
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Lexis diagram 1

Calendar time

A
ge

1940 1950 1960 1970 1980
0

10

20

30

40 Disease registers

record events.

Official statistics

collect population

data.

1 Named after the German statistician
and economist William Lexis
(1837–1914), who devised this diagram in
the book “Einleitung in die Theorie der
Bevölkerungsstatistik” (Karl J. Trübner,
Strassburg, 1875).
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Register data

Classification of cases (Dap) by age at diagnosis and date of

diagnosis, and population (Yap) by age at risk and date at

risk, in compartments of the Lexis diagram, e.g.:

Seminoma cases Person-years
Age 1943 1948 1953 1958 1943 1948 1953 1958
15 2 3 4 1 773812 744217 794123 972853
20 7 7 17 8 813022 744706 721810 770859
25 28 23 26 35 790501 781827 722968 698612
30 28 43 49 51 799293 774542 769298 711596
35 36 42 39 44 769356 782893 760213 760452
40 24 32 46 53 694073 754322 768471 749912
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Register data - rates

Thus we have access to rates in “tiles” of the Lexis daigram:

λ(a, p) = Dap/Yap

Descriptive epidemiology based on disease registers:

How do the rates vary across by age and time:

• Age-specific rates for a given period.

• Age-standardized rates as a function of calendar time.

(Weighted averages of the age-specific rates).
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Synthetic cohorts
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Disease rates in a Lexis diagram

Three variables (factors) involved:

• Age at diagnosis, A (Age) — Current age.

• Date of diagnosis, P (Period) — Current date.

• Date of birth, C (Cohort)

c = p− a produce an identifiability / parametrization

problem.
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APC-models based on factors from tables.

A multiplicative model for rates has the same likelihood as a

Poisson model for the mean of disease counts Dap:

log[E(Dap)] = log(Yap) + αa + βp + γc

The linear relationship between A, P and C induce a linear

constraint, so the model has dimension:

1 + (A− 1) + (P − 1) + (C − 1)− 1 = A + P + C − 3

C = A + P − 1, so the dimension is 2(A + P )− 4.
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Factor modelling

Only second order differences (curvature) are identifiable:

αa − 2αa+1 + αa+2

In the APC-factor model there are

(A− 2) + (P − 2) + (C − 2)

such invariants, leaving 3 dimensions unaccounted for.
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Parametrizing by curvature

Age factor, parametrized by invariants:

age contrast matrix linear predictor

1
2
3
4
5

µ δ ζ2 ζ3 ζ4

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 2 1 0
1 4 3 2 1

η1 = µ
η2 = µ + 1δ
η3 = µ + 2δ + 1ζ2
η4 = µ + 3δ + 2ζ2 + 1ζ3
η5 = µ + 4δ + 3ζ2 + 2ζ3 + 1ζ4

=⇒ η3 − 2η4 + η5 = ζ5, etc.
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Digression: Linear splines

Linear regression with a piecewise linar function. If the curve

breaks at “knots” k1 and k2, say, use covariates:

x max(0, x− k1) max(0, x− k2)

x max(0,x-2.5) max(0,x-6.0)
1.0 0.0 0.0
2.0 0.0 0.0
3.0 0.5 0.0
4.0 1.5 0.0
5.0 2.5 0.0
6.0 3.5 0.0
7.0 4.5 1.0
8.0 5.5 2.0
9.0 6.5 3.0

10.0 7.5 4.0
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Linear splines and 2nd order differences

age contrast matrix linear predictor

1
2
3
4
5

µ δ ζ2 ζ3 ζ4

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 2 1 0
1 4 3 2 1

η1 = µ
η2 = µ + 1δ
η3 = µ + 2δ + 1ζ2
η4 = µ + 3δ + 2ζ2 + 1ζ3
η5 = µ + 4δ + 3ζ2 + 2ζ3 + 1ζ4

This is just a design matrix for linear splines, with knots at

the middle of the tabulation intervals.
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Modelling

Common approach:

One parameter per age / period / cohort.

Only feasible with coarse tables (many cases per cell).

Alternative: fine tabulation, e.g. 1-year classes, with the

model describing rates as a “smooth” function of

mean age (a),

mean date of diagnosis (p) and

mean date of birth (c).

No need to tabulate only by age and period in equidistant

classes. Any subdivision of the Lexis diagram will work.
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APC-model in general

A model describing incidence rates by three functions:

log(λap) = f(a) + g(p) + h(c)

= [f(a) + δa] +

[g(p)− δp] +

[h(c) + δc]

Any function of the form f(a) + δa can be used for

age-effect, and still give the same model.

