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SUMMARY

In studies designed to compare different methods of measurement where more than two methods are
compared or replicate measurements by each method are available, standard statistical approaches such
as computation of limits of agreement are not directly applicable. A model is presented for comparing
several methods of measurement in the situation where replicate measurements by each method are
available. Measurements are viewed as classified by method, subject and replicate. Models assuming
exchangeable as well as non-exchangeable replicates are considered. A fitting algorithm is presented that
allows the estimation of linear relationships between methods as well as relevant variance components.
The algorithm only uses methods already implemented in most statistical software.

Keywords Calibration; Exchangeability; Functional model; Measurement error; Method comparison; Prediction;
Ultrastructural model; Variance component model.

1. INTRODUCTION

In epidemiological studies involving several centres, it is customary to encounter clinical measure-
ments made by several different methods, in which case we need to be able to translate measurements
between the various methods, and in particular to take account of different sources of error attached to the
methods. This will require both conversion formulae as well as estimates of variance components for the
measurement methods in question.

Similar needs arise in laboratory studies where a humber of measurement methods (or machines) are
compared; sources of variation for different methods need to be quantified in order to choose between
them, and once a choice has been made the need for accurate conversions between old and new methods
are required.

1.1 Amotivating example

Diabetes patients attending the outpatient clinic at Steno Diabetes Center (SDC) have thgiteibla
routinely measured at every visit. HpAis a marker for the long term glucose-regulation of patients. It is
measured as the fraction of haemoglobin being glucosylated—for normal persons the value will be around
5% and the treatment goal for diabetes patients is usually to maintain a value b&¥%w 7

In connection with the purchase of a new device for measurement ofiHbAblood samples at
the SDC laboratory, three machines (the existisry,VC, and two candidate®R.V2 andTosoh) were
compared. Venous and capillary blood samples were obtained from all patients appearing in the outpatient
clinic on two consecutive days who consented to have extra blood samples taken for the experiment. 38
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patients gave consent. Samples were measured on four consecutive days on each machine, hence there
were five analysis days. All machines were calibrated every day to the manufacturers’ standards.

Measurements of Hb# are thus classified by method (=machitgpe of blood), individual
(=patient) and replicate (=day of analysis). In this case the replicates are clearly not exchangeable, neither
within patients nor simultaneously for all patients.

The aim was to help decide which machine to buy and to produce a reliable prediction between
the existing machine and the new one (whichever one was chosen). We also wanted to know about the
relationship between measurements made on venous blood samples (from the arm) and capillary blood
samples (from the ear lobe).

All pairwise plots of means over days for the six methods (three machines and two types of blood,
capillary and venous) and 38 patients are shown in Figure 1.

Our first aim is to produce conversions between methods which, unlike regression analysis, give the
same results in either direction. For example, Figure 1 shows that regressing metBdd V2. ven on
X =Tosoh.ven givesy = 0.34+ 0.97x, whereas the opposite regression giyes 0.27 4 0.98x. These
regressions do not use the information from the replicate measurements or the relationships between the
other methods for the same persons. Using the methods outlined in this paper we obtain the relationship
y = 0.349+4 0.973.

Our second aim is to estimate the components of variation in the measurements by different methods.

1.2 The Bland—-Altman model

The usual approach to comparing two methods of measurement is the one given by Bland and Altman
(1986), where the device of ‘Limits of Agreement’ is explained and the so-called Bland—Altman plot is
introduced.

The Bland and Altman approach assumes that one measurement by each method has been carried
out on a number of individuals. The limits of agreement are prediction limits for the difference between
measurements by the two methods on a randomly chosen individual.

The model underlying this procedure (restricting attention to normal models) is

Ymi = om + i + €mi, emi ~ N0, o%) (1.1)

whereyni denotes a measurement by metinodn individuali . This leads to differences = y1; — Yo
being identically distributed with mean — o2 and variance.rl2 + 022, independent of the averages if

o1 = o2. The so-called Bland—Altman plodi(versusy,;) isused to inspect visually whether the difference
and its variance is constant as a function of the average.

