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Comparing measurement methods

General questions:

I Are results systematically different?

I Can one method safely be replaced by another?

I What is the size of measurement errors?

I Different centres use different methods of
measurement: How can we convert from one
method to another?

I How precise is the conversion?
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Two methods for measuring fat content in
human milk:

●

●

●●

●●

●

●
●●●●

● ●●

●
●

●

● ●

●●
●
●●●

●
●

●●●●

●

●
●

●

●
●

●

●●●●

●

●

1 2 3 4 5 6

1
2

3
4

5
6

Gerber

Tr
ig

The
relationship
looks like:

y1 = a+ by2

Comparing two methods with one measurement on each (Comp-simple) 2/ 104



Two methods — one measurement by each

How large is the difference between a measurement
with method 1 and one with method 2 on a
(randomly chosen) person?

Di = y2i − y1i, D̄, s.d.(D)

“Limits of agreement:”

D̄ ± 2× s.d.(D)

95% prediction interval for the difference between a
measurement by method 1 and one by method 2.
[1, ?]
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Limits of agreement: Interpretation

I If a new patient is measured once with each of
the two methods, the difference between the
two values will with 95% probability be within
the limits of agreement.

I This is a prediction interval for a (future)
difference.

I Requires a clinical input:
Are the limits of agreement sufficiently narrow
to make the use of either of the methods
clinically acceptable?

I Is it relevant to test if the mean is 0?
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Limits of agreement: Test?

Testing whether the difference is 0 is a bad idea:

I If the study is sufficiently small this will be
accepted even if the difference is important.

I If the study is sufficiently large this will be
rejected even if the difference is clinically
irrelevant.

I It is an equivalence problem:
1: Testing is irrelevant.
2: Clinical input is required.
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Limits of agreement:
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Model in “Limits of agreement”

Methods m = 1, . . . ,M , applied to i = 1, . . . , I
individuals:

ymi = αm + µi + emi

emi ∼ N (0, σ2m) measurement error

I Two-way analysis of variance model, with
unequal variances in columns.

I Different variances are not identifiable without
replicate measurements for M = 2 because the
variances cannot be separated.
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Limits of agreement:

Usually interpreted as the likely difference between
two future measurements, one with each method:

ŷ2 − y1 = D̂ = α2 − α1 ± 1.96 s.d.(D)

Normally we use 2 instead of 1.96.

Neither are formally correct if we take the model
seriously:

I Use a t-quantile with I − 1 d.f.

I Estimation s.d. of α2 − α1 is σ/I.

So we should use t0.95 ×
√

(I + 1)/I instead. This
id 2.08 for I = 30 and less than 2 if I > 85.
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Limits of agreement:

Limits of agreement can be converted to a
prediction interval for y2 given y1, by solving for y2:

y2 − y1 = α2 − α1 ± 2 s.d.(D)

which gives:

ŷ2|1 = ŷ2|y1 = α2 − α1 + y1 ± 2 s.d.(D)
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Spurious correlation?

Unequal variances induce correlation between Di

and Ai; if variances of y1i and y2i are ζ21 and ζ22
respctively:

cov(Di, Ai) =
1

2
(ζ22 − ζ21) 6= 0 if ζ1 6= ζ2

In correlation terms:

ρ(D,A) =
1

2

(
ζ22 − ζ21
ζ21 + ζ22

)
i.e. the correlation depends on whether the
difference between the variances is large relative to
the sizes of the two.
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— not really

The variances we were using were the marginal
variances of y1 and y2:

ymi = αm + µi + emi

so we have that the marginal variances are:

var(ym) = var(µi) + σ2m

and hence the correlation expression is:

ρ(D,A) =
1

2

(
ζ22 − ζ21
ζ21 + ζ22

)
=

1

2

(
σ22 − σ21

2var(µi) + σ21 + σ22

)
Hence only relevant if var(µi) is small relative to σ21
and σ22. Not likely in practise.
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Course structure

The course is both theoretical and practical, i.e. the
aim is to convey a basic understanding of the
problems in method comparison studies, but also to
convey practical skills in handling the statistical
analysis.

I R for data manipulation and graphics.

I Occasionally BUGS for estimation in non-linear
variance component models.
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Software considerations

I R, SAS and Stata all have interfaces to
WinBUGS.

I But R have more flexible graphical facilities.

I The MethComp package is written for R.

Therefore we use R in this course.
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Oximetry data
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Oximetry data
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Oximetry data
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How it works

Example data sets are included in the MethComp

package.

