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Comparing measurement methods

General questions:

I Are results systematically different?

I Can one method safely be replaced by another?

I What is the size of measurement errors?

I Different centres use different methods of
measurement: How can we convert from one
method to another?

I How precise is the conversion?
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Two methods for measuring fat content in

human milk:
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Two methods — one measurement by each

How large is the difference between a measurement
with method 1 and one with method 2 on a
(randomly chosen) person?

Di = y1i − y2i, D̄, s.d.(D)

“Limits of agreement:”

D̄ ± 2× s.d.(D)

95% prediction interval for the difference between a
measurement by method 1 and one by method 2.
[1, 2]
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Limits of agreement: Interpretation

I If a new patient is measured once with each of
the two methods, the difference between the
two values will with 95% probability be within
the limits of agreement.

I This is a prediction interval for a (future)
difference.

I Requires a clinical input:
Are the limits of agreement sufficiently narrow
to make the use of either of the methods
clinically acceptable?

I Is it relevant to test if the mean is 0?
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Limits of agreement: Test?

Testing whether the difference is 0 is a bad idea:

I If the study is sufficiently small this will be
accepted even if the difference is important.

I If the study is sufficiently large this will be
rejected even if the difference is clinically
irrelevant.

I It is an equivalence problem:
1: Testing is irrelevant.
2: Clinical input is required.
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Limits of agreement:
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Model in “Limits of agreement”

Methods m = 1, . . . ,M , applied to i = 1, . . . , I
individuals:

ymi = αm + µi + emi

emi ∼ N (0, σ2

m) measurement error

I Two-way analysis of variance model, with
unequal variances in columns.

I Different variances are not identifiable without
replicate measurements for M = 2 because the
variances cannot be separated.

Models 7/ 89

Limits of agreement:

Usually interpreted as the likely difference between
two future measurements, one with each method:

ŷ2 − y1 = D̂ = α2 − α1 ± 1.96 s.d.(D)

But it can of course also be converted to a
prediction interval for y2 given y1:

ŷ2|1 = ŷ2|y1 = α2 − α1 + y1 ± 1.96 s.d.(D)
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Spurious correlation?

Unequal variances induce correlation between Di

and Ai; if variances of y1i and y2i are ζ2

1
and ζ2

2

respctively:

cov(Di, Ai) =
1

2
(ζ2

1
− ζ2

2
) 6= 0 if ζ1 6= ζ2

In correlation terms:

ρ(D, A) =
1

2

ζ2

1
− ζ2

2

ζ2

1
+ ζ2

2

i.e. the correlation depends on whether the
difference between the variances is large relative to
the sizes of the two.
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— not really

The variances we were using were the marginal

variances of y1 and y2:

ymi = αm + µi + emi

so we have that the marginal variances are:

var(ym) = var(µi) + σ2

m

and hence the correlation expression is:

ρ(D, A) =
1

2

ζ2

1
− ζ2

2

ζ2

1
+ ζ2

2

=
1

2

σ2

1
− σ2

2

2var(µi) + σ2

1
+ σ2

2

Hence only relevant if var(µi) is small relative to σ2

1

and σ2

2
. Not likely in practise.
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Course structure

The course is both theoretical and practical, i.e. the
aim is to convey a basic understanding of the
problems in method comparison studies, but also to
convey practical skills in handling the statistical
analysis.

I R for data manipulation and graphics.

I Occasionally BUGS for estimation in non-linear
variance component models.
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Oximetry data
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Oximetry data
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Oximetry data
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How it works

Example data sets are included in the MethComp

package.

The function in MethComp are based on a data
frame with a particular structure; a Meth object:

meth — method (factor)

item — item, person, individual, sample
(factor)

repl — replicate (if present) (factor)

y — the actual measurement (numerical)

Once converted to Meth, just use summary, plot
etc.
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How it looks

> subset(ox,as.integer(item)<3) > subset(to.wide(ox),as.integer(item)<3)
meth item repl y Note:

1 CO 1 1 78.0 Replicate measurements are taken as separate items!
2 CO 1 2 76.4 item repl id CO pulse
3 CO 1 3 77.2 1 1 1 1.1 78.0 71
4 CO 2 1 68.7 2 1 2 1.2 76.4 72
5 CO 2 2 67.6 3 1 3 1.3 77.2 73
6 CO 2 3 68.3 4 2 1 2.1 68.7 68
184 pulse 1 1 71.0 5 2 2 2.2 67.6 67
185 pulse 1 2 72.0 6 2 3 2.3 68.3 68
186 pulse 1 3 73.0
187 pulse 2 1 68.0
188 pulse 2 2 67.0
189 pulse 2 3 68.0
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Analyses in this course

I Scatter plots.