This model assumes that the only difference between the methods (on the scale chosen), is that one
is offset by a constant amount from the other. The model (1.1) is formulated as a two-way analysis of
variance model which leads to a pairetkst for equality of the mean method-levels (i.e. testing if the
difference is 0). The generalization to several methods of measurement is straightforward. If more than
two methods are involved, it is possible to identify the single variance compaosgnts

1.3 Replicate measurements

The model (1.1) can also be used if replicate measurements are present, in which case it would be
natural to expand it with an extra component of variance, separating the measurement error from the
individualx method interaction:

Ymir = ¢m + i + Cmi + €mir, Cmi ~ N (O, Tr%), emir ~ N0, Ur%) (1.2)
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Fig. 1. Averages of HbA, measurements for the 38 persons over five days by the six different methods considered,
compared for all pairs of methods. Each panel is a Bland-Altman @lot: x) /2 versus(y + x)/2—a 45 clockwise
rotation of they vs. x plot. The lines shown are the two regression lines. The formulae for the regression lines and
the residual standard deviations are printed in each panel.

with all the random effects assumed independent. In this model it is assumed that replicate measurements
areexchangeablewithin each method. If replicates for all methods in a particular individual are done in
parallel this assumption does not hold.

The model (1.2) is a two-way analysis of variance model with a random interaction term and separate
variances in each column. Separate variances of the interactfpnsan only be estimated if at least three
measurement methods are compared, whereas separate residual vasizhcas @lways be estimated
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if replicate measurements are present. The model can be fitted by standard software packages for mixed
models.

1.4 Extensions

In the model (1.1) the interaction term is omitted and in (1.2) left unspecified, albeit random, but in
measurement method comparison studies parts of this interaction naturally belong in the systematic (fixed)
part of the model, for example by allowing methods to have deviations depending linearly on the level of
measuremenjy;. This is most conveniently formulated as

Ymi =O{m+,8m,ui + €mi, €mi NN(Ov O—r%)

This model is overparametrized as it stands;tseere only determined up to a linear transformation.

For two measurement methods, this is the classical problem with errors in both variables. Depending
on the ratiory /a2, the optimal estimate of the line can be anything between the two traditional regression
lines. If the ratio ofoy and o2 is unknown, there is no way out of this, unless we have replicate
measurements in the same individual by each method. In that case, it is possible to estimate the variances,
and hence the ‘correct’ regression line.

Another possibility for estimating in this model is to assume some distribution ofithas, for
example, in Dunn and Roberts (1999) which leads to a structural model.

Robust and non-parametric methods are also available, mostly in the case where only two methods
are involved, see for example Passing and Bablok (1983, 1984). In the following the attention will be
restricted to situations where replicate measurements by each method are available.

In Section 2 ageneral model is introduced, in SectiB apractical estimation procedure is outlined,
relying mainly on standard statistical methods. Section 4 deals with prediction from one method to
another. Sections 5 and 6 discuss possible extensions relaxing some of the assumptions in the general
model. In Section 7 a more detailed account of the introductory example is given. The relationship to the
ultrastructural model and its variants is discussed in Section 8.

2. A GENERAL MODEL FOR METHOD COMPARISONS
2.1 Notation and terminology

Consider the situation where a number of measurement methods are to be compared in order to quantify
the precision (sources of variation) for each of them and estimate the relationships between them. An
experiment is conducted where for edatém (blood sample, bacterial isolate, individual, field plot, ),

i =1,...,1,andmethod, m = 1,..., M, anumber ofreplicate measurements, = 1, ..., Ry is
performed.

There is no assumption about the data setup being balanced—it is only assumed that the number of
methods and replicates is sufficiently large to make the model identifiable. Observations on measurements
by a particular method are assumed exchangeable within item; measurements on the same item are not
linked across methods, nor across replicates. Relaxing of these assumptions is discussed later.