The function in MethComp are based on a data
frame with a particular structure; a Meth object:

meth — method (factor)
item — item, person, individual, sample (factor)
repl — replicate (if present) (factor)

y — the actual measurement (numerical)

Once converted to Meth, just use summary, plot
etc.
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How it looks:

> subset(ox,as.integer(item)<3) > subset(to.wide(ox),as.integer(item)<3)
meth item repl y Note:

1 CO 1 1 78.0 Replicate measurements are taken as separate items!
2 CO 1 2 76.4 item repl id CO pulse
3 CO 1 3 77.2 1 1 1 1.1 78.0 71
4 CO 2 1 68.7 2 1 2 1.2 76.4 72
5 CO 2 2 67.6 3 1 3 1.3 77.2 73
6 CO 2 3 68.3 4 2 1 2.1 68.7 68
184 pulse 1 1 71.0 5 2 2 2.2 67.6 67
185 pulse 1 2 72.0 6 2 3 2.3 68.3 68
186 pulse 1 3 73.0
187 pulse 2 1 68.0
188 pulse 2 2 67.0
189 pulse 2 3 68.0
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Analysis options in this course

I Scatter plots.

I Bland-Altman plots ((y2 − y1) vs. (y1 + y2)/2)

I Limits of Agreement (LoA).

I Models with constant bias.

I Models with linear bias.

I Conversion formulae between methods (single
replicates)

I Tansformation of measurements.

I Plots of converison equations.

I Reporting of variance components.
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Requirements

I R for data manipulation and graphics:

I Tinn-R text editor with syntax highlighting for
R. Alternatively you can use the bulit-in editor
in R, or the nerds can use ESS.

I nlme-package for variance component models
— constant bias.

I BUGS for fitting models with linear bias
(non-linear variance component models,
over-parametrized).

All of it works from within R.

Introduction to computing (Intro-comp) 20/ 104



About R

I R uses objects — this can ee a data-frame, a
single number, a table or a vector (set of
numbers)

I and functions that take one or more objects
and produces:

I printed output
I graph
I another object

oxim <- Meth( ox )

plot( oxim )
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Functions in the MethComp package

5 broad categories of functions in MethComp:

I Graphical — exploring data.

I Data manipulation — reshaping and changing.

I Simulation — generating datasets or replacing
variables.

I Analysis functions — fitting models to data.

I Reporting functions — displaying results from
analyses.
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Graphical functions (basic)

I BA.plot Makes a Bland-Altman plot of two
methods from a data frame with method
comparison data, and computes limits of
agreement. The plotting etc is really done by a
call to

I BlandAltman Draws a Bland-Altman plot and
computes limits of agreement.

I plot.Meth Plots all methods against all other,
both as a scatter plot and as a Bland-Altman
plot.

I bothlines Adds regression lines of y on x and
vice versa to a scatter plot.
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Data manipulation functions

I make.repl Generates a repl column in a data
frame with columns meth, item and y.

I perm.repl Randomly permutes replicates
within (method,item) and assigns new replicate
numbers.

I to.wide/to.long Transforms a data frame in
the long form to the wide form and vice versa.

I Meth.sim Simulates a dataset (a Meth object)
from a method comparison experiment.
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Analysis functions (simple)

I DA.reg, regresses the differences on the
averages. Also regresses the absolute residuals
on the averages to check whether the variance
is constant.

I Deming Performs Deming regression, i.e.
regression with errors in both variables.

I BA.est Estimates in the variance components
models underlying the concept of limits of
agreement, and returns the bias and the
variance components. Assumes constant bias
between methods.

I VC.est The workhorse behind BA.est.
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Analysis functions (general)

I AltReg Estimates via ad-hoc procedure
(alternating regressions) in a model with linear
bias between methods. Returns a matrix of
estimates with the conversion parameters as
well as the variance components.

I MCmcmc Estimates via BUGS in the general
model with non-constant bias. Produces an
MCmcmc object.
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Reporting functions

I summary.Meth Tabulates replicates by
methods and items.

I print.MCmcmc Prints a table of conversion
equation between methods analyzed, with
prediction standard deviations. Also gives
summaries of the posteriors for the parameters
that constitute the conversion algorithms.

I plot.MCmcmc Plots the conversion lines
between methods with prediction limits.

I post.MCmcmc Plots smoothed posterior
densities for the estimates.

I trace.MCmcmc Plots the simulation traces
from an MCmcmc object.
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Does it work?
You should get something reasonable out of this:

library(MethComp)
data(ox)
ox <- Meth(ox)
summary(ox)
plot(ox)
BA.plot(ox)
BA.est(ox)
( AR.ox <- AltReg(ox,linked=TRUE,trace=TRUE) )
MCmcmc(ox,code.only=TRUE)
MC.ox <- MCmcmc(ox,n.iter=100)
MethComp(MC.ox)
plot(MC.ox)
trace.MCmcmc(MC.ox)
post.MCmcmc(MC.ox)
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Limits of agreement — assumptions

I The difference between methods is constant

I The variances of the methods (and hence of
the difference) is constant.

Check this by:

I Regress differences on averages.

