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Comparing measurement methods

General questions:

I Are results systematically different?

I Can one method safely be replaced by another?

I What is the size of measurement errors?

I Different centres use different methods of
measurement: How can we convert from one
method to another?
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Two methods for measuring fat content in
human milk:
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Two methods — one measurement by each

How large is the difference between a measurement
with method 1 and one with method 2 on a
(randomly chosen) person?

Di = y1i − y2i, D̄, s.d.(D)

“Limits of agreement:”

D̄ ± 2× s.d.(D)

95% prediction interval for the difference between a
measurement by method 1 and one by method 2.
[?, ?]
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Limits of agreement: Interpretation

I If a new patient is measured once with each of
the two methods, the difference between the
two values will with 95% probability be within
the limits of agreement.

I This is a prediction interval for a (future)
difference.

I Requires a clinical input:
Are the limits of agreement sufficiently narrow
to make the use of either of the methods
clinically acceptable?

I Is it relevant to test if the mean is 0?
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Limits of agreement: Test?

Testing whether the difference is 0 is a bad idea:

I If the study is sufficiently small this will be
accepted even if the difference is important.

I If the study is sufficiently large this will be
rejected even if the difference is clinically
irrelevant.

I It is an equivalence problem:
Clinical input is required!

Comparing two methods with one measurement on each 5/ 71



Limits of agreement:
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Model in “Limits of agreement”

Methods m = 1, . . . ,M , applied to i = 1, . . . , I
individuals:

ymi = αm + µi + emi

emi ∼ N (0, σ2
m) measurement error

I Two-way analysis of variance model, with
unequal variances in columns.

I Different variances are not identifiable without
replicate measurements for M = 2 because the
variances cannot be separated.
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Limits of agreement:

Unequal variances induce correlation between Di

and Ai:

cov(Di, Ai) =
1

2
(σ2

x − σ2
y) 6= 0 if σx 6= σy

In correlation terms:

ρ(D,A) =
1

2

σ2
x − σ2

y

σ2
x + σ2

y

i.e. the correlation depends on whether the
difference between the variances is large relative to
the sizes of the two.
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Limits of agreement:

Usually interpreted as the likely difference between
two future measurements, one with each method:

ŷ2 − y1 = D̂ = α2 − α1 ± 1.96 s.d.(D)

But it can of course also be converted to a
prediction interval for y2 given y1:

ŷ2|y1 = α2 − α1 + y1 ± 1.96 s.d.(D)
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Course structure

The course is both theoretical and practical, i.e. the
aim is to convey a basic understanding of the
problems in method comparison studies, but also to
convey practical skills in handling the statistical
analysis.

I R for data manipulation and graphics.

I WinBUGS for estimation in non-linear variance
component models.
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Software considerations

I R, SAS and Stata all have interfaces to
WinBUGS.

I But R have more flexible graphical facilities.

I The MethComp package is written for R.

Therefore we use R in this course.
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Oximetry data
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Oximetry data
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Oximetry data
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How it works

Example data sets are included in the MethComp

package. Contains the following variables.

meth — method

item — item, person, individual, sample

repl — replicate (if present)

y — the actual measurement

— or rather should in order for the functions in
MethComp to work.
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How it looks

> subset(ox,item<3) > subset(to.wide(ox),item<3)
meth item repl y Note:

1 CO 1 1 78.0 Replicate measurements are taken as separate items!
2 CO 1 2 76.4 item repl id CO pulse
3 CO 1 3 77.2 1 1 1 1.1 78.0 71
4 CO 2 1 68.7 2 1 2 1.2 76.4 72
5 CO 2 2 67.6 3 1 3 1.3 77.2 73
6 CO 2 3 68.3 4 2 1 2.1 68.7 68
184 pulse 1 1 71.0 5 2 2 2.2 67.6 67
185 pulse 1 2 72.0 6 2 3 2.3 68.3 68
186 pulse 1 3 73.0
187 pulse 2 1 68.0
188 pulse 2 2 67.0
189 pulse 2 3 68.0
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Analyses/plots in this course

I Scatter plots.

I Bland-Altman plots (y − x vs. (x+ y)/2)

I Limits of agreement.

I Models with constant bias.

I Models with linear bias.

I Conversion formulae between methods (single
replicates)

I Plots of converison equations.

I Graphical reporting of variance components.
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Requirements

I R for data manipulation and graphics:

I Tinn-R convenience editor with syntax
highlighting for R.