2.2 Model

Assuming a linear relation among the measurement methods we can set up a model where observations by
each method are linked linearly to a common ‘true’ item value. A model of this type would thus include:
fixed effect of each itemym -+ Bmui ; random itenx method effectemi ~ A (0, r,%); random measurement

error, emir ~ N(O, o-r%) and independence between measurement errors.
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The variances of the random effects must depenchosince the different methods do not necessarily
measure on the same scale, and different methods naturally must be assumed to have different variances. In
studies where different methods actually do measure on the same scale, it will be meaningful to compare
the variance components between the methods.

In mathematical terms we have

Ymir = &m + Bmii + Cmi + Emir, Cmi ~ N (O, Tr%)a emir ~ N (0, Ur%)~ (2.1)

Two crucial assumptions in this model are that replicate measurements are exchangeable within (method,
item) and that measurements by different methods are independenfgiven

This is a functional model for comparison of measurement methods, similar to the model discussed by
Kimura (1992), but without any assumptions about known variance ratios. Dispensing with the assumed
knowledge of variance ratios is of course only possible because we assume replicate measurements are
available for all methods.

The number ofujs will in most cases be fairly large compared to the total number of observations,
unless there are many replicates or methods. Despite this, in designed method comparison studies it will
not generally be reasonable to define the item parameters as random according to some distribution,
because items in many cases will be deliberately chosen to span a ‘relevant’ range of values more or
less uniformly.

2.3 Parameters of the mean
As the model (2.1) is formulated, not all parametess, Bm, i are identifiable. Theus are only
identifiable up to a linear transformation:

Bm

Om = Om— —Ea

wi—a+bui =
| I ﬁm . EE

Since the relation between any two methods of measurement is assumed to be linear, an arbitrary one may
be taken to be the reference, with meansthat is transforming thgesusinga = ayef, b = Bret. It iseasily

seen that the resulting translation formulae between methods are invariant under linear transformation of
theus.

3. ESTIMATION

For fixed values ofu;, the model (2.1) is a linear mixed model with separate regressions fomeach
on ui, arandom effect of methoditem and a residual variance. Since the variances are also specific for
each method, the model can be fitted separately for each method.

The best linear unbiased predictor (BLUP) for a specific individuaeasured with methaa in this
model has the form

BLUPmir = &m + Amti + Cmi- (3.1)

The parameters are estimated under the assumption that#re the true item values. Since this is not
the case we may be able to absorb some of the random meitiend interaction into the fixed part by
updating theus.

The expression (3.1) suggests that this can be done by regressingBLYBm = Amui + Emi ON
Bm through the origin with separate slope for each item and weitihfs The estimated slopes will then
be the updated values of thes.
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Thus, estimation could be performed by switching between the two formulations, fixing either set of
parameters in turn, alternating between updating, t, o) andu. This procedure will also conveniently
circumvent the identifiability problem since the two models fitted are perfectly identifiable. The estimates
of thew andp obtained are just an arbitrary set, but the parameters linking methadslk, say:

— 'B_mak and ’B_m

B B
will be invariant under linear transformation of theand hence the arbitrariness has no influence on these
parameters of interest.

am

3.1 Practicalities
The practical implementation of the procedure may proceed as follows:

1. Produce initial estimates @f e.g. as the item-means over all methods and replicates.

2. Fit a mixed model forymir with u; as covariate for eacm and a random effect ah x i, and
compute BLUPs of the random effectg;. This is the model (2.1) assuming th¢ are values of
known covariates. The variance of thex i effect as well as the residual variance should be specific
for each method.

3. Update the: by regressing BLURi; — &m 0N Am through the origin with weighténqz.

4. Check for convergence in terms of variance parameters and mean parameters of intergst; i.e.
akBm/ Bk andBm/ Bk for some fixedk. If no convergence, go to 2.