I Regress absolute residuals from this on the
averages.
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Glucose measurements
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Glucose measurements
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Regress difference on average

Di = a+ bAi + ei, var(ei) = σ2D
If b is different from 0, we could use this equation to
derive LoA:

a+ bAi ± 2σD

or convert to prediction as for LoA:

y2|1 = y1 + a+ bAi ≈ y1 + a+ by1 = a+ (1 + b)y1

Exchanging methods would give:

y1|2 =− a+ (1− b)y1

instead of: y1|2 =
−a

1 + b
+

1

1 + b
y1
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Variable limits of agreement
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Improving the regression of D on A

y2i − y1i = a+ b(y1i + y2i)/2 + ei

y2i(1− b/2) = a+ (1 + b/2)y1i + ei

y2i =
a

1− b/2
+

1 + b/2

1− b/2
y1i +

1

1− b/2
ei

y1i =
−a

1 + b/2
+

1− b/2
1 + b/2

y2i +
1

1 + b/2
ei

This is what comes out of the functions
DA.reg and BA.plot
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Variable limits of agreement
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Conversion equation with prediction limits
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Why does this work?

The general model for the data is:

y1i = α1 + β1µi + e1i, e1i ∼ N (0, σ21)

y2i = α2 + β2µi + e2i, e2i ∼ N (0, σ22)

I Work out the prediction of y1 given an
observation of y2 in terms of these parameters.

I Work out how differences relate to averages in
terms of these parameters.

I Then the prediction is as we just derived it.
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Why is it wrong anyway?

Conceptually:
Once the βm is introduced:

ymi = αm + βmµi + emi

measurements by different methods are on different
scales.

The scalings, βm, of the “true” µs are different for
the two methods.

Hence it has formally no meaning to form the
differences.
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So why is it wrong anyway?

Statistically:
Under the specified model for the ya, the induced
model for the differences on the averages Ai, these
contain the error terms, and so does the residuals:

Di = a+ bAi + ei,

where:Di = (α1 − α2) + (β1 − β2)µi + e1i − e2i
Ai = (α1 + α2)/2 + (β1 + β2)µi/2 + (e1i + e2i)/2

ei = e1i

(
1− β1 − β2

β1 + β2

)
− e2i

(
1 +

β1 − β2
β1 + β2

)
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So why is it wrong anyway?

Statistically:
So the covariate is not independent of the error
terms:

cov(Ai, ei) =
1

2

{
σ21 − σ22 −

β1 − β2
β1 + β2

(σ21 + σ22)

}
Thus the assumptions behind regression are
violated.

Non-constant difference (Non-const) 40/ 104



Then why use it?

I With only one observation per (method,item)
there is not much else to do.

I If the slope linking the two methods (β1/β2) is
not dramatically different from 1, the violatiosn
are not that big.

I The transformatiion (y1i, y2i) 7→ (Di, Ai) is a
transformation to two quantities approximately
(marginally) independent, and therefore better
suited for regreassion.

Implemented in BA.plot and in DA.reg, which also
checks the residuals.

For further details, see [2].
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Comparing two methods with
replicate measurements
Tuesday 8 February, afternoon

Bendix Carstensen

MethComp
8–10 February 2011
Dept. Biostatistics, Univ. of Copenhagen
www.biostat.ku.dk/~bxc/MethComp

(comp-repl)

www.biostat.ku.dk/~bxc/MethComp


Replicate measurements
Fat data; exchangeable replicates:

item repl KL SL
1 1 4.5 4.9
1 2 4.4 5.0
1 3 4.7 4.8
3 1 6.4 6.5
3 2 6.2 6.4
3 3 6.5 6.1

Oximetry data; linked replicates:

item repl CO pulse
1 1 78.0 71
1 2 76.4 72
1 3 77.2 73
2 1 68.7 68
2 2 67.6 67
2 3 68.3 68

Linked or exchangeable replicates!
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Extension of the model:
exchangeable replicates

ymir = αm + µi + cmi + emir

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

I Replicates within (m, i) are needed to separate
τ and σ.

I Even with replicates, the separate τs are only
estimable if M > 2.

I Still assumes that the difference between
methods is constant.

I Assumes exchangeability of replicates.
Comparing two methods with replicate measurements (comp-repl) 43/ 104



Extension of the model:
linked replicates

ymir = αm + µi + air + cmi + emir

s.d.(air) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

I Still assumes that the difference between
methods is constant.

I Replicates are linked between methods:
air is common across methods, i.e. the first
replicate on a person is made under similar
conditions for all methods (i.e. at a specific
day or the like).
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Replicate measurements

Three approaches to limits of agreement with
replicate measurements:

1. Take means over replicates within each method
by item stratum.

2. Replicates within item are taken as items.

3. Fit the correct variance components model and
use this as basis for the LoA.
The model is fitted using BA.est( data,

linked=TRUE ).
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Oximetry data
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Oximetry data
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Oximetry data
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Replicate measurements

I The limits of agreement should still be for
difference between future single measurements.