The linear component of f , g and h cannot be determined.
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Data and the model

An APC-model describes how rates vary by age, period and

cohort.

The description cannot be more detailed than data.

A fine tabulation of data (cases and population) will still

allow a rather coarse model. (=few parameters), but not vice

versa.

The amount of data (no. of cases) should guide the number

of parameters, but not the tabulation. And the number of

tabulation intervals should not guide the number of

parameters.
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The common tabulation curse

Much confusion has arisen from the tight marriage between

tabulation and modelling — one parameter per interval.

On top of this age classes has traditionally been numbered

a = 1, . . . , A, periods p = 1, . . . , P and cohorts c = 1, . . . , C,

causing funny relations like c = p− a + A.

Better to label classes by means of age, period and cohort.
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Information in factor level parametrization.

Age class information vary by the disease rate variation by

age (usually a lot).

Period classes are usually quite balanced in size.

Cohort classes vary both by age-variation in disease rates

and by the sampling frame for the data. The youngest and

the oldest cohort are only represented by one cell each.

Not reasonable to parametrise by factor levels: knots for

linear splines are put in places whith little information.
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Tabulation of Seminomas of testis in Denmark

Calendar time

A
ge

1943 1953 1963 1973 1983 1993
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●

●

Tabulation by

age, period and

date of birth in

1-year classes.

5400 cells.

4461 cases.
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Population risk time in triangles
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Average age, period and cohort in triangles

EA(a) =
∫ p=1

p=0

∫ a=1

a=p

2a da dp =
∫ p=1

p=0
1− p2 dp = 2

3

EA(p) =
∫ a=1

a=0

∫ p=a

p=0
2p dp da =

∫ a=1

a=0
a2 dp = 1

3

EA(c) = 1
3 −

2
3 = −1

3
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Correct coding of age, period and cohort
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3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

19792
3

19801
3

19802
3

19811
3

19812
3

19821
3

19822
3

19831
3

19832
3

19841
3

19821
3

19822
3

19831
3

19832
3

19841
3

19842
3

1
3

2
3

11
3

12
3

21
3

22
3

If tabulation is in

triangles, use:

– mean age,

– mean date of

diagnosis

– mean date of

birth.

Using the class midpoints

give an erroneous model, see

e.g. Clayton & Schifflers.
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Factor modelling for triangles

Tabulation by triangles of the Lexis diagram gives 2A

different age-means, 2P different period means and 2C − 2
cohort means.

Setting up a model with these as factor actually results in a

likelihood which is a product two likelihoods:

One for the upper triangles and one for the lower. Impossible

to report.
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Suggestion by Holford

We can write the model:

f(a) + g(p) + h(c) = f̃(a) + µ̂a + δ̂aa+
h̃(c) + µ̂c + δ̂cc+
g̃(p) + µ̂p + δ̂pp

i.e. extract any linear function from f , h and g.

Holfords point was to let f(a) = αa and µ̂a, δ̂a be the

regression of αa on a; similarly for p and c.

That is, extract the linear trends. But not very helpful in

describing the rates.
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Putting things back together

1. Intercept (which carries the rate-dimension) plus the

age-terms, with reference to a specific cohort, c0.

Age-specific incidence rates in cohort c0.

2. Linear effect of cohort (or period).

Usually termed “drift”.

3. Non-linear effect of cohort.

4. Non-linear effect of period.
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f(a) + g(p) + h(c) = f̃(a) + µ̂a + δ̂aa+
h̃(c) + µ̂c + δ̂cc+
g̃(p) + µ̂p + δ̂pp

Put them back together in different order:

Age: f̃(a) + µ̂a + µ̂c + µ̂p + (δ̂a + δ̂p)a + (δ̂c + δ̂p)c0

Drift: (δ̂c + δ̂p)(c− c0)
Cohort: h̃(c)
Period: g̃(p)

But no confidence intervals available (the parametrization is

data-driven), and a hazzle to program.
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A practical suggestion

The primary time scale in any descripive epidemiological

study based on a disease register is age: Age-specific rates.

The second substantial question asked is what the time trend

is. Addressed by fitting an age-drift-model:

log(λap) = f(a) + δ(c− c0) c = p− a

with f(a) chosen as a linear spline function.

f(a) is the age-specific incidence rates in the c0 birth cohort.

δ is the “average annual change in disease rates”.
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Non-linear cohort effect

The non-linear (identifiable) effects of cohort, h, can be

estimated as residuals:

log(λap) = f̂(a) + δ̂(c− c0) + h(c)

Fitted by taking log(Y ) + f̂(a) + δ̂(c− c0)
(link(fitted values)) as offset in a model for h(c).