The regression ofim, say, should be understood as a regression on a vector of the same length as the
set of observations, with valug, for all units with measurements by method

If the methods are not on the same scale the algorithm can be started by regressing the item means
for each method on the first to obtain initial estimates @nd g and using these estimates to convert all
measurements to the same scale, where item means can be formed.

3.2 Standard errors of parameters

The standard errors of the regression parametgrand 8, produced from the random effects models
are conditional on the estimated values of thes, and hence are smaller than those one would obtain
by maximizing the likelihood simultaneously over both sets of parameters. The same also applies to the
estimates of thees, but these standard errors are of less interest.
The regression parameters are not of interest by themselves, only in thefprrweiBm/ Bret @and
Bm/ Bref. The individual sets o& andg are conditionally independent given ths snce they are derived
from independent datasets. The dependence comes from the fact thest dhe derived from the total
dataset.
An approximate variance of the relative slopes estimateghb\x can be derived by Taylor expansion
from the estimated standard errors of phestimatesgy, andxy, say:

\ﬁr('BA—m) A KA—% + K'%Aﬁr% _ (K% + %Iq?) .
B) B BE B B

The first term is what one would getf, is taken as fixed, the second is the correction for the variance of
the denominator. This expression is invariant under rescaling gfshthe same scaling factor will apply
both tos andk. It can be shown that the standard errors ofdbare also invariant under transformation
of the us, in the sense thaty, for a givenarer Will have the same standard error regardless of the scaling
of the us prior to the transformatiotiy, — am — arefBm/ Bret-
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4. PREDICTION

When comparing two methods of measurement with the intent of predicting method 1 from method
2, one may argue that the regression of method 1 on method 2 should be used, since this is based
on theconditional distribution ofy; given y», which is exactly the prediction situation (Carref al.,

1995). However, this argument relies heavily on an assumption that the ‘new’ observation from which the
prediction is done is randomly chosen from the same population as was used for the estimation.

In practical situations this will not necessarily be the case, because prediction will typically be needed
for populations different from the one used in the calibration study. Otherwise separate calibration studies
would be needed for each population.

In most circumstances the calibration sample will (or should) be chosen to give maximal accuracy of
the comparison over the range where the conversion is to be used, so the distribution of the variable of
interest in the calibration sample is not necessarily close to the population distribution.

Predictions based on the model (2.1), assuming methods to be conditionally independent; given
should include both the measurement variatignand the methosditem variationt,, but also take the
uncertainty in the measurement of the observed value into account.

For a (new) observed value gk, y»20, say, we have

Y20 — a2 — C20 — €20

B2

Y20 = a2 + B2po + C20 + €20 & no =

which leads to predicting the measurement by methaddl by

Y20 — a2 — C20 — €20

Y10 = o1 + B1io + Cio+ €10 = a1+ B1 5 + Ci10 + €10
Hence the mean and varianceyaf conditional onyyg is
A N
., B . B1 N
E(yi10) = a1+ ﬂ?(yzo —ap), V(y10) = % (5 +62) + (12 +6D) 4.1)
2 2

so the prediction variance depends both on the variance on the scale of the predictee as well as on the scale
of the predictor. This kind of prediction interval has the property that it will produce a set of prediction
bounds in &y1, y2)-plot which is the same regardless of whetkigis predicted fromy, or vice versa—

the slope of the line linking; with y» is B1/82 so the vertical distance between two lines with this slope

is B1/ B2 times the horizontal, which is exactly the ratio of the standard deviations used in prediction in
the two directions.

4.1 Incorporating the estimation variance

By analogy with the classical prediction problem from linear regression it is not only the estimated
variance that should be used, we should add the variance of the estimatea&mea(ﬁi/ﬁz)(yzo — Qo).