I Bland-Altman plots (y − x vs. (x + y)/2)

I Limits of agreement.

I Models with constant bias.

I Models with linear bias.

I Conversion formulae between methods (single
replicates)

I Plots of converison equations.

I Reporting of variance components.
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Requirements

I R for data manipulation and graphics:

I Tinn-R convenience editor with syntax
highlighting for R. Alternatively you can use
the bulit-in editor in R, or the nerds can use
ESS.

I nlme-package for variance component models
— constant bias.

I BUGS for fitting models with linear bias
(non-linear variance component models,
over-parametrized).

All of it works from within R.
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Functions in the MethComp package

5 broad categories of functions in MethComp:

I Graphical — just exploring data.

I Data manipulation — reshaping and changing.

I Simulation — generating datasets or replacing
variables.

I Analysis functions — fitting models to data.

I Reporting functions — displaying the results
from analyses.
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Graphical functions (basic)

I BA.plot Makes a Bland-Altman plot of two
methods from a data frame with method
comparison data, and computes limits of
agreement. The plotting etc is really done by a
call to

I BlandAltman Draws a Bland-Altman plot and
computes limits of agreement.

I plot.Meth Plots all methods against all other,
both as a scatter plot and as a Bland-Altman
plot.

I bothlines Adds regression lines of y on x and
vice versa to a scatter plot.
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Data manipulation functions

I make.repl Generates a repl column in a data
frame with columns meth, item and y.

I perm.repl Randomly permutes replicates
within (method,item) and assigns new replicate
numbers.

I to.wide/to.long Transforms a data frame in
the long form to the wide form and vice versa.

I Meth.sim Simulates a dataset (a Meth object)
from a method comparison experiment.
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Analysis functions (simple)

I Deming Performs Deming regression, i.e.
regression with errors in both variables.

I BA.est Estimates in the variance components
models underlying the concept of limits of
agreement, and returns the bias and the
variance components as well as limits of
agreent and preproducibility. Assumes constant
bias between methods.

I VC.est The workhorse behind BA.est.
I DA.reg, regresses the differences on the

averages, and derives the corresponding
conversion equations. Also regresses the
absolute residuals on the averages to check
whether the variance is constant across theIntroduction to computing 22/ 89

Analysis functions (general)

I AltReg Estimates via ad-hoc procedure
(alternating regressions) in a model with linear
bias between methods. Returns a matrix of
estimates both for the mean conversion and for
the variance components.

I MCmcmc Estimates via BUGS in the general
model with non-constant bias (and in the
future) possibly non-constant standard
deviations of the variance components.
Produces a MCmcmc object.
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Reporting functions

I summary.Meth Tabulates replicates by
methods and items.

I print.MCmcmc Prints a table of conversion
equation between methods analyzed, with
prediction standard deviations. Also gives
summaries of the posteriors for the parameters
that constitute the conversion algorithms.

I plot.MCmcmc Plots the conversion lines
between methods with prediction limits.

I post.MCmcmc Plots smoothed posterior
densities for the variance component estimates.

I trace.MCmcmc Plots the simulation traces
from an MCmcmc object.
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Does it work?

You should get something reasonable out of this:

library(MethComp)
data(ox)
ox <- Meth(ox)
summary(ox)
plot(ox)
BA.plot(ox)
BA.est(ox)
( AR.ox <- AltReg(ox,linked=TRUE,trace=TRUE) )
MCmcmc(ox,code.only=TRUE)
MC.ox <- MCmcmc(ox,n.iter=100)
print(MC.ox)
plot(MC.ox)
trace.MCmcmc(MC.ox)
post.MCmcmc(MC.ox)
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Non-constant difference
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(Non-const)

Limits of agreement — assumptions

I The difference between methods is constant

I The variances of the methods (and hence of
the difference) is constant.