Not maximum likelihood, but cohort effects conditional on

estimated age-effect and drift.

Same procedure for the period variable.

Gives standard errors (albeit conditional).
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How to in R

Assume spl is a function that generates a spline basis for a

variable:

m.drift <- glm( D ~ spl(A) + I(C-c0) + offset(log(Y)),
family=poisson )

m.coh <- glm( D ~ spl(C) + offset(log(fitted(m.drift))),
family=poisson )

m.per <- glm( D ~ spl(P) + offset(log(fitted(m.coh))),
family=poisson )

The rest is plotting of the estimates from these models.
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Maximum likelihood vs. conditional residuals
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Maximum likelihood estimates where period and cohort

effects constrained to be flat on average.
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Maximum likelihood vs. conditional residuals
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Maximum likelihood vs. conditional residuals
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Parametrization recommendation:

• Tabulate data as finely as possible.

• Use parametric models for age, period and cohort effects.

Splines are simple to implement in standard software. But,

anything goes (C. Porter).

• Use an epidemiologically sensible sequence:

– Age, drift

– Cohort | age, drift

– Period | age, drift, cohort

• Optionally, include drift in the cohort term.
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Age-period-cohort models: Summary

There is a huge, largely confusing litterature on this.

Confusion mainly from the failure to recognize the inherently

continuous nature of the problem — inference in the Lexis

diagram.

Separate the modelling from the tabulation of data:

Tabulate data as finely as possible. Then model.

Reporting only possible with assumptions (decisions!) about

which timescale is the more relevant.

A discussion in more depth with the central references is in:

www.biostat.ku.dk/~bxc/Lexis/Lexis.pdf
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Survival analysis and medical demography

Interval Censoring

8 May 2003

Bendix Carstensen



Panel studies

A panel study is one where a set of people (the panel) is

examined for some condition at specific points in time.

If it is an asymptomatic condition only detected by a test,

the we only know that the person has acquired it between

two testing times.

If data are complete we put:

P {Event in interval i} = pi

So the likelihood is a simple binomial likelihood for

observations for each interval.
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Assumptions

• Condition asymptomatic.

• Condition irreversible.

• Everyone is on the same timescale, calendar time.

Other timesacales can be accomodated by introducing

covariates in a logistic regression model for the pis.

• Everyone appears every time.

If people fail to show up, there will be likelihood problems.
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Panel study example

-

Survival probabilities

p1 p2 p3

Likelihood
contribution

i i i y p1p2(1− p3)

i i y p1(1− p2)

i i y p1(1− p2p3)

i i y p1p2(1− p3)

i i i i p1p2p3
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Peto’s approach

The likelihood terms of the form pi, ad (1− pi) are just usual

binomial likelihood terms.

The not-so-nice terms, (1− pipi+1), appear whenever a

positive test appears after a missed visit.

Peto [?] essentially proposed just to maximize this resulting

likelihood by standard methods for function optimization.

If the number of intervals is fairly small, this is feasible.
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Becker’s approach

Becker [?] instead parametrized by the cumulative hazards

over the intervals:

pi = exp(−Λi) ⇔ Λi = log(pi)

The likelihood would then be made up of terms of the form:

exp(−Λi), 1− exp(−Λi), 1− exp
(
−(Λi + Λi+1)

)
These are just terms from a binomial likelihood for a model

with log-link.
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Becker’s implementation

The likelihood contribution from person p will be the same as

a likelihood from one or two Bernoulli trials, yp, with success

probability exp(−
∑

Λi) = exp(η), η =
∑

βixpi:

• Intervals survived: yp = 1, xpi = −1 for intervals survived.

• Intervals with event: yp = 0, xpi = −1 for intervals since

last seen disease-free:

1− exp(β2x2 + β3x3) = 1− exp(−β2) exp(−β3) = 1− p2p3

Generalized linear model: binomial error and log-link.
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Interval censoring in general

Turnbull [?] gives an estimator for any pattern in the interval

censoring, not just the panel study situation.

Estimator in the Kaplan-Meier / Nelson-Aalen tradition:

Essentially one parameter per distinct observation time.

Not easy to implement, let alone extend with covariates.
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Becker’s approach again

The likelihood that Becker set up was with the cumulative

hazards over an interval as parameters.

If we instead assume that hazards are constant in each

interval, we can estimate the hazards directly by replacing

xi by xili

where li is the length of interval i.

Parametrization by Λi = λili or λi is just covariate scaling.

Makes more general parametric models for interval censored

data possible.
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The general formulation

Time of event is only known to be in an interval (tw, td) —

the person is last seen well at tw and diseased at td.