If $ is the 4x 4 estimated covariance matrix (ﬁl, ﬁl, az, ﬁz) (condltlonal on the estlmated values of
1), then the variance of the prediction medrig1, ,81, ao, ,32) = a1 + (Y2i0 — az)ﬂl/ﬂz is

1
DfT £ Df = 1,M’_E,M $ (Yaio — &2)/B2
B2 B2 B3 - —hi/be
—Pi(yaio — a2)/ B3
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Since methods are assumed independent given true vajye thie matrixX will be block-diagonal with
2 x 2 blocks along the diagonal:

K§1 P1Kalkbl 0 0

5 = | Preako Ky 0 0
0 0 K2, P2Ka2Kn2

0 0 P2Ka2Kn2 K2,

This is not quite true, because the correlation between parameters from different methods induced by the
wi in the model is ignored, but the approximation is reasonable to see if the uncertaiatg)iinés any
effect on the prediction.

However, if a method comparison study is carefully designed and adequately sized, these corrections
will be of minimal importance for the conclusions of the study.

4.2 Prediction based on replicate measurements

If there arek replicate measurements gf available, the prediction of; should then be based on the
average of thesey,o.. Under the model, the average of the measurements will contain only one value of
Co0, butk values ofenir, S0 the variance contribution foyog will be

B\ (% oF
(5) (W? |

5. RELAXING THE EXCHANGEABILITY ASSUMPTION

The model 2.1 assumes that replicates on the same item are exchangeable within method. This can be
ahighly unrealistic assumption, e.g. when replicates for technical or logistic reasons are made on separate
days or in batches of some kind. In this situation it is reasonable to introduce a random rretblarate
effect (i.e. a method by day/batch effect), which leads to the model

Ymir = &m + Bmfi + Cmi + Amr + €mir,  Cmi ~ N (O, Tr%), dmr ~ N(O, w%), emir ~ N (0, Ur%)~
(5.1)

The expression for the predictions under the model (5.1) will be the same as those given for the model
(2.1), but the expressions for the prediction variance will include extra tespsndw,, Stemming from
the random item replicate interaction.

There is no reason to restrict the metkadplicate interaction to be entirely random, one may take
part of it as fixed. If for example there is a suspicion that the quantity measured decays by day of analysis,
d say, appropriate models could be

Ymir = &m + Bm(ui + 8d) + Cmi + dmr + €mir
or
Ymir = @m + Pm(ii + dmd) + Cmi + dmr + Emir,

depending on whether the effect was believed to be different between methods or not.

6. RELAXING THE CONDITIONAL INDEPENDENCE ASSUMPTION

The assumption of independence between methods given item may be unrealistic if items represent
plots of an experiment and replicates are subsamples from each plot. In this case measurements on the
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same item are linked within replicate, so modelling an iteeplicate interaction would be appropriate,
e.g. by including a random effect for each combination of item and replicate.

But as the model should allow methods to measure on different scales, so the random effect cannot be
on the measurement scale, but must be ontseale:

Ymir = &m + Bm(i + @r) + Cmi + €mir,  a&r ~ N (O, v). (6.1)

This model introduces a correlation between observations by different methods on the same item, derived
from the linking of replicates across methods (within plots, for example). This correlation is structured
by the non-exchangeability of replicates within methods, so that observations by different methods on the
same (item, replicate) will be correlated.

An alternative specification for the correlation between measurements by different methods would be
to relax the independence assumption for the matrix effects by specifying

COV(Cmi, Cki) = PmkTmTk (6.2)

The structure of this model is most easily compared to the models (5.1) and (6.1) by noting the assumed
covariances for the observations:

Model 21 (5.1 (6.1) 2.1)+(6.2)
COV(Ymir, Ykir) 0 0 ,Bm,BkV2 PmkTmTk
COV(Ymir, Ymir) 0 w?, 0 0
COV(Ymir, Ymis) 2 2 2 2

The extension in (6.2) is more flexible than that in (6.1), bec®Miglel — 1) /2 variance parameters are
introduced into the model in addition to th&12already there. This is a substantial extension of the number
of variance parameters, and will probably require massive amounts of data just to produce reasonably
reliable estimates of thenk. It will not be possible to estimate in this model using the algorithm outlined
above.