I Analysis based on the means of replicates is
therefore wrong:

I Model:

ymir = αm + µi + air + cmi + emir

I var(y1jr − y2jr) = τ 21 + τ 22 + σ21 + σ22
— note that the term air − air cancels because
we are referring to the same replicate.
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Wrong or almost right

In the model the correct limits of agreement would
be:

α1 − α2 ± 1.96
√
τ 21 + τ 22 + σ21 + σ22

If we are using means of replicates to form the
differences we have:

d̄i = ȳ1i· − ȳ2i· = α1 − α2 +

∑
r air
R1i

−
∑

r air
R2i

+c1i − c2i +

∑
r e1ir
R1i

−
∑

r e2ir
R2i
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The terms with air are only relevant for linked
replicates in which case R1i = R2i and therefore the
term vanishes. Thus:

var(d̄i) = τ 21+τ 22+σ21/R1i+σ
2
2/R2i < τ 21+τ 22+σ21+σ

2
2

so the limits of agreement calculated based on the
means are much too narrow as prediction limits for
differences between future single measurements.
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(Linked) replicates as items

If replicates are taken as items, then the calculated
differences are:

dir = y1ir − y2ir = α1 − α2 + c1i − c2i + e1ir − e2ir

which has variance τ 21 + τ 22 + σ21 + σ22, and so gives
the correct limits of agreement. However, the
differences are not independent:

cov(dir, dis) = τ 21 + τ 22

Negligible if the residual variances are very large
compared to the interaction, variance likely to be
only slightly downwards biased.
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Exchangeable replicates as items?

If replicates are exchangeable it is not clear how to
produce the differences using replicates as items.

If replicates are paired at random (se the function
perm.repl), the variance will still be correct using
the model without the i× r interaction term (air):

var(y1ir − y2is) = τ 21 + σ21 + τ 22 + σ22

Differences will be positively correlated within item:

cov(y1ir − y2is, y1it − y2iu) = τ 21 + τ 22

— slight underestimate of the true variance.

Comparing two methods with replicate measurements (comp-repl) 53/ 104



Recommendations

I Fit the correct model, and get the estimates
from that, e.g. by using BA.est.

I If you must use over-simplified methods:

I Use linked replicates as item.

I If replicates are not linked; make a random
linking.
Note: If this give a substantially different
picture than using the original replicate
numbering as linking key, there might be
something fishy about the data.

Further details, see [3].
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Oximetry data

Linked
replicates used
as items

Mean over
replicates as
items

Limits based on
model —
dashed line
assuming
exchangeable
replicates
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A general model
Wednesday 9 February, morning

Bendix Carstensen

MethComp
8–10 February 2011
Dept. Biostatistics, Univ. of Copenhagen
www.biostat.ku.dk/~bxc/MethComp

(General)

www.biostat.ku.dk/~bxc/MethComp


Extension of the model:

ymir = αm + µi + air + cmi + dmr + emir

s.d.(air) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(dmr) = νm — replicate structre

s.d.(emir) = σm — measurement error

Method, Item, Replicate

I 1 3-way interaction

I 3 2-way interactions

What part of the interactions should be systematic
(fixed) and what part should be random?

A general model (General) 56/ 104



(m, r) - between replicates within method

This effect has M ×R levels, usually a rather small
number.

This effect will therefore normally be modelled as a
fixed effect, but not necessarily with M ×R
parameters, presumably fewer.

If replicates are times of sampling or analysis, we
may consider different time trends for each method,
e.g.

dmr = γmtr

A random m× r-effect would be hard to interpret.
Omitted in the following.
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(i, r) - between replicates within individual

Observations with same (i, r) — but different by
different methods — will be correlated.

Use if all methods are applied to each item at

I different times

I at different locations

I at different conditions

This means there is a some common structure to
replicates with the same number — they are linked.
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(m, i) - between methods within individual

This is what is often called a “matrix” effect.

Matrix in the chemical sense: The surrounding
matter (“matrix”) in which the substance of interest
is dissolved.

Represents random effects of items reacting
differently on each measurement method.

Logical to require that the variance of these effects
is allowed to differ between methods.
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Variance component model!

ymir = αm + µi + air + cmi + emir

s.d.(air) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

Note we do not consider the method by replicate
interaction any more.

The model is a (standard) variance component
model, where two of the variance components
depend on method.
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Fitting the variance component model
Complicated and counter-intuitive in R:

> library( nlme )
> lme( y ~ meth + item,

random = list( item = pdIdent(~meth - 1),
repl = ~1),

weights = varIdent(form = ~1 | meth),
data = ox)

Teasing out the estimates of the variance
components is quite an ordeal, hence it is packaged
in the BA.est function.
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Random effects:
Formula: ~meth - 1 | item
Structure: Multiple of an Identity

methCO methpulse
StdDev: 2.928042 2.928042

Formula: ~1 | repl %in% item
(Intercept) Residual

StdDev: 3.415692 2.224868

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | meth
Parameter estimates:

CO pulse
1.000000 1.795365
Number of Observations: 354
Number of Groups:

item repl %in% item
61 177
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Packed solution

This model has been packaged in a function that
calls lme and then tease out the relevant
parameters.
> BA.est(ox,linked=TRUE)
$Bias

CO pulse
0.000000 -2.470446

$VarComp
IxR MxI res

CO 3.415692 2.928042 2.224868
pulse 3.415692 2.928042 3.994451

$LoA
Mean Lower Upper SD

pulse - CO -2.470446 -14.80779 9.866901 6.168674

$RepCoef
SD Coef.