Thus for person p we have three time-points:

tpe — time of entry

tpw — time last seen well

tpd — time first seen diseased

Typical of asymptomatic conditions like carrier status where

persons are tested at regular intervals.
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Likelihood with constant rate

If the rate is constant, λ, the likelihood-contribution for

person p is:

P {no event from tpe to tpw }×
(1− P {no event from tpw to tpd| no event till tpw}) =
exp(−λ(tpw − tpe))× {1− exp(−λ(tpd − tpw))}

Binomial likelihood with p = exp(λx) for two observations:

y x
1 −(tpw − tpe)
0 −(tpd − tpw)
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Likelihood for piecewise constant rates

If the rates are assumed constant in intervals, the likelihood

from an interval where event for person p has occurred is:

1− exp
(
−
∫

λp(s)ds

)
= 1− exp

(∑
λixpi

)
where xpi is minus the length of the part of interval i where

the event may have occurred.

Lifting the assumtion about simultaneous testing takes the

problem out of the panel-study setup, and allows any relevant

time scale to be used.
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Coding setup for intensity covariates

-

Intensities

λ1 λ2 λ3

Variables

p ypj x1pj x2pj x3pj

i y︸ ︷︷ ︸
s11

︸ ︷︷ ︸
s12

︸︷︷︸
r12

︸ ︷︷ ︸
r13

{
1
1

1
0
−s11

0
−s12

−r12

0
−r13

i︸ ︷︷ ︸
s21

︸ ︷︷ ︸
s22

︸ ︷︷ ︸
s23

2 1 −s21 −s22 −s23

i y︸ ︷︷ ︸
r31

︸︷︷︸
r32

3 0 −r31 −r32 0
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Model vs. likelihood

The likelihood derived is like a binomial likelihood.

But the model is not a binomial model; hence the s.e.s will

be wrong if the program used computes the expected rather

than the observed information.

The normal approximation to the distribution of estimates in

this model is likely to be dubious. Intervals based on profile

likelihood would probably be preferable.
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Regression models

Two identical papers by Farrington [?] and Carstensen [?].

The structure of the likelihood induces a model which is

additive on the intensity scale.

The simplest regression model is the (additive) excess risk

model:

λi(z) = λi(0) +
∑

k

βkzk.

where the zs are covariates for each person.
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Replace the terms λi in the likelihood for the simple case by

the terms λi +
∑

k βkzk:

exp

(∑
i

λixpi

)
= exp

(∑
i

(
λi +

∑
k

βkzk

)
xpi

)
i.e. a binomial likelihood with success probability:

µp(z) = exp
{∑

i

λixip +
∑

k

βk(zkp

∑
i

xip)
}

Inclusion of the covariates z1, . . . , zK in the model for the

intensities means that

variables zk

∑
i xi should be added in the estimation.
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Variables in the regression model

• Response variable:

yp: 1 for intervals survived, 0 for event intervals

• Covariates:

– Baseline hazard:

x1, x2, . . .: Minus the time at risk in interval i.

– Covariates:

zpk ×
∑

i xi: The actual covariates should be multiplied

by the sum of the xes before used in the estimation.
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Multiplicative model — proportional hazards

Replace the terms λi in the likelihood for the simple case

above by the terms λi exp(
∑

k βkzk).

The likelihood is then as a binomial likelihood with means:

µp(z) = exp
{∑

i λixip exp(
∑

k βkzkp)
}

= exp
{
− exp(ln[−

∑
i λixip] +

∑
k βkzkp)

}
For fixed λs this is a generalized linear model

For fixed βs this is a generalized linear model.
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exp
{∑

i

λixip exp(
∑

k

βkzkp)
}

For fixed βs it is a generalised linear model:

• parameters: λi

• covariates: xi exp(
∑

k βkzk),

• error: Binomial

• link: logarithmic
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exp
{
− exp(ln[−

∑
i

λixip] +
∑

k

βkzkp)
}

For fixed λs it is a generalised linear model:

• parameters: βk

• covariates: zk

• error: Binomial

• link: log−log

• offset: ln(−
∑

i λixi)
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Algorithm for fitting the model.

1. Fit a model without covariates, to obtain initial estimates

of the λs.

2. Fix the λs, and fit a model with covariates zk, log−log-link

and offset ln(−
∑

i λixi) to obtain estimates of the βs.

3. Fix the βs, form the covariates xi exp(
∑

k βkzk), and fit a

model with these covariates and log-link, to obtain

estimates of the λs.

4. Repeat 2. and 3. until convergence.
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