The model (6.1) only introduces one additional parameftér|f there is a special structure to the
replicates it would in principle be possible to extend (6.1) by specifyingayar= v,z.

For model (6.1) the BLUP-based iterative estimation method does not carry over immediately.
Suppose that thgs and theas are known and that the resulting random effects model has been fitted,

then
BLUPmir = &m + /ém(llvi + @jr) + Cmi = &m + Bmﬂi + lémair + Cmi.

A modification of the proposed algorithm would then be to fit a model for BLJP am with a fixed term
consisting of separate regressions for gash Anm (giving estimates of the) and a random regression on
Bm With the itemx replicate cross-classification as the factor, giving updated values af;tlas BLUPs
from the model

A ~

Zmir = BLUPmir — &m = i Bm + @ir Bm + €mir

fitted with 6,2 as weights.
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Table 1. Estimates of variance components for the three
different methods. The scale is the standard deviation, i.e.
HbA;%. The sum is the square root of the sum of the squares

of the threestds
T ) o sum
(matrix effect) (daytoday) (residual)
BR.V2.Cap 0.163 Q166 Q092 0250
BR.VC.Cap 0.132 Q030 Q077 Q156
Tosoh.Cap 0.113 Q049 Q071 Q142
BR.V2.Ven 0.152 Q093 Q075 Q193
BR.VC.Ven 0.140 Q020 Q045 Q148
Tosoh.Ven 0.107 Q032 Q060 Q127

7. EXAMPLE: MEASUREMENT OFHBA1c AT SDC

Wenow return to the experiment comparing methods for measurement ofddlbSDC. The layout of
the experiment involves three machines and two types of specimen, constituting matkods. . . , 6;
individualsi = 1,...,38 and replicate=dag = 1,...,5. The replicates in this experiment are not
exchangeable, so it is necessary to include axdagthod interaction (separate effect of calibration for
each machine):

Ymid = om + Bmii + Cmi + dmd + €mid Cmi ~N(0,72), dmd~ N0, ®2), emid ~ N(,c2).

We might as well have specified tme x d effect as fixed and estimated the parameters associated with it.
We chose to include some of the effect in the fixed part to accommodate systematic changes in measured
levels by time () since sampling:

Ymid = &m + Bm(i + Smt) + Cmi + dmd + Emid.

This has the consequence that the prediction between methods depends on the day of measurement.

From a formal point of view, the variance components cannot be compared in this model, because
the measurementgyir are allowed to be on different scales. However since the measurements in this
case actuallare on the same scale (%HBh@A the comparison makes sense. The variance components are
invariant under the linear transformations of thandg that leaves the model intact, but the valuespf
are dependent on the chosen parametrization (i.e. scaling pfthe

The old existing machine at SDC was tBe.VC, 0 the choice was betweesR.V2 and Tosoh.

From Table 1 it is seen that thivsoh has slightly smaller variance components overall. Of particular
interest here is the residual variance representing the repeatability and the method by replicate interaction
representing the reproducibility, both of which are seen to be smallest, i.e. beBbstar, in particular

the latter. Repeatability and reproducibility are further discussed below.

A precise evaluation of whether this is significant or not would require construction of confidence
intervals for the variance components. This could be performed by bootstrapping.

The results for the means to be used for future conversions are given as a table with corresponding
prediction standard deviations, Table 2 referring to day one after sampling. Entries in this table are used for
conversion of clinical measurements, to ensure comparability of measurements within individual patients
attending SDC in the transition from the old machine to the new, and to convert between measurements
made on venous and capillary blood.
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8. DISCUsSION

The models presented here have predecessors that look almost the same, as well as some less related
approaches that are mainly designed for use in the case of comparing only two methods with one
measurement by each method. The latter are not discussed here, as we only aim at providing modelling
tools for use in situations where a comparison experiment with replicates has been conducted.

