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Course structure

The course is both theoretical and practical, i.e. the
aim is to convey a basic understanding of the
problems in method comparison studies, but also to
convey practical skills in handling the statistical
analysis.

I R for data manipulation ad graphics.

I WinBUGS for estimation in non-linear variance
component models.
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Software considerations

I R, SAS and Stata all have interfaces to
WinBUGS.

I But R have more flexible graphical facilities.

I The MethComp is written for R.

Therefore we use R in this course.
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Oximetry data
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Oximetry data
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How it works

Example data sets are included in the MethComp

package. Contains the following variables.

meth — method

item — item, person, individual, sample

repl — replicate (if present)

y — the actual measurement

— or rather should in order for the functions in
MethComp to work.
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How it looks

> subset(ox,item<3) > subset(to.wide(ox),item<3)
meth item repl y Note:

1 CO 1 1 78.0 Replicate measurements are taken as separate items!
2 CO 1 2 76.4 item repl id CO pulse
3 CO 1 3 77.2 1 1 1 1.1 78.0 71
4 CO 2 1 68.7 2 1 2 1.2 76.4 72
5 CO 2 2 67.6 3 1 3 1.3 77.2 73
6 CO 2 3 68.3 4 2 1 2.1 68.7 68
184 pulse 1 1 71.0 5 2 2 2.2 67.6 67
185 pulse 1 2 72.0 6 2 3 2.3 68.3 68
186 pulse 1 3 73.0
187 pulse 2 1 68.0
188 pulse 2 2 67.0
189 pulse 2 3 68.0
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Analyses/plots in this course

I Scatter plots.

I Bland-Altman plots (y − x vs. (x + y)/2)

I Limits of agreement.

I Models with constant bias.

I Models with linear bias.

I Conversion formulae between methods (single
replicates)

I Plots of converison equations.

I Graphical reporting of variance components.
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Requirements

I R for data manipulation and graphics:

I Tinn-R convenience editior with syntax
highlighting for R.

I nlme-package for variance component models
— constant bias.

I WinBUGS for fitting models with linear bias
(non-linear variance component models,
over-parametrized).

All of it works from within R.

Introduction to computing 9/ 64

Functions in the MethComp package

4 broad categories of functions in MethComp:

I Graphical — just exploring data.

I Data manipulation — reshaping and changing.
Simulation.

I Analysis function — fitting models to data.

I Reporting functions — displaying the results
from analyses.
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Graphical functions

I BA.plot Makes a Bland-Altman plot of two
methods from a data frame with method
comparison data, and computes limits of
agreement. The plotting etc is really done by a
call to

I BlandAltman Draws a Bland-Altman plot and
computes limits of agreement.

I plot.meth Plots all methods against all other,
both as a scatter plot and as a Bland-Altman
plot.

I bothlines Adds regression lines of y on x and
vice versa to a scatter plot.
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Data manipulating functions

I make.repl Generates a repl column in a data
frame with columns meth, item and y.

I perm.repl Randomly permutes replicates
within (method,item) and assigns new replicate
numbers.

I to.wide Transforms a data frame in the long
form to the wide form.

I to.long Reverses the result of to.wide.
I tab.repl Tabulates replicates by methods and

items.
I sim.meth Simulates a dataset from a method

comparison experiment for given parameters for
bias, exchangeability and variances.
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Analysis functions

I Deming Performs Deming regression, i.e.
regression with errors in both variables.

I BA.est Estimates in the variance components
models underlying the concept of limits of
agreement, and returns the bias and the
variance components. Assumes constant bias
between methods.

I MethComp Estimates via BUGS in the general
model with non-constant bias (and in the
future) possibly non-constant standard
deviations of the variance components.
Produces a MethComp object.
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Reporting functions

These functions all take a MethComp object as
input.

I print.MethComp Prints a table of conversion
equation between methods analyzed, with
prediction standard deviations. Also gives
summaries of the posteriors for the parameters
that constitute the conversion algorithms.

I plot.MethComp Plots the conversion lines
between methods with prediction limits.

I plot.VarComp Plots smoothed posterior
densities for the variance component estimates.
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Does it work?