I nlme-package for variance component models
— constant bias.

I WinBUGS for fitting models with linear bias
(non-linear variance component models,
over-parametrized).

All of it works from within R.

Introduction to computing 18/ 71



Functions in the MethComp package

5 broad categories of functions in MethComp:

I Graphical — just exploring data.

I Data manipulation — reshaping and changing.

I Simulation — generating datasets.

I Analysis function — fitting models to data.

I Reporting functions — displaying the results
from analyses.
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Graphical functions

I BA.plot Makes a Bland-Altman plot of two
methods from a data frame with method
comparison data, and computes limits of
agreement. The plotting etc is really done by a
call to

I BlandAltman Draws a Bland-Altman plot and
computes limits of agreement.

I plot.meth Plots all methods against all other,
both as a scatter plot and as a Bland-Altman
plot.

I bothlines Adds regression lines of y on x and
vice versa to a scatter plot.
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Data manipulating functions

I make.repl Generates a repl column in a data
frame with columns meth, item and y.

I perm.repl Randomly permutes replicates
within (method,item) and assigns new replicate
numbers.

I to.wide Transforms a data frame in the long
form to the wide form.

I to.long Reverses the result of to.wide.
I tab.repl Tabulates replicates by methods and

items.
I sim.meth Simulates a dataset from a method

comparison experiment for given parameters for
bias, exchangeability and variances.
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Analysis functions

I Deming Performs Deming regression, i.e.
regression with errors in both variables.

I BA.est Estimates in the variance components
models underlying the concept of limits of
agreement, and returns the bias and the
variance components. Assumes constant bias
between methods.

I MethComp Estimates via BUGS in the general
model with non-constant bias (and in the
future) possibly non-constant standard
deviations of the variance components.
Produces a MethComp object.
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Reporting functions

These functions all take a MethComp object as
input.

I print.MethComp Prints a table of conversion
equation between methods analyzed, with
prediction standard deviations. Also gives
summaries of the posteriors for the parameters
that constitute the conversion algorithms.

I plot.MethComp Plots the conversion lines
between methods with prediction limits.

I plot.VarComp Plots smoothed posterior
densities for the variance component estimates.
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Does it work?
You should get something reasonable out of this:

library(MethComp)
data(ox)
plot.meth(ox)
plot.meth(perm.repl(ox))
BA.plot(ox)
BA.est(ox)
BA.est(perm.repl(ox))
MethComp(ox,code.only=TRUE)
m1 <- MethComp(ox)
print(m1)
plot(m1)
plot.VarComp(m1)
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Accuracy of a measurement method

I Repeatability:
The accuracy of the method under exactly
similar circumstances; i.e. the same lab, the
same technician, and the same day.
(Repeatability conditions)

I Reproducibility:
The accuracy of the method under comparable
circumstances, i.e. the same machinery, the
same kit, but possibly different days or
laboratories or technicians.
(Reproducibility conditions)
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Quantification of accuracy

I Upper limit of a 95% confidence interval for
the difference between two measurments.

I Suppose the variance of the measurement is σ2:

var(ymi1 − ymi2) = 2σ2

i.e the standard error is
√

2σ, and a confidnece
interval for the difference:

0± 1.96×
√

2σ = 0± 2.772σ ≈ 2.8σ

I This is called the reproducibility coefficient or
simply the reproducibility. (The number 2.8 is
used as a convenient approximation).
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Quantification of accuracy

I Where do we get the σ?

I Repeat measurements on the same item (or
even better) several items.

I The conditions under which the repeat
(replicate) measurements are taken determines
whether we are estimating repeatability or
reproducibility.

I In larger experiments we must consider the
exchangeability of the replicates — i.e. which
replicates are done under (exactly) similar
conditions and which are not.
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Extension of the model:
replicate measurements

ymir = αm + µi + cmi + emir

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

I Replicates within (m, i) is needed to separate τ
and σ.

I Even with replicates, the τs are only estimable
if M > 2.

I Still assumes that the difference between
methods is constant.

I Assumes exchangeability of replicates.
Comparing two methods with replicate measurements 28/ 71



Extension of the model:
replicate measurements

ymir = αm + µi + air + cmi + emir

s.d.(air) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

I Still assumes that the difference between
methods is constant.