As stated in equation (2.1), the simplest model is an extension of the functional model (for data without
replications) discussed by Kimura (1992). The estimation procedure outlined is also very similar to the
EM-algorithm proposed by Kimura, but because of the replicates and the extra variance components the
estimation of theu is not a formal E-step, but an estimation of a subset of the parameters conditional on
another subset. Barnett (1970) discusses a structural model for data with replications where the variances
are allowed to vary by item, i.e. V@mir) = omi, but with the restriction that the ratiagyi/ok; were
independent off.

Generally, data from a method comparison study can be arranged in a three-way array classified by
method, item and replicate. Since we are dealing with measurements on potentially different scales, any
variance component involving method must be allowed different variances across methods.

The pure measurement error will be the three-way interaction in this layout. If replicates are
exchangeable it will be the within-cell variation in the two-way array classified by item and method. The
three possible two-way interactions can in principle all be estimated, but it is a subject matter decision
whether they should enter the model and to what extent they should be included as random or fixed effects.

The methockitem interaction is usually split into a parametric part, corresponding to the specification
of the linear relationship between methods, and a random meiterd effect (matrix effect).

If replicates are non-exchangeable, for example because of simultaneous calibration of machines or
batch processing, then a metha@plicate interaction should be included, either as random or fixed, or as
amixture of both.

In method comparison studies, where items are physical entities like plots and replicates are
subsamples within plots, replicates are made in parallel within items. It may then be necessary to include
an itemxreplicate interaction. Because of the different scales for measurements this interaction cannot be
included on the measurement scale, but must be optbeale.

8.1 Interpretation of variance components and choice between methods

Throughout it has been assumed that measurements are independent between items given the ‘true’ value
ui. The estimates of thesare essentially weighted means of the measurements by the methods involved.
Hence, if some of the methods agree closely because they are subject to the same sources of noise they
may dominate thes.

The variance components are therefore only meaningful under the assumption that the methods
compared are measuring the same thing, and that the mean over the methods compared has a sensible
interpretation. If for example three methods using one technique for measuring are compared with one
method using a different technique, there is a risk of assigning a large variation of thenitetmod
effect to the latter, because of agreement of the #temthod effects among the three first. As an extreme
example of this, consider a situation where a number of identical methods are compared to one of a
different type. The interaction terms for the mettatdm effects would then be more similar between the
three identical machines and would tend to be absorbed in the item parameters)(tihis would lead
to small estimates of the random methatem terms for the three similar methods and larger ones for the
last (differing) method, thus giving small variances for the similar methods purely because of the set of
methods used.
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This is essentially an unidentifiability feature of the metkhdeém interaction. The ‘true’ matrix effects
are not estimable in a design such as the one outlined, but will be confounded with the item parameters
(the us).

If a methodkreplicate effect is included in the model, similar problems may appear if e.g. daily
calibrations are more similar between some methods than others.

The estimates of residual variation are obtainable because they are based on variation between
replicates within (item, method).

If replicates are not exchangeable, the methi@plicate interaction will represent the reproducibility
(ISO 5725-1, 1994), that is the variation between measurements on the same item by the same method
under different circumstances (typically, different laboratories). The residual variation will be the
repeatability, that is the variation between measurements made on the same item under similar conditions
(same method, machine, laboratory, technician). It should be noted that the definitions of repeatability
and reproducibility are to some extent subject-matter related, for example with respect to what one would
deem to be the ‘same equipment within short intervals of time’ (ISO 5725-1, 1994).

If replicates are exchangeable, the reproducibility is not available since observations on the same item
with the same method under different conditions are not made. The repeatability will be either the residual
variation or the sum of the residual variation and the metfreglicate variation, depending on the nature
of the replications.

If more precise estimates of repeatability and reproducibility were required, one might consider a more
complex replication scheme, with some replicates under identical and some under differing conditions.
The modelling in this kind of design would in principle be possible along the same lines as described here,
for example by incorporating systematic effects in the description of replicates.