CO 5.764892 11.52978
pulse 7.432710 14.86542
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Repeatability and
reproducibility
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Dept. Biostatistics, Univ. of Copenhagen
www.biostat.ku.dk/~bxc/MethComp

(Repro)
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Accuracy of a measurement method

I Repeatability:
The accuracy of the method under exactly
similar circumstances; i.e. the same lab, the
same technician, and the same day.
(Repeatability conditions)

I Reproducibility:
The accuracy of the method under comparable
circumstances, i.e. the same machinery, the
same kit, but possibly different days or
laboratories or technicians.
(Reproducibility conditions)
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Quantification of accuracy

I Upper limit of a 95% confidence interval for
the difference between two measurments.

I Suppose the variance of the measurement is σ2:

var(ymi1 − ymi2) = 2σ2

i.e the standard error is
√

2σ, and a confidnece
interval for the difference:

0± 1.96×
√

2σ = 0± 2.772σ ≈ 2.8σ

I This is called the reproducibility coefficient or
simply the reproducibility. (The number 2.8 is
used as a convenient approximation).
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Quantification of accuracy

I Where do we get the σ?

I Repeat measurements on the same item (or
even better) several items.

I The conditions under which the repeat
(replicate) measurements are taken determines
whether we are estimating repeatability or
reproducibility.

I In larger experiments we must consider the
exchangeability of the replicates — i.e. which
replicates are done under (exactly) similar
conditions and which are not.
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Extension with non-constant bias

ymir = αm + βmµi + random effects

There is now a scaling between the methods.

Methods do not measure on the same scale — the
relative scaling is estimated, between method 1 and
2 the scale is β2/β1.

Consequence: Multiplication of all measurements on
one method by a fixed number does not change
results of analysis:

The corresponding β is multiplied by the same
factor as is the variance components for this
method.
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Variance components

Two-way interactions:

ymir = αm + βm(µi + air + cmi) + emir

The random effects cmi and emir have variances
specific for each method.

But air does not depend on m — must be scaled to
each of the methods by the corresponding βm.

Implies that ω = s.d.(air) is irrelevant — the scale
is arbitrary. The relevant quantities are βmω — the
between replicate variation within item as measured
on the mth scale.
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Variance components

Method, Item, Replicate.

ymir = αm + βm(µi + air + cmi) + emir

s.d.(cmi) = τm

Matrix-effect: Each item reacts differently to each
method.

If only two methods compared:
τ1 and τ2 cannot be separated. Variances must be
reported on the scale of each method, as βmτm.
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Variance components

Method, Item, Replicate.

ymir = αm + βm(µi + air + cmi) + emir

s.d.(air) = ω

Common across methods — must be scaled relative
to the methods.

Included if replicates are linked across methods, e.g.
if there is a sequence in the replicates.

The relevant quantities to reports are βmω — the
s.d. on the scale of the mth method.
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Alternating random effects regression

Carstensen [4] proposed a ridiculously complicated
approach to fit the model

ymir = αm + βmµi + cmi + emir

based in the observation:

I For fixed µ the model is a linear mixed model.

I For fixed (α, β) it is a regression through 0.

This has be improved in [5]
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Alternating random effects regression

Now consider instead the correctly formulated
version of the slightly more general model:

ymir = αm + βm(µi + air + cmi) + emir

Here we observe

I For fixed ζmir = µi + air + cmi the model is a
linear model, with residual variances different
between methods.

I For fixed (α, β) scaled responses y are used:

ymir − αm

βm
= µi + air + cmi + emir/βm
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Estimation algorithm

ymir = αm + βm(µi + air + cmi) + emir

1. Start with ζmir = ȳmi·

2. Estimate (αm, βm).

3. Compute the scaled responses and fit the
random effects model.

4. Use the estimated µis, and BLUPs of air and
cmi to update ζmir.

5. Check convergence in terms of identifiable
parameters.

Alternating regressions 75/ 104



The residual variances

The variance components are estimated in the
model for the scaled response. The parameters
(αm, βm) are not taken into account in the
calculation of the residual variance.

Hence the residual variances must be corrected post
hoc.

This machinery is implemented in the function
AltReg in the MethComp package.
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> AR.ox <- AltReg(ox,linked=T,trace=T)
AltReg uses 354 obs. out of 354 in the supplied data.

iteration 1 criterion: 1
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR sd. MxI sd. res.sd.

CO 0.911 0.988 1.861 74.419 74.417 1.000 0.974 3.371 3.502 2.292
pulse -1.039 1.014 1.860 74.422 74.419 1.027 1.000 3.460 3.595 3.958
...

iteration 14 criterion: 0.000986339
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR sd. MxI sd. res.sd.