I Replicates are linked between methods:
air is common across methods, i.e. the first
replicate on a person is made under similar
conditions for all methods (i.e. at a specific
day or the like).
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Replicate measurements

Two approaches to limits of agreement with
replicate measurements:

1. Take means over replicates within each method
by item stratum.

2. Replicates within item are taken as items.
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Oximetry data

20 40 60 80

−
20

−
10

0
10

20

(CO+pulse)/2

C
O

−
pu

ls
e

●

● ●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

Comparing two methods with replicate measurements 31/ 71



Oximetry data
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Oximetry data
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Oximetry data
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Replicate measurements

I The limits of agreement should still be for
difference between future single measurements.

I Analysis based on the means of replicates is
therefore wrong:

I Model:

ymir = αm + µi + air + cmi + emir

I var(y1jr − y2jr) = τ 2
1 + τ 2

2 + σ2
1 + σ2

2
— note that the term air − air cancels because
we are referring to the same replicate.
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Recommendations

I Fit the correct model, and get the estimates
from that, e.g. by using BA.est.

I If you must:
I Use linked replicates as item.
I If replicates are not linked; make a random linking.

Note: If this give a substantially different picture
than using the original replicate numbering as
linking key, there might be something fishy about
the data.
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Oximetry data
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A general model
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Extension of the model:

ymir = αm + µi + air + cmi + dmr + emir

s.d.(air) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(dmr) = νm — m× r
s.d.(emir) = σm — measurement error

Method, Item, Replicate

I 1 3-way interaction

I 3 2-way interactions

What part of the interactions should be systematic
(fixed) and what part should be random?
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(m, r) - between replicates within method

This effect has M ×R levels, usually a rather small
number.

This effect will therefore normally be modelled as a
fixed effect, but not necessarily with M ×R
parameters, presumably fewer.

If replicates are times of sampling or analysis, we
may consider different time trends for each method,
e.g.

dmr = γmtr

A random m× r-effect would be hard to interpret.
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(i, r) - between replicates within individual

Observations with same (i, r) — but different
method — will be correlated.

Use if all methods are applied to each item at

I different times

I at different locations

I at different conditions

This means there is a minimal structure to
replicates — they are linked.

There might be further structure, e.g. a systematic
effect of a time.
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(m, i) - between methods within individual

This is what is often called a “matrix” effect.

Matrix in the chemical sense: The surrounding
matter (“matrix”) in which the stuff of interest is
dissolved.

Represents random effects of items reacting
differently on each measurement method.

Logical to require that the variance of these
methods was allowed to differ between methods.
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Variance component model!

ymir = αm + µi + air + cmi + emir

s.d.(air) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

Note we do not consider the method by replicate
interaction any more.

The model is a (standard) variance component
model, where two of the variance components
depend on method.
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Fitting the variance component model
Complicated and counter-intuitive in R:

> library( nlme )
> lme( y ~ meth + item,

random = list( item = pdIdent(~meth - 1),
repl = ~1),

weights = varIdent(form = ~1 | meth),
data = ox)
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Random effects:
Formula: ~meth - 1 | item
Structure: Multiple of an Identity

methCO methpulse
StdDev: 2.928042 2.928042

Formula: ~1 | repl %in% item
(Intercept) Residual

StdDev: 3.415692 2.224868

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | meth
Parameter estimates:

CO pulse
1.000000 1.795365
Number of Observations: 354
Number of Groups:

item repl %in% item
61 177
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Tease out variances for later use?

Even worse.

Therefore it has been packaged in a function that
calls lme and then tease out the relevant
parameters.

> BA.est(ox)
$bias

CO pulse
0.000000 -2.470446

$sd.s
MxI.CO MxI.pulse IxR resid.CO resid.pulse

2.928042 2.928042 3.415692 2.224868 3.994451

Warning message:
In pt(q, df, lower.tail, log.p) : NaNs produced
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Extension with non-constant bias

ymir = αm + βmµi + random effects

There is now a scaling between the methods.

Methods do not measure on the same scale — the
relative scaling is estimated, between method 1 and
2 the scale is β2/β1.

Consequence: Multiplication of all measurements on
one method by a fixed number does not change
results of analysis:

The corresponding β is multiplied by the same
factor as is the variance components for this
method.
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Variance components

Two-way interactions:

ymir = αm + βm(µi + air) + cmi + emir

The random effects cmi, dmr and emir have
variances specific for each method.

But air does not depend on m — must be scaled to
each of the methods by the corresponding β.