Check this by:

I Regress differences on averages.

I Regress absolute residuals from this on the
averages.
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Glucose measurements
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Glucose measurements
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Regress difference on avarage

Di = a + bAi + ei, var(ei) = σ2

D

If b is different from 0, we could use this equation to
derive LoA:

a + bAi ± 2σD

or convert to prediction as for LoA:

y1 = y2 + a + bAi ≈ y2 + a + by2 = a + (1 + b)y2
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Variable limits of agreement
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Regress difference on average

We can do better:

y1i − y2i = a + b(y1i + y2i)/2 + ei

y1i(1− b/2) = a + (1 + b/2)y2i + ei

y1i =
a

1− b/2
+

1 + b/2

1− b/2
y2i +

1

1− b/2
ei

y2i =
−a

1 + b/2
+

1− b/2

1 + b/2
y1i +

1

1 + b/2
ei

This is what comes out of DA.reg and
BA.plot(glu120,reg.line=2)
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Variable limits of agreement
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Conversion equation with prediction limits
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Conversion equation with prediction limits
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Why does this work?

The general model for the data is:

y1i = α1 + β1µi + e1i, e1i ∼ N (0, σ2

1
)

y2i = α2 + β2µi + e2i, e2i ∼ N (0, σ2

2
)

I Work out the prediction of y1 given an
observation of y2 in terms of these parameters.

I Work out how differences relate to averages in
terms of these parameters.

I Then the prediction is as we just derived it.
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So why is it wrong anyway?

Conceptually:
Once the βm is introduced:

ymi = αm + βmµi + emi

measurements by different methods are on different
scales.

Hence it has no mening to form the differences.
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So why is it wrong anyway?

Statistically:
Under the correctly specified model, the induced
model for the differences on the averages Ai, these
contain the error terms, and so does the residuals.

So the covariate is not independent of the error
terms.

Thus the assumptions behind regression are
violated.
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Then why use it?

I With only one observation per (method,item)
there is not much else to do.

I If the slope linking the two methods (β1/β2) is
not dramatically different from 1, the violatiosn
are not that big.

I Implemented in BA.plot and in DA.reg, which
also checks the residuals.

For further details, see [3].
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Comparing two methods with
replicate measurements
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(comp-repl)

Extension of the model:

replicate measurements

ymir = αm + µi + cmi + emir

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

I Replicates within (m, i) is needed to separate τ
and σ.

I Even with replicates, the τs are only estimable
if M > 2.

I Still assumes that the difference between
methods is constant.

I Assumes exchangeability of replicates.
Comparing two methods with replicate measurements 39/ 89

Extension of the model:

replicate measurements
ymir = αm + µi + air + cmi + emir

s.d.(air) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

I Still assumes that the difference between
methods is constant.

I Replicates are linked between methods:
air is common across methods, i.e. the first
replicate on a person is made under similar
conditions for all methods (i.e. at a specific
day or the like).
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Replicate measurements

Three approaches to limits of agreement with
replicate measurements:

1. Take means over replicates within each method
by item stratum.

2. Replicates within item are taken as items.

3. Fit the correct variance components model and
use this as basis for the LoA.
The model is fitted using
BA.est(data,linked=TRUE) — next lecture.
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Oximetry data
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Oximetry data
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Oximetry data
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Replicate measurements

I The limits of agreement should still be for
difference between future single measurements.

I Analysis based on the means of replicates is
therefore wrong:

I Model:

ymir = αm + µi + air + cmi + emir

I var(y1jr − y2jr) = τ 2

1
+ τ 2

2
+ σ2

1
+ σ2

2

— note that the term air − air cancels because
we are referring to the same replicate.
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Wrong or almost right

In the model the correct limits of agreement would
be:

α1 − α2 ± 1.96
√

τ 2

1
+ τ 2

2
+ σ2

1
+ σ2

2

If we are using means of replicates to form the
differences we have:

d̄i = ȳ1i· − ȳ2i· = α1 − α2 +

∑

r air

R1i

−
∑

r air

R2i

+c1i − c2i +

∑

r e1ir

R1i

−
∑

r e2ir

R2i
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The terms with air are only relevant for linked
replicates in which case R1i = R2i and therefore the
term vanishes. Thus:

var(d̄i) = τ 2

1
+τ 2

2
+σ2

1
/R1i+σ2

2
/R2i < τ 2

1
+τ 2

2
+σ2

1
+σ2

2

so the limits of agreement calculated based on the
means are much too narrow as prediction limits for
differences between future single measurements.
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(Linked) replicates as items

If replicates are taken as items, then the calculated
differences are:

dir = y1ir − y2ir = α1 − α2 + c1i − c2i + e1ir − e2ir

which has variance τ 2

1
+ τ 2

2
+ σ2

1
+ σ2

2
, and so gives

the correct limits of agreement. However, the
differences are not independent:

cov(dir, dis) = τ 2

1
+ τ 2

2

Negligible if the residual variances are very large
compared to the interaction, variance likely to be
only slightly downwards biased.
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Exchangeable replicates as items?

If replicates are exchangeable it is not clear how to
produce the differences using replicates as items.

If replicates are paired at random (se the function
perm.repl), the variance will still be correct using
the model without the i× r interaction term (air):

var(y1ir − y2is) = τ 2

1
+ σ2

1
+ τ 2

2
+ σ2

2

Differences will be positively correlated within item:

cov(y1ir − y2is, y1it − y2iu) = τ 2

1
+ τ 2

2

— slight underestimate of the true variance.
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Recommendations

I Fit the correct model, and get the estimates
from that, e.g. by using BA.est.

I If you must use over-simplified methods:

I Use linked replicates as item.

I If replicates are not linked; make a random
linking.
Note: If this give a substantially different
picture than using the original replicate
numbering as linking key, there might be
something fishy about the data.

Further details, see [4].
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Oximetry data
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Repeatability and
reproducibility

Thursday 19 February

Bendix Carstensen

Analysis of Method Comparison Studies
18 February 2009
University of Adelaide

(Repro)

Accuracy of a measurement method

I Repeatability:
The accuracy of the method under exactly
similar circumstances; i.e. the same lab, the
same technician, and the same day.
(Repeatability conditions)

I Reproducibility:
The accuracy of the method under comparable
circumstances, i.e. the same machinery, the
same kit, but possibly different days or
laboratories or technicians.
(Reproducibility conditions)
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Quantification of accuracy

I Upper limit of a 95% confidence interval for
the difference between two measurments.

I Suppose the variance of the measurement is σ2:

var(ymi1 − ymi2) = 2σ2

i.e the standard error is
√

2σ, and a confidnece
interval for the difference:

0± 1.96×
√

2σ = 0± 2.772σ ≈ 2.8σ

I This is called the reproducibility coefficient or
simply the reproducibility. (The number 2.8 is
used as a convenient approximation).
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Quantification of accuracy

I Where do we get the σ?

I Repeat measurements on the same item (or
even better) several items.

I The conditions under which the repeat
(replicate) measurements are taken determines
whether we are estimating repeatability or
reproducibility.

I In larger experiments we must consider the
exchangeability of the replicates — i.e. which
replicates are done under (exactly) similar
conditions and which are not.
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A general model

Thursday 19 February

Bendix Carstensen

Analysis of Method Comparison Studies
18 February 2009
University of Adelaide

(General)

Extension of the model:

ymir = αm + µi + air + cmi + dmr + emir

s.d.(air) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(dmr) = νm — m× r

s.d.(emir) = σm — measurement error

Method, Item, Replicate

I 1 3-way interaction

I 3 2-way interactions

What part of the interactions should be systematic
(fixed) and what part should be random?
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(m, r) - between replicates within method

This effect has M ×R levels, usually a rather small
number.

This effect will therefore normally be modelled as a
fixed effect, but not necessarily with M ×R
parameters, presumably fewer.

If replicates are times of sampling or analysis, we
may consider different time trends for each method,
e.g.

dmr = γmtr

A random m× r-effect would be hard to interpret.
Omitted in the rest of this.
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(i, r) - between replicates within individual

Observations with same (i, r) — but different
method — will be correlated.