CO -20.548 1.281 1.027 74.419 76.938 1.000 1.063 3.521 2.978 2.055
pulse -17.301 1.205 3.308 72.049 74.419 0.941 1.000 3.313 2.802 4.079
There were 14 warnings (use warnings() to see them)

> round(AR.ox,3)
From

To Intercept: CO pulse Slope: CO pulse IxR sd. MxI sd. res.sd.
CO 0.000 -2.159 1.000 1.063 3.521 2.978 2.055
pulse 2.031 0.000 0.941 1.000 3.313 2.802 4.079
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Predicting method 2 from method 1

y10r = α1 + β1(µ0 + a0r + c10) + e10r
y20r = α2 + β2(µ0 + a0r + c20) + e20r

⇓

y20r = α2 +
β2
β1

(y10r − α1 − e10r)

+ β2(−c10 + c20) + e20r

The random effects have expectation 0, so:

E(y20|y10) = ŷ20 = α2 +
β2
β1

(y10 − α1)
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y20r = α2 +
β2
β1

(y10r − α1 − e10r)

+ β2(−c10 + c20) + e20r

var(ŷ20|y10) =

(
β2
β1

)2
(β2

1τ
2
1 + σ21) + (β2

2τ
2
2 + σ22)

The slope of the prediction line from method 1 to
method 2 is β2/β1.

The width of the prediction interval is:

2× 2×

√(
β2
β1

)2
(β2

1τ
2
1 + σ21) + (β2

2τ
2
2 + σ22)
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If we do the prediction the other way round (y1|y2)
we get the same relationship i.e. a line with the
inverse slope, β1/β2.

The width of the prediction interval in this direction
is (by permutation of indices):

2× 2×

√
(β2

1τ
2
1 + σ21) +

(
β1
β2

)2
(β2

2τ
2
2 + σ22)

= 2× 2× β1
β2

√(
β2
β1

)2
(β2

1τ
2
1 + σ21) + (β2

2τ
2
2 + σ22)

i.e. if we draw the prediction limits as straight lines
they can be used both ways.

Converting between methods (Convert) 80/ 104



20 40 60 80 100
20

40

60

80

100

CO

pu
ls

e

pulse =
 2.11 + 0.94 CO 
  ( 6.00 )

CO =
 −2.25 + 1.06 pulse 
  ( 6.39 )

●
●
●

●
●
●

●

●●

●

●

●
●

●

●

●
●●

●

● ●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●●
●

●
● ●

●●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Converting between methods (Convert) 81/ 104



What happened to the curvature?
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40

x

y

Usually the prediction
limits are curved:

ŷ|x± t0.975 × σ̂
√

1 + x′x

In our prediction we have ignored the last term
(x′x), i.e. effectively assuming that there is no
estimation error on α2|1 and β2|1.
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Variance components
Wednesday 9 February, afternoon

Bendix Carstensen

MethComp
8–10 February 2011
Dept. Biostatistics, Univ. of Copenhagen
www.biostat.ku.dk/~bxc/MethComp

(Var-comp)

www.biostat.ku.dk/~bxc/MethComp


Variance components

ymir = αm + βm(µi + air + cmi) + emir

3 variance components / random effects:

I air: between replicates within item, ω2

βmω is the relevant quantity.

I cmi: matrix effect τ 2m
βmτm is the relevant quantity.

I emir: measurement error, residual variation σ2m
σm is the relevant quantity.
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Variance components

ymir = αm + βm(µi + air + cmi) + emir

The total variance of a measurement is:√
β2
mω

2 + β2
mτ

2
m + σ2m

These are the variance components returned by
AltReg or MCmcmcm using print.MCmcmc and
shown by post.MCmcmc.
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Repeatability and reproducibility

Repeatability is based on the difference between
measurements made under comparable, though not
exactly identical conditions.

Reproducibility is based on the difference between
measurements made under comparable, though not
exactly identical conditions.

This is a different setting from the one underlying
the modelling of data from a comparison
experiment.

The exchangeability has no meaning, we are
discussing future measurements in different
circumstances.
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Repeatability and reproducibility

Repeatability: 2.8σm:
same individual, same replicate, but not considering
the variation that constitute differences between
replicates in the experiment.