Implies that ω = s.d.(air) is irrelevant — the scale
is arbitrary. The relevant quantities are βmω — the
between replicate variation within item as measured
on the mth scale.
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Variance components

Method, Item, Replicate.

ymir = αm + βm(µi + air) + cmi + emir

s.d.(cmi) = τm

Matrix-effect: Each item reacts differently to each
method.

If only two methods compared:
τ1 and τ2 cannot be separated:

ymir = αm + βm(µi + air + cmi) + emir

s.d.(cmi) = τ
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Variance components

Method, Item, Replicate.

ymir = αm + βm(µi + air) + cmi + emir

s.d.(air) = ω

Common across methods — must be scaled relative
to the methods.

Included if replicates are linked across methods, e.g.
if there is a sequence in the replicates.

The relevant quantities to reports are βmω — the
s.d. on the scale of the mth method.
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Conversion between methods
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Predicting method 2 from method 1

y10r = α1 + β1(µ0 + a0r) + c10 + e10r

y20r = α2 + β2(µ0 + a0r) + c20 + e20r

⇓

y20r = α2 +
β2

β1
(y10r − α1 − c10 − e10r)

+ c20 + e20r

The random effects have expectation 0, so:

E(y20r|y10r) = ŷ20r = α2 +
β2

β1
(yk0r − α1)
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y20r = α2 +
β2

β1
(y10r − α1 − c10 − e10r)

+ c20 + e20r

var(ŷ20r|y10r) =

(
β2

β1

)2

(τ 2
1 + σ2

1) + (τ 2
2 + σ2

2)

The slope of the prediction line from method 1 to
method 2 is β2/β1.

The width of the prediction interval is:

2× 1.96×

√(
β2

β1

)2

(τ 2
1 + σ2

1) + (τ 2
2 + σ2

2)
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If we do the prediction the other way round (y1|y2)
we get the same relationship i.e. a line with the
inverse slope, β1/β2.

The width of the prediction interval in this direction
is:

2× 1.96×

√
(τ 2

1 + σ2
1) +

(
β1

β2

)2

(τ 2
2 + σ2

2)

= 2× 1.96× β1

β2

√(
β2

β1

)2

(τ 2
1 + σ2

1) + (τ 2
2 + σ2

2)

i.e. if we draw the prediction limits as straight lines
they can be used both ways.
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C0 = −4.33 + 1.10 pulse  (8.49)

pulse = 3.94 + 0.91 CO  (7.61)
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What happened to the curvature?

●
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y

Usually the prediction
limits are curved:

ŷ|x± 1.96× σ̂
√

1 + x′x

In our prediction we have ignored the last term
(x′x), i.e. effectively assuming that there is no
estimation error on α2·1 and β2·1.
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Variance components
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Variance components

ymir = αm + βm(µi + air) + cmi + emir

3 variance components / random effects:

I air: between replicates within item, ω2

βmω is the relevant quantity.

I cmi: matrix effect τ 2
m

τm is the relevant quantity.

I emir: measurement error, residual variation σ2
m

σm is the relevant quantity.
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Variance components

ymir = αm + βm(µi + air) + cmi + emir

The total variance of a measurement is:√
β2

mω
2 + τ 2

m + σ2
m

These are the variance components reported by
print.MethComp and shown by plot.VarComp.
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Repeatability and reproducibility

Repeatability is based on the difference between
measurements made under comparable, though not
exactly identical conditions.

Reproducibility is based on the difference between
measurements made under comparable, though not
exactly identical conditions.

This is a different setting from the one underlying
the modelling of data from a comparison
experiment.

The exchangeability has no meaning, we are
discussing future measurements in different
circumstances.
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Repeatability and reproducibility

Repeatability: 2.8σm:
same individual, same replicate, but not considering
the variation that constitute differences between
replicates in the experiment.

Hence reproducibility is not estimable from a
classical experiment, unless an extra layer of
replication is introduced — i.e. different
laboratories.
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Implementation in BUGS

ymir = αm + βm(µi + air + cmi) + emir

Non-linear hierarchical model:
Implement in BUGS.

I The model is symmetrical in methods.

I Mean is overparametrized.

I Choose a prior (and hence posterior!) for the
µs with finite support.

I Keeps the chains nicely in place.
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Results from fitting the model

The posterior dist’n of (αm, βm, µi) is singular.

But the relevant translation quantities are
identifiable:

α2·1 = α2 − α1β2/β1

β2·1 = β2/β1

So are the variance components.