You should get something reasonable out of this:

library(MethComp)
data(ox)
plot.meth(ox)
plot.meth(perm.repl(ox))
BA.plot(ox)
BA.est(ox)
BA.est(perm.repl(ox))
MethComp(ox,code.only=TRUE)
m1 <- MethComp(ox)
print(m1)
plot(m1)
plot.VarComp(m1)

— if it works we are ready for tomorrow!
Introduction to computing 15/ 64

Any practical examples?
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Comparing two methods with
one measurment on each

Thursday 29 November 2007, morning

Bendix Carstensen

Method Comparison Studies in Practise
28–30 November 2007
Dept. of Medical Epidemiology and Biostatistics,
Karolinska Institutet, Stockholm

Comparing measurement methods

General questions:

I Are results systematically different?

I Can one method safely be replaced by another?

I What is the size of measurement errors?

I Different centres use different methods of
measurement: How can we convert from one
method to another?

Comparing two methods with one measurment on each 17/ 64

Two methods for measuring fat content in

human milk:
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Two methods — one measurement by each

How large is the difference between a measurement
with method 1 and one with method 2 on a
(randomly chosen) person?

Di = y1i − y2i, D̄, s.d.(D)

“Limits of agreement:”

D̄ ± 2× s.d.(D)

95% prediction interval for the difference between a
measurement by method 1 and one by method 2.
[?, ?]
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Limits of agreement: Interpretation

I If a new patient is measured once with each of
the two methods, the difference between the
two values will with 95% probability be within
the limits of agreement.

I This is a prediction interval for a (future)
difference.

I Requires a clinical input:
Are the limits of agreement sufficiently narrow
to make the use of either of the methods
clinically acceptable?

I Is it relevant to test if the mean is 0?
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Limits of agreement: Test?

Testing whether the difference is 0 is a bad idea:

I If the study is sufficiently small this will be
accepted even if the difference is important.

I If the study is sufficiently large this will be
rejected even if the difference is clinically
irrelevant.

I It is an eqivalence problem:
Clinical input is required!
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Limits of agreement:
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Model in “Limits of agreement”

Methods m = 1, . . . ,M , applied to i = 1, . . . , I
individuals:

ymi = αm + µi + emi

emi ∼ N (0, σ2

m) measurement error

I Two-way analysis of variance model, with
unequal variances in columns.

I Different variances are not identifiable without
replicate measurements for M = 2 because the
variances cannot be separated.

Models 23/ 64

Limits of agreement:

Unequal variances induce correlation between Di

and Ai:

cov(Di, Ai) =
1

2
(σ2

x − σ2

y) 6= 0 if σx 6= σy

In correlation terms:

ρ(D, A) =
1

2

σ2

x − σ2

y

σ2
x + σ2

y

i.e. the correlation depends on whether the
difference between the variances is large relative to
the sizes of the two.
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Limits of agreement:

Usually interpreted as the likely differnence between
two future measurements, one with each method:

ŷ2 − y1 = D̂ = α2 − α1 ± 1.96 s.d.(D)

But it can of course also be converted to a
prediction interval for y2 given y1:

ŷ2|y1 = α2 − α1 + y1 ± 1.96 s.d.(D)

Models 25/ 64

Repeatability and
reproducibility

Thursday 29 November 2007, morning

Bendix Carstensen

Method Comparison Studies in Practise
28–30 November 2007
Dept. of Medical Epidemiology and Biostatistics,
Karolinska Institutet, Stockholm

Accuracy of a measurement method

I Repeatability:
The accuracy of the method under exactly
similar circumstances; i.e. the same lab, the
same technician, and the same day.
(Repeatability conditions)

I Reproducibility:
The accuracy of the method under comparable
circumstances, i.e. the same machinery, the
same kit, but possibly different days or
laboratories or technicians.
(Reproducibility conditions)
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Quantification of accuracy

I Upper limit of a 95% confidence interval for
the difference between two measurments.