Use if all methods are applied to each item at

I different times

I at different locations

I at different conditions

This means there is a minimal structure to
replicates — they are linked.

There might be further structure, e.g. a systematic
effect of a time.
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(m, i) - between methods within individual

This is what is often called a “matrix” effect.

Matrix in the chemical sense: The surrounding
matter (“matrix”) in which the substance of interest
is dissolved.

Represents random effects of items reacting
differently on each measurement method.

Logical to require that the variance of these
methods was allowed to differ between methods.
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Variance component model!

ymir = αm + µi + air + cmi + emir

s.d.(air) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

Note we do not consider the method by replicate
interaction any more.

The model is a (standard) variance component
model, where two of the variance components
depend on method.
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Fitting the variance component model

Complicated and counter-intuitive in R:

> library( nlme )
> lme( y ~ meth + item,

random = list( item = pdIdent(~meth - 1),
repl = ~1),

weights = varIdent(form = ~1 | meth),
data = ox)
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Packed solution

This model has been packaged in a function that
calls lme and then tease out the relevant
parameters.
> BA.est(ox,linked=TRUE)
$Bias

CO pulse
0.000000 -2.470446

$VarComp
IxR MxI res

CO 3.415692 2.928042 2.224868
pulse 3.415692 2.928042 3.994451

$LoA
Mean Lower Upper SD

pulse - CO -2.470446 -14.80779 9.866901 6.168674

$RepCoef
SD Coef.

CO 5.764892 11.52978
pulse 7.432710 14.86542
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Linear bias between methods

Thursday 19 February

Bendix Carstensen

Analysis of Method Comparison Studies
18 February 2009
University of Adelaide

(Lin-bias)

Extension with non-constant bias

ymir = αm + βmµi + random effects

There is now a scaling between the methods.

Methods do not measure on the same scale — the
relative scaling is estimated, between method 1 and
2 the scale is β2/β1.

Consequence: Multiplication of all measurements on
one method by a fixed number does not change
results of analysis:

The corresponding β is multiplied by the same
factor as is the variance components for this
method.
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Variance components

Two-way interactions:

ymir = αm + βm(µi + air + cmi) + emir

The random effects cmi and emir have variances
specific for each method.

But air does not depend on m — must be scaled to
each of the methods by the corresponding βm.

Implies that ω = s.d.(air) is irrelevant — the scale
is arbitrary. The relevant quantities are βmω — the
between replicate variation within item as measured

on the mth scale.
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Variance components

Method, Item, Replicate.

ymir = αm + βm(µi + air + cmi) + emir

s.d.(cmi) = τm

Matrix-effect: Each item reacts differently to each
method.

If only two methods compared:
τ1 and τ2 cannot be separated. Variances must be
reported on the scale of each method, as βmτm.
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Variance components

Method, Item, Replicate.

ymir = αm + βm(µi + air + cmi) + emir

s.d.(air) = ω

Common across methods — must be scaled relative
to the methods.

Included if replicates are linked across methods, e.g.
if there is a sequence in the replicates.

The relevant quantities to reports are βmω — the
s.d. on the scale of the mth method.
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Converting between methods

Thursday 19 February

Bendix Carstensen

Analysis of Method Comparison Studies
18 February 2009
University of Adelaide

(Convert)

Predicting method 2 from method 1

y10r = α1 + β1(µ0 + a0r + c10) + e10r

y20r = α2 + β2(µ0 + a0r + c20) + e20r

⇓
y20r = α2 +

β2

β1

(y10r − α1 − e10r)

+ β2(−c10 + c20) + e20r

The random effects have expectation 0, so:

E(y20|y10) = ŷ20 = α2 +
β2

β1

(y10 − α1)
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y20r = α2 +
β2

β1

(y10r − α1 − e10r)

+ β2(−c10 + c20) + e20r

var(ŷ20|y10) =

(

β2

β1

)2

(β2

1
τ 2

1
+ σ2

1
) + (β2

2
τ 2

2
+ σ2

2
)

The slope of the prediction line from method 1 to
method 2 is β2/β1.