Posterior medians used to devise prediction
equations with limits.
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res, (m,i)
res, (m,i), (i,r)

ymir = αm + βm(µi + air + cmi) + emir
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C0 = −4.33 + 1.10 pulse  (8.49)

pulse = 3.94 + 0.91 CO  (7.61)

ymir = αm + βm(µi + air + cmi) + emir
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ymir = αm + βm(µi + air + cmi) + emir
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Morale

I Use a proper model for your problem.

I Get the exchangeability right.

I Report the model in a useful way.
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The MethComp package for R

Implemented model:

ymir = αm + βm(µi + air + cmi) + emir

I Replicates required.
I R2WinBUGS is required.
I Dataframe with variables
meth, item, repl and y.

I The function MethComp writes a
BUGS-program, initial values and data to files.

I Runs WinBUGS and sucks results back in to R,
and gives a nice overview of the conversion
equations.
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Example output: Oximetry

> ox.mi.ir <- MethComp( ox, n.iter=5000 )
> ox.mi.ri

Comparison of 2 methods, using 354 measurements
on 61 individuals, with up to 3 replicate measurements.
( 2 * 61 * 3 = 366 ):

No. individuals with measurements on each method:
# replicates

Method 1 2 3 Sum
CO 1 4 56 61
pulse 1 4 56 61
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Example output: Oximetry

Conversion formulae (y_to = alpha + beta*y_from +/- 2*sd.pred):
From: CO pulse

alpha beta sd.pred alpha beta sd.pred
To:
CO 0.000 1.000 4.266 -4.328 1.098 8.487
pulse 3.939 0.911 7.606 0.000 1.000 5.534

Variance components (standard deviations):
50% 2.5% 97.5% 0% 100%

sigma.mir[CO] 1.6285 0.2092 2.8274 0.0724 3.4330
sigma.mir[pulse] 4.2580 3.5390 4.9725 3.0670 5.9800
sigma.mi[CO] 4.8043 2.7504 13.3685 2.2597 17.6134
sigma.mi[pulse] 4.3123 2.4981 11.5859 1.9248 13.2186
sigma.ir[CO] 3.9213 3.1452 4.7038 2.7289 5.3129
sigma.ir[pulse] 3.5433 2.7542 4.3516 2.2610 4.8723

Implementation in BUGS 65/ 71



HbA1c - 3 different instruments

> hbv.mi.ir <- MethComp( hbv, n.iter=5000 )
> print( hbv.mi.ir, across=FALSE )

Conversion formula:
y_to = alpha + beta * y_from +/- 2*sd.pred:

From: BR.V2 BR.VC Tosoh
To:
BR.V2 alpha 0.000 -1.627 1.413

beta 1.000 1.154 0.946
sd.pred 0.254 2.079 2.099

BR.VC alpha 1.417 0.000 2.412
beta 0.867 1.000 0.819
sd.pred 1.800 0.164 1.927

Tosoh alpha -1.591 -3.144 0.000
beta 1.057 1.220 1.000
sd.pred 2.145 2.249 0.156
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HbA1c - 3 different instruments

Variance components (standard deviations):
50% 2.5% 97.5% 0% 100%

sigma.mir[BR.V2] 0.2089 0.1816 0.2401 0.1614 0.2692
sigma.mir[BR.VC] 0.1074 0.0813 0.1286 0.0642 0.1467
sigma.mir[Tosoh] 0.0345 0.0006 0.0824 0.0004 0.0984
sigma.mi[BR.V2] 1.3495 1.0780 1.7742 0.9194 2.1615
sigma.mi[BR.VC] 1.3088 1.0498 1.6979 0.8615 2.1350
sigma.mi[Tosoh] 1.4416 1.0782 5.3653 0.9250 6.3534
sigma.ir[BR.V2] 0.1418 0.1037 0.1882 0.0855 0.2319
sigma.ir[BR.VC] 0.1239 0.0928 0.1572 0.0797 0.1827
sigma.ir[Tosoh] 0.1496 0.1231 0.1815 0.0950 0.2002

Implementation in BUGS 67/ 71



BR.VC =
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ResidualMeth−ItemItem−Repl
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The MethComp package

Also (currently) contains:

I BA.plot — make a Bland-Altman plot and
compute limits of agreement.

I BA.est — estimates in the variance
component model for the constant bias
situation.

I Deming — regression with errors in both
variables.
A .pdf with a detailed derivation of the
formulae (by Anders C Jensen) is included in
the package too.

I A number of example data sets, amongst them
all examples from [?].
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