I Suppose the variance of the measurement is σ2:

var(ymi1 − ymi2) = 2σ2

i.e the standard error is
√

2σ, and a confidnece
interval for the difference:

0± 1.96×
√

2σ = 0± 2.772σ ≈ 2.8σ

I This is called the reproducibility coefficient or
simply the reproducibility. (The number 2.8 is
used as a convenient approximation).
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Quantification of accuracy

I Where do we get the σ?

I Repeat measurements on the same item (or
even better) several items.

I The conditions under which the repeat
(replicate) measurements are taken determines
whether we are estimating repeatability or
reproducibility.

I In larger experiments we must consider the
exchangeability of the replicates — i.e. which
replicates are done under (exactly) similar
conditions and which are not.

Repeatability and reproducibility 28/ 64

Comparing two methods with
replicate measurements

Thursday 29 November 2007, morning

Bendix Carstensen

Method Comparison Studies in Practise
28–30 November 2007
Dept. of Medical Epidemiology and Biostatistics,
Karolinska Institutet, Stockholm



Extension of the model:

replicate measurements

ymir = αm + µi + cmi + emir

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

I Replicates within (m, i) is needed to separate τ
and σ.

I Even with replicates, the τs are only estimable
if M > 2.

I Still assumes that the difference between
methods is constant.

I Assumes exchangeability of replicates.
Comparing two methods with replicate measurements 29/ 64

Extension of the model:

replicate measurements
ymir = αm + µi + air + cmi + emir

s.d.(ari) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

I Still assumes that the difference between
methods is constant.

I Replicates are linked between methods:
air is common across methods, i.e. the first
replicate on a person is made under similar
conditions for all methods (i.e. at a specific
day or the like).

Comparing two methods with replicate measurements 30/ 64

Replicate measurements

Two approaches to limits of agreement with
replicate measurements:

1. Take means over replicates within each method
by item stratum.

2. Replicates within item are taken as items.

Comparing two methods with replicate measurements 31/ 64



Oximetry data
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Oximetry data
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Oximetry data
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Replicate measurements

I The limits of agreement should still be for
difference between future single measurements.

I Analysis based on the means of replicates is
therefore wrong:

I Model:

ymir = αm + µi + air + cmi + emir

I var(y1jr − y2jr) = τ 2

1
+ τ 2

2
+ σ2

1
+ σ2

2

— note that the term air − air cancels because
we are referring to the same replicate.
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Wrong or almost right

In the model the correct limits of agreement would
be:

α1 − α2 ± 1.96
√

τ 2

1
+ τ 2

2
+ σ2

1
+ σ2

2

If we are using means of replicates to form the
differences we have:

d̄i = ȳ1i· − ȳ2i· = α1 − α2 +

∑

r air

R1i

−
∑

r air

R2i

+c1i − c2i +

∑

r e1ir

R1i

−
∑

r e2ir

R2i
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The terms with air are only relevant for linked
replicates in which case R1i = R2i and therefore the
term vanishes. Thus:

var(d̄i) = τ 2

1
+τ 2

2
+σ2

1
/R1i+σ2

2
/R2i < τ 2

1
+τ 2

2
+σ2

1
+σ2

2

so the limits of agreement calculated based on the
means are much too narrow as prediction limits for
differences between future single measurements.
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(Linked) replicates as items

If replicates are taken as items, then the calculated
differences are:

dir = y1ir − y2ir = α1 − α2 + c1i − c2i + e1ir − e2ir

which has variance τ 2

1
+ τ 2

2
+ σ2

1
+ σ2

2
, and so gives

the correct limits of agreement. However, the
differences are not independent:

cov(dir, dis) = τ 2

1
+ τ 2

2

Negligible if the residual variances are very large
compared to the interaction, variance likely to be
only slightly downwards biased.
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Exchangeable replicates as items?

If replicates are exchangeable it is not clear how to
produce the differences using replicates as items.

If replicates are paired at random (se the function
perm.repl), the variance will still be correct using
the model without the i× r interaction term (air):

var(y1ir − y2is) = τ 2

1
+ σ2

1
+ τ 2

2
+ σ2

2

Differences will be positively correlated within item:

cov(y1ir − y2is, y1it − y2iu) = τ 2

1
+ τ 2

2

— slight underestimate of the true variance.
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Recommandattion

I Fit the correct model, and get the estimates
fron that, e.g. by using BA.est.