The width of the prediction interval is:

2× 1.96×
√

(

β2

β1

)2

(β2

1
τ 2

1
+ σ2

1
) + (β2

2
τ 2

2
+ σ2

2
)
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If we do the prediction the other way round (y1|y2)
we get the same relationship i.e. a line with the
inverse slope, β1/β2.

The width of the prediction interval in this direction
is:

2× 1.96×
√

(β2

1
τ 2

1
+ σ2

1
) +

(

β1

β2

)2

(β2

2
τ 2

2
+ σ2

2
)

= 2× 1.96× β1

β2

√

(

β2

β1

)2

(β2

1
τ 2

1
+ σ2

1
) + (β2

2
τ 2

2
+ σ2

2
)

i.e. if we draw the prediction limits as straight lines
they can be used both ways.
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CO = −2.16 + 1.06 pulse ( 12.51 )

pulse = 2.03 + 0.94 CO ( 12.13 )
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What happened to the curvature?

● ●
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Usually the prediction
limits are curved:

ŷ|x± 1.96× σ̂
√

1 + x′x

In our prediction we have ignored the last term
(x′x), i.e. effectively assuming that there is no
estimation error on α2·1 and β2·1.
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Variance components

Thursday 19 February

Bendix Carstensen

Analysis of Method Comparison Studies
18 February 2009
University of Adelaide

(Var-comp)



Variance components

ymir = αm + βm(µi + air + cmi) + emir

3 variance components / random effects:

I air: between replicates within item, ω2

βmω is the relevant quantity.

I cmi: matrix effect τ 2

m

βmτm is the relevant quantity.

I emir: measurement error, residual variation σ2

m

σm is the relevant quantity.
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Variance components

ymir = αm + βm(µi + air + cmi) + emir

The total variance of a measurement is:

√

β2
mω2 + β2

mτ 2
m + σ2

m

These are the variance components returned by
AltReg or MCmcmcm using print.MCmcmc and
shown by post.MCmcmc.
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Repeatability and reproducibility

Repeatability is based on the difference between
measurements made under comparable, though not
exactly identical conditions.

Reproducibility is based on the difference between
measurements made under comparable, though not
exactly identical conditions.

This is a different setting from the one underlying
the modelling of data from a comparison
experiment.

The exchangeability has no meaning, we are
discussing future measurements in different
circumstances.
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Repeatability and reproducibility

Repeatability: 2.8σm:
same individual, same replicate, but not considering
the variation that constitute differences between
replicates in the experiment.

Hence reproducibility is not estimable from a
classical experiment, unless an extra layer of
replication is introduced — i.e. different
laboratories.
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Alternating regressions

Thursday 19 February

Bendix Carstensen

Analysis of Method Comparison Studies
18 February 2009
University of Adelaide

(Alt-reg)

Alternating random effects regression

Carstensen [5] proposed a ridiculously complicated
approach to fit the model

ymir = αm + βmµi + cmi + emir

based in the observation:

I For fixed µ the model is a linear mixed model.

I For fixed (α, β) it is a regression through 0.
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Alternating random effects regression

Now consider instead the correctly formulated
version of the slightly more general model:

ymir = αm + βm(µi + air + cmi) + emir

Here we observe

I For fixed ζmir = µi + air + cmi the model is a
linear model, with residual variances different
between methods.

I For fixed (α, β) responses y can be rescaled:

ymir − αm

βm

= µi + air + cmi + emir/βm
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Estimation algorithm I

1. Start with ζmir = ȳmi·
2. Estimate (αm, βm).

3. Compute the scaled responses and fit the
random effects model.

4. Use the estimated µis, and BLUPs of air and
cmi to update ζmir.

5. Check convergence in terms of identifiable
paramaters.
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The residual variances

The variance components are estimated in the
model for the scaled response, and the parameters
in that is nok taken into accoundt in the calculation
of the residual variance.

Hence the residual variances should be corrected.

All this is implemented in the function AltReg
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> AR.ox <- AltReg(ox,linked=T,trace=T)
AltReg uses 354 obs. out of 354 in the supplied data.

iteration 1 criterion: 1
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR sd. MxI sd. res.sd.