Hence reproducibility is not estimable from a
classical experiment, unless an extra layer of
replication is introduced — i.e. different
laboratories.
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Transformation of data
Wednesday 9 February, afternoon

Bendix Carstensen

MethComp
8–10 February 2011
Dept. Biostatistics, Univ. of Copenhagen
www.biostat.ku.dk/~bxc/MethComp

(Transform)

www.biostat.ku.dk/~bxc/MethComp


If variances are not constant
A transformation might help:

> round( ftable( DA.reg(ox) ), 3 )
alpha beta sd.pred beta=1 s.d.=K

From: To:
CO CO 0.000 1.000 NA NA NA

pulse 1.864 0.943 5.979 0.142 0.000
pulse CO -1.977 1.061 6.342 0.142 0.000

pulse 0.000 1.000 NA NA NA

> oxt <- transform( ox, y=log(y/(100-y)) )

> round( ftable( DA.reg(oxt) ), 3 )
alpha beta sd.pred beta=1 s.d.=K

From: To:
CO CO 0.000 1.000 NA NA NA

pulse -0.034 0.900 0.306 0.009 0.246
pulse CO 0.038 1.111 0.340 0.009 0.246

pulse 0.000 1.000 NA NA NA
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Analysis on the transformed scale

> ARoxt <- AltReg( ox, linked=T, trace=T, Transform="pctlogit" )

iteration 1 criterion: 1
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR MxI res

CO 0.003 0.998 0.098 1.151 1.151 1.000 0.994 0.220 0.197 0.161
pulse -0.003 1.003 0.098 1.151 1.151 1.006 1.000 0.222 0.198 0.178

iteration 2 criterion: 0.08547255
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR MxI res

CO -0.024 1.032 0.100 1.151 1.181 1.000 1.013 0.222 0.185 0.158
pulse -0.039 1.019 0.121 1.121 1.151 0.987 1.000 0.220 0.182 0.181

...

iteration 15 criterion: 0.0008526646
alpha beta sigma Intercept: CO pulse Slope: CO pulse IxR MxI res

CO -0.528 1.506 0.082 1.151 1.314 1.000 1.105 0.232 0.160 0.143
pulse -0.516 1.362 0.144 1.003 1.151 0.905 1.000 0.210 0.145 0.191
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Analysis on the transformed scale

> ARoxt <- AltReg( ox, linked=T, trace=T, Transform="pctlogit" )

AltReg converged after 15 iterations
Last convergence criterion was 0.0008526646

> ARoxt
Note: Response transformed by: log p/(100 - p)

Conversion between methods:
alpha beta sd

To: From:
CO CO 0.000 1.000 0.202

pulse 0.042 1.105 0.341
pulse CO -0.038 0.905 0.309

pulse 0.000 1.000 0.271

Variance components (sd):
s.d.

Method IxR MxI res
CO 0.232 0.160 0.143
pulse 0.210 0.145 0.191
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Backtransformation for plotting

prpulse <- seq(20,100,1)
lprpulse <- log( prpulse / (100-prpulse) )
lprCO <- ARoxt["CO",2] + ARoxt["CO",4]*lprpulse
lprCOlo <- ARoxt["CO",2] + ARoxt["CO",4]*lprpulse -

2*sd.CO.pred
lprCOhi <- ARoxt["CO",2] + ARoxt["CO",4]*lprpulse +

2*sd.CO.pred
prCO <- 100/(1+exp(-cbind( lprCO, lprCOlo, lprCOhi )))
prCO[nrow(prCO),] <- 100

But this is not necessary; it is implemented in plot.MethComp:

plot( ARoxt, pl.type="conv" )
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Transformation to a Bland-Altman plot
Just convert to the differences versus the averages:

prpulse <- cbind( prpulse, prpulse, prpulse )
with( to.wide(ox),

plot( (CO+pulse)/2, CO-pulse, pch=16,
ylim=c(-40,40), xlim=c(20,100),
xaxs="i", yaxs="i" ) )

abline( h=-4:4*10, v=2:10*10, col=gray(0.8) )
matlines( (prCO+prpulse)/2, prCO-prpulse, lwd=c(3,1,1),

col="blue", lty=1 )

But this is not necessary; it is implemented in plot.MethComp:

plot( ARoxt, pl.type="BA" )
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Implementation in BUGS
Thursday 10 February, morning

Bendix Carstensen

MethComp
8–10 February 2011
Dept. Biostatistics, Univ. of Copenhagen
www.biostat.ku.dk/~bxc/MethComp

(BUGS-impl)

www.biostat.ku.dk/~bxc/MethComp


Implementation in BUGS

ymir = αm + βm(µi + air + cmi) + emir

Non-linear hierarchical model:
Implement in BUGS.

I The model is symmetrical in methods.

I Mean is overparametrized.

I Choose a prior (and hence posterior!) for the
µs with finite support.

I Keeps the chains nicely in place.

This is the philosophy in the function MCmcmc.
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Results from fitting the model

The posterior dist’n of (αm, βm, µi) is singular.

But the relevant translation quantities are
identifiable:

α2|1 = α2 − α1β2/β1

β2|1 = β2/β1

So are the variance components.

Posterior medians used to devise prediction
equations with limits.
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The MethComp package for R

Implemented model:

ymir = αm + βm(µi + air + cmi) + emir

I Replicates required.
I R2WinBUGS or BRUGS is required.
I Dataframe with variables
meth, item, repl and y (a Meth object)

I The function MCmcmc writes a BUGS-program,
initial values and data to files.