I If you must:
I Use linked replicates as item.
I If replicates are not linked; make a random linking.

Note: If this give a substantially different picture
than using the original replicate numbering as
linking key, there might be something fishy about
the data.
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Oximetry data
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Extension of the model:

ymir = αm + µi + air + cmi + dmr + emir

s.d.(air) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(dmr) = νm — m× r

s.d.(emir) = σm — measurement error

Method, Item, Replicate

I 1 3-way interaction

I 3 2-way interactions

What part of the interactions should be systematic
(fixed) and what part should be random?
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(m, r) - between replicates within method

This effect has M ×R levels, usually a rather small
number.

This effect will therefore normally be modelled as a
fixed effect, but not necessarily with M ×R
parameters, presumably fewer.

If replicates are times of sampling or analysis, we
may consider different time trends for each method,
e.g.

dmr = γmtr

A random m× r-effect would be hard to interpret.
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(i, r) - between replicates within individual

Observations with same (i, r) — but different
method — will be correlated.

Use if all methods are applied to each item at

I different times

I at different locations

I at different conditions

This means there is a minimal structure to
replicates — they are linked.

There might be further structure, e.g. a systematic
effect of a time.
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(m, i) - between methods within individual

This is what is often called a “matrix” effect.

Matrix in the chemical sense: The surrounding
matter (“matrix”) in which the stuff of interest is
dissolved.

Represents random effects of items reacting
differently on each measurement method.

Logical to require that the variance of these
methods was allowed to differ between methods.
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Variance component model!

ymir = αm + µi + air + cmi + emir

s.d.(air) = ω — between replicates

s.d.(cmi) = τm — “matrix”-effect

s.d.(emir) = σm — measurement error

Note we do not consider the method by replicate
interaction any more.

The model is a (standard) variance component
model, where two of the variance components
depend on method.
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Fitting the variance component model

Complicated and counter-intuitive in R:

> library( nlme )
> lme( y ~ meth + item,

random = list( item = pdIdent(~meth - 1),
repl = ~1),

weights = varIdent(form = ~1 | meth),
data = ox)
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Random effects:
Formula: ~meth - 1 | item
Structure: Multiple of an Identity

methCO methpulse
StdDev: 2.928042 2.928042

Formula: ~1 | repl %in% item
(Intercept) Residual

StdDev: 3.415692 2.224868

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | meth
Parameter estimates:

CO pulse
1.000000 1.795365
Number of Observations: 354
Number of Groups:

item repl %in% item
61 177
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Tease out variances for later use?

Even worse.

Therefore it has been packaged in a function that
calls lme and then tease out the relevant
parameters.

> BA.est(ox)
$bias

CO pulse
0.000000 -2.470446

$sd.s
MxI.CO MxI.pulse IxR resid.CO resid.pulse

2.928042 2.928042 3.415692 2.224868 3.994451

Warning message:
In pt(q, df, lower.tail, log.p) : NaNs produced
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Extension with non-constant bias

ymir = αm + βmµi + random effects

There is now a scaling between the methods.

Methods do not measure on the same scale — the
relative scaling is estimated, between method 1 and
2 the scale is β2/β1.

Consequence: Multiplication of all measurements on
one method by a fixed number does not change
results of analysis:

The corresponding β is multiplied by the same
factor as is the variance components for this
method.
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Variance components

All two-way interactions:

ymir = αm + βm(µi + air) + cmi + dmr + emir

The random effects cmi, dmr and emir have
variances specific for each method.

But air does not depend on m — must be scaled to
each of the metods by the corresponding β.

Implies that ω = s.d.(air) is irrelevant — the scale
is arbitrary. The relevant quantities are βmω — the
between replicate variation within item as measured

on the mth scale.
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Variance components

Method, Item, Replicate.

ymir = αm + βm(µi + air) + cmi + dmr + emir

s.d.(cmi) = τm

Matrix-effect: Each item reacts differently to each
method.