The systematic part of the metheidem interaction is the linear relationship between the methods,
which also link the scales of the methodg.( = am + Bmui). Hence, in the comparison of variance
components between methods it is necessary to rescale in order to make the comparisons meaningful, e.g.
by using terms such as,/8m, om/Bm €tc. In many practical settings where methods measuring on the
same scale are compared, all ghevill be close to 1 (or more precisely, will be similar) so the rescaling
of variance components will have little effect on the comparisons.

In summary, the residual variance and the meth@glicate interactions will be the variance
components of major interest since they represent the repeatability and reproducibility of the methods
(depending on the replication scheme), whereas the meiterd interaction, the matrix effects, should
be used with some care in the comparison of methods because the relative sizes of these between methods
may be influenced by the set of methods compared.

8.2 The ultrastructural model and variants

The ultrastructural model was proposed by Dolby (1976) for repgaded of measurements with two

different methods on iterin
( X ),i =1,....1,
Yi
and possibly replicates for each item.

In this model, observations by the same method of measurement on the same iterat are
exchangeable. But the non-exchangeability is due to simultaneous measurement by all methods for each
item, which is modelled by a random itetmeplicate effecta;; :

Xir = fi+air +8&r1

. - 2
Yir = a+ B(u +air)+6r2 ar N(O’QS)’ Grm N(O’Gm) (8.1)
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leading to the joint distribution:

i\ i ¢+of B )}
(yn) NKHM)’( Bs 6+02

i.e. with correlation within pairs of measurements for saee i

This model assumes correlation between measurements from different methods within item derived
from random effect for both measurement methods, i.e. a random effect associated with the replication
of the pair of measurements. Thus, in the ultrastructural model replicates are not linked between items
within method, but between methods within item, as opposed to the model (2.1).

Rephrasing the ultrastructural model in the spirit of (2.1) by puténg= Vviir, Yir = Yoir, @1 =0
andpi = 1 we have

Ymir = &m + Bm(ii + air) + Emir air ~N(@©O,¢), arm ~N(O, Ur%) (8.2)

which is the model (6.1) without the itexmethod interaction. Here the random effect of replicate is on
the u-scale, i.e. its effect is proportional

The ultrastructural model of Dolby is discussed in a practical setting by Skovgaard (1995) where
two methods of measuring flavours in beef are compared over a number of different storagé times,
(corresponding to items in the notation in this paper), with replicates being different packs of beef. The
random itenxreplicate is thus a random timg@ack effect. The reason for choosing this structure of
the model is not quite clear, since the replicates are not subsamples in the sense outlined as example in
Dolby’s paper. The argument seems to be that packs may age differently. Skovgaard estimates the slope
in the ultrastructural model by the ratio of the canonical correlations from a model with storage time as a
categorical covariate, i.e. explicitly estimatipg in a one-way ANOVA and then using the residuals for
estimation of the variance.

The structural model is discussed by Dunn and Roberts (1999) This is a simplification of the
ultrastructural model where thg are assumed to come from a normal distribution with a common mean:

Ymi = m + Bméi +emi, & ~N(w, $), emi ~N(O,0?).

The distributional assumption for the induces the correlation between measurements by different
methods on the same item. Note that the estimation procedures proposed for this model involves the
population variance of the measurements (the variation of the item mgan$js seems strange, because
amethod comparison study ideally should produce results independent of the population of items used.

8.3 Summary

Models for method comparison studies should refer to the data layout and in terms of the subject matter
address carefully (1) what effects should be included in the model and (2) whether they should be included
as random or fixed. In particular it is not advisable to focus on problems of identifiability of parameters,
but rather on model structure.

In reporting results from method comparison studies is important to put the results in an immediately
applicable form as conversion tables or charts between methods with proper prediction standard
deviations. Further, the size of the variance components should be reported in a form that makes it possible
to use the information for comparison of precision between methods.
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