I Runs BUGS and sucks results back in to R, and
gives a nice overview of the conversion
equations.
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Example output: Oximetry

> summary( ox )
#Replicates

Method 1 2 3 #Items #Obs: 354 Values: min med max
CO 1 4 56 61 177 22.2 78.6 93.5
pulse 1 4 56 61 177 24.0 75.0 94.0

>
> MCox <- MCmcmc( ox, linked=TRUE, n.iter=2000 )
Loading required package: coda
Loading required package: lattice
Loading required package: R2WinBUGS
Loading required package: BRugs
Welcome to BRugs running on OpenBUGS version 3.0.3

Comparison of 2 methods, using 354 measurements
on 61 items, with up to 3 replicate measurements,
(replicate values are in the set: 1 2 3 )
( 2 * 61 * 3 = 366 ):

No. items with measurements on each method:
#Replicates

Method 1 2 3 #Items #Obs: 354 Values: min med max
CO 1 4 56 61 177 22.2 78.6 93.5
pulse 1 4 56 61 177 24.0 75.0 94.0
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Simulation run of a model with
- method by item and item by replicate interaction:
- using 4 chains run for 2000 iterations
(of which 1000 are burn-in),

- monitoring all values of the chain:
- giving a posterior sample of 4000 observations.

model is syntactically correct
data loaded
model compiled
Initializing chain 1: initial values loaded but this or another chain contain uninitialized variables
Initializing chain 2: initial values loaded but this or another chain contain uninitialized variables
Initializing chain 3: initial values loaded but this or another chain contain uninitialized variables
Initializing chain 4: initial values loaded but this or another chain contain uninitialized variables
initial values generated, model initialized
Sampling has been started ...
1000 updates took 38 s
deviance set
monitor set for variable ’alpha’
monitor set for variable ’beta’
monitor set for variable ’sigma.mi’
monitor set for variable ’sigma.ir’
monitor set for variable ’sigma.res’
monitor set for variable ’deviance’
1000 updates took 46 s
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> MCox

Conversion between methods:
alpha beta sd

To: From:
CO CO 0.000 1.000 1.740

pulse -9.342 1.159 5.328
pulse CO 8.061 0.863 4.508

pulse 0.000 1.000 6.115
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Variance components (sd):
s.d.

Method IxR MxI res
CO 3.878 3.122 1.230
pulse 3.222 2.757 4.324

Variance components with 95 % cred.int.:
method CO pulse
qnt 50% 2.5% 97.5% 50% 2.5% 97.5%

SD
IxR 3.878 3.053 4.533 3.222 2.426 3.930
MxI 3.122 2.193 9.764 2.757 1.915 5.902
res 1.230 0.143 2.639 4.324 3.709 5.019
tot 5.220 4.507 10.645 6.135 5.457 7.849
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Mean parameters with 95 % cred.int.:
50% 2.5% 97.5% P(>0/1)

alpha[pulse.CO] 8.057 -2.457 29.884 0.969
alpha[CO.pulse] -9.346 -49.949 2.476 0.031
beta[pulse.CO] 0.863 0.604 0.997 0.024
beta[CO.pulse] 1.159 1.003 1.657 0.976

Note that intercepts in conversion formulae are adjusted to get
conversion formulae that represent the same line both ways,
and hence the median interceps in the posterior do not agree
exactly with those given in the conversion formulae.
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The MethComp package

Also (currently) contains:

I BA.plot — make a Bland-Altman plot and
compute limits of agreement.

I BA.est — estimates in the variance
component model for the constant bias
situation.

I Deming — regression with errors in both
variables.
A .pdf with a detailed derivation of the
formulae (by Anders C Jensen) is included in
the package too.

I A number of example data sets, amongst them
all examples from [6].

Implementation in BUGS (BUGS-impl) 103/ 104



DG Altman and JM Bland.
Measurement in medicine: The analysis of method comparison studies.
The Statistician, 32:307–317, 1983.

B. Carstensen.
Comparing methods of measurement: Extending the LoA by regression.
Stat Med, 29:401–410, Feb 2010.

B Carstensen, J Simpson, and LC Gurrin.
Statistical models for assessing agreement in method comparison studies with
replicate measurements.
International Journal of Biostatistics, 4(1):Article 16, 2008.

B Carstensen.
Comparing and predicting between several methods of measurement.
Biostatistics, 5(3):399–413, Jul 2004.

B. Carstensen.
Comparing Clinical Measurement Methods: A practical guide.
Wiley, 2010.

JM Bland and DG Altman.
Measuring agreement in method comparison studies.
Statistical Methods in Medical Research, 8:136–160, 1999.


	Comparing two methods with one measurement on each
	Models
	Correlation
	Introduction to computing
	Non-constant difference
	Comparing two methods with replicate measurements
	A general model
	Repeatability and reproducibility
	Repeatability
	Linear bias between methods
	Alternating regressions
	Converting between methods
	Variance components
	Transformation of data
	Implementation in BUGS
	Reporting results
	The MethComp package for R