If only two methods compared:
τ1 and τ2 cannot be separated:

ymir = αm + βm(µi + air + cmi) + dmr + emir

s.d.(cmi) = τ
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Variance components

Method, Item, Replicate.

ymir = αm + βm(µi + air) + cmi + dmr + emir

s.d.(dmr) = νm

Number of methods and replicates are normally
small.

More likely to be included as a fixed effect, for
example as specific effects of analysis day for each
method.
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Variance components

Method, Item, Replicate.

ymir = αm + βm(µi + air) + cmi + dmr + emir

s.d.(air) = ω

Common across methods — must be scaled relative
to the methods.

Included if replicates are linked across methods, e.g.
if there is a sequence in the replicates.

The relevant quantities to reports are βmω — the
s.d. on the scale of the mth method.
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Predicting method 2 from method 1

y10r = α1 + β1(µ0 + a0r) + c10 + e10r

y20r = α2 + β2(µ0 + a0r) + c20 + e20r

⇓
y20r = α2 +

β2

β1

(y10r − α1 − c10 − e10r)

+ c20 + e20r

The random effects have expectation 0, so:

E(y20r|y10r) = ŷ20r = α2 +
β2

β1

(yk0r − α1)
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y20r = α2 +
β2

β1

(y10r − α1 − c10 − e10r)

+ c20 + e20r

var(ŷ20r|y10r) =

(

β2

β1

)2

(τ 2

1
+ σ2

1
) + (τ 2

2
+ σ2

2
)

The slope of the prediction line from method 1 to
method 2 is β2/β1.

The width of the prediction interval is:

2× 1.96×
√

(

β2

β1

)2

(τ 2

1
+ σ2

1
) + (τ 2

2
+ σ2

2
)
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If we do the prediction the other way round (y1|y2)
we get the same relationship i.e. a line with the
inverse slope, β1/β2.

The width of the prediction interval in this direction
is:

2× 1.96×
√

(τ 2

1
+ σ2

1
) +

(

β1

β2

)2

(τ 2

2
+ σ2

2
)

= 2× 1.96× β1

β2

√

(

β2

β1

)2

(τ 2

1
+ σ2

1
) + (τ 2

2
+ σ2

2
)

i.e. if we draw the prediction limits as straight lines
they can be used both ways.
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C0 = −4.33 + 1.10 pulse  (8.49)

pulse = 3.94 + 0.91 CO  (7.61)
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What happened to the curvature?
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Usually the prediction
limits are curved:

ŷ|x± 1.96× σ̂
√

1 + x′x

In our prediction we have ignored the last term
(x′x), i.e. effectively assuming that there is no
estimation error on α2·1 and β2·1.

Conversion between methods 60/ 64

Variance components

Friday 30 November 2007, morning

Bendix Carstensen

Method Comparison Studies in Practise
28–30 November 2007
Dept. of Medical Epidemiology and Biostatistics,
Karolinska Institutet, Stockholm



Variance components

ymir = αm + βm(µi + air) + cmi + emir

3 variance components / random effects:

I air: between replicates within item, ω2

βmω is the relevant quantity.

I cmi: matrix effect τ 2

m

τm is the relevant quantity.

I emir: measurement error, residual variation σ2

m

σm is the relevant quantity.
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Variance components

ymir = αm + βm(µi + air) + cmi + emir

The total variance of a measurement is:

√

β2
mω2 + τ 2

m + σ2
m

These are the variance components reported by
print.MethComp and shown by plot.VarComp.
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Repeatabiliy and reproducibility

Repeatability is based on the difference between
measurements made under comparable, though not
exactly identical conditions.

Reproducibility is based on the difference between
measurements made under comparable, though not
exactly identical conditions.

This is a different setting from the one underlying
the modelling of data from a comparison
experiment.

The exchangeability has no meaning, we are
discussing future measurements in different
circumstances.
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Repeatabiliy and reproducibility

Repeatability: 2.8σm:
same individual, same replicate, but not considering
the variation that constitute differences between
replicates in the experiment.

Hence reproducibility is not estimable from a
classical experiment, unless an extra layer of
replication is introduced — i.e. different
laboratories.
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