CO 0.911 0.988 1.861 74.419 74.417 1.000 0.974 3.371 3.502 2.292
pulse -1.039 1.014 1.860 74.422 74.419 1.027 1.000 3.460 3.595 3.958

...

iteration 14 criterion: 0.000986339
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR sd. MxI sd. res.sd.

CO -20.548 1.281 1.027 74.419 76.938 1.000 1.063 3.521 2.978 2.055
pulse -17.301 1.205 3.308 72.049 74.419 0.941 1.000 3.313 2.802 4.079
There were 14 warnings (use warnings() to see them)
> round(AR.ox,3)

From
To Intercept: CO pulse Slope: CO pulse IxR sd. MxI sd. res.sd.
CO 0.000 -2.159 1.000 1.063 3.521 2.978 2.055
pulse 2.031 0.000 0.941 1.000 3.313 2.802 4.079
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Transformation of data

Thursday 19 February

Bendix Carstensen

Analysis of Method Comparison Studies
18 February 2009
University of Adelaide

(Transform)

If variances are not constant
A transformation might help:

> round( ftable( DA.reg(ox) ), 3 )
alpha beta sd.pred beta=1 s.d.=K

From: To:
CO CO 0.000 1.000 NA NA NA

pulse 1.864 0.943 5.979 0.142 0.000
pulse CO -1.977 1.061 6.342 0.142 0.000

pulse 0.000 1.000 NA NA NA

> oxt <- transform( ox, y=log(y/(100-y)) )

> round( ftable( DA.reg(oxt) ), 3 )
alpha beta sd.pred beta=1 s.d.=K

From: To:
CO CO 0.000 1.000 NA NA NA

pulse -0.034 0.900 0.306 0.009 0.246
pulse CO 0.038 1.111 0.340 0.009 0.246

pulse 0.000 1.000 NA NA NA
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Analysis on the transformed scale

> ARoxt <- AltReg(oxt,linked=T,trace=T)
AltReg uses 354 obs. out of 354 in the supplied data.

iteration 1 criterion: 1
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR sd. MxI sd. res.sd.

CO 0.003 0.998 0.098 1.151 1.151 1.000 0.994 0.220 0.197 0.161
pulse -0.003 1.003 0.098 1.151 1.151 1.006 1.000 0.222 0.198 0.178

...etc

> round(ARoxt,3)
From

To Intercept: CO pulse Slope: CO pulse IxR sd. MxI sd. res.sd.
CO 0.000 0.042 1.000 1.105 0.232 0.160 0.143
pulse -0.038 0.000 0.905 1.000 0.210 0.145 0.191

This is an analysis for the transformed data.
Transformation of data 81/ 89

●

●
●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●
●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●
●

●●

● ●

●

●

●
●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

−1 0 1 2 3

−1

0

1

2

3

logit(pulse)

lo
g
it
(C
O
)

●

●
●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●
●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

● ●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●
●

●●

● ●

●

●

●
●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

logit CO = 0.04 + 1.11 logit pulse ( 0.66 )

logit pulse = −0.04 + 0.90 logit CO ( 0.63 )
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Backtransformation for plotting

prpulse <- seq(20,100,1)
lprpulse <- log( prpulse / (100-prpulse) )
lprCO <- ARoxt["CO",2] + ARoxt["CO",4]*lprpulse
lprCOlo <- ARoxt["CO",2] + ARoxt["CO",4]*lprpulse -

2*sd.CO.pred
lprCOhi <- ARoxt["CO",2] + ARoxt["CO",4]*lprpulse +

2*sd.CO.pred
prCO <- 100/(1+exp(-cbind( lprCO, lprCOlo, lprCOhi )))
prCO[nrow(prCO),] <- 100
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Transformation to a Bland-Altman plot
Just convert to the differences versus the averages:

prpulse <- cbind( prpulse, prpulse, prpulse )
with( to.wide(ox),

plot( (CO+pulse)/2, CO-pulse, pch=16,
ylim=c(-40,40), xlim=c(20,100),
xaxs="i", yaxs="i" ) )

abline( h=-4:4*10, v=2:10*10, col=gray(0.8) )
matlines( (prCO+prpulse)/2, prCO-prpulse, lwd=c(3,1,1),

col="blue", lty=1 )
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