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Measuring agreement in method comparison
studies

dJ Martin Bland Department of Public Health Sciences, St George’s Hospital Medical School,
London, UK and Douglas G Altman ICRF Medical Statistics Group, Centre for Statistics in
Medicine, Institute of Health Sciences, Oxford, UK

Agreement between two methods of clinical measurement can be quantified using the differences between
observations made using the two methods on the same subjects. The 95% limits of agreement, estimated
by mean difference £ 1.96 standard deviation of the differences, provide an interval within which 95% of
differences between measurements by the two methods are expected to lie. We describe how graphical
methods can be used to investigate the assumptions of the method and we also give confidence intervals.
We extend the basic approach to data where there is a relationship between difference and magnitude,
both with a simple logarithmic transformation approach and a new, more general, regression approach.
We discuss the importance of the repeatability of each method separately and compare an estimate of this
to the limits of agreement. We extend the limits of agreement approach to data with repeated
measurements, proposing new estimates for equal numbers of replicates by each method on each subject,
for unequal numbers of replicates, and for replicated data collected in pairs, where the underlying value of
the quantity being measured is changing. Finally, we describe a nonparametric approach to comparing
methods.

1 The method comparison problem

In clinical medicine we often wish to measure quantities in the living body, such as
cardiac stroke volume or blood pressure. These can be extremely difficult or
impossible to measure directly without adverse effects on the subject and so their
true values remain unknown. Instead we have indirect methods of measurement, and
when a new method is proposed we can assess its value by comparison only with other
established techniques rather than with the true quantity being measured. We cannot
be certain that either method gives us an unequivocally correct measurement and we
try to assess the degree of agreement between them. The standard method is
sometimes known as the ‘gold standard’, but this does not — or should not — imply that
it is measured without error.

Some lack of agreement between different methods of measurement is inevitable.
What matters is the amount by which methods disagree. We want to know by how
much the new method is likely to differ from the old, so that if this is not enough to
cause problems in clinical interpretation we can replace the old method by the new, or
even use the two interchangeably. For example, if a new machine for measuring blood
pressure were unlikely to give readings for a subject which differed by more than, say,
10 mmHg from those obtained using a sphygmomanometer, we could rely on measure-
ments made by the new machine, as differences smaller than this would not materially
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affect decisions as to management. On the other hand, differences of 30 mmHg or
more would not be satisfactory as an error of this magnitude could easily lead to a
change in patient management. How far apart measurements can be without leading
to problems will depend on the use to which the result is put, and is a question of
clinical judgement. Statistical methods cannot answer such a question. Methods which
agree well enough for one purpose may not agree well enough for another. Ideally, we
should define satisfactory agreement in advance.

In this paper we describe an approach to analysing such data, using simple
graphical techniques and elementary statistical calculations.!” Our approach is based
on quantifying the variation in between-method differences for individual patients.
We provide a method which is simple for medical researchers to use, requiring only
basic statistical software. It gives estimates which are easy to interpret and in the same
units as the original observations. We concentrate on the interpretation of the
individual measurement on the individual patient.

We extend the approach to the case where the between-method differences vary with
the size of the measurement, and we show how to compare methods when replicated
measurements are available. We also describe a nonparametric approach for use when
there may be occasional extreme deviations between the methods.

2 Limits of agreement

We want a measure of agreement which is easy to estimate and to interpret for a
measurement on an individual patient. An obvious starting point is the difference
between measurements by the two methods on the same subject. There may be a
consistent tendency for one method to exceed the other. We shall call this the bias and
estimate it by the mean difference. There will also be variation about this mean, which
we can estimate by the standard deviation of the differences. These estimates are
meaningful only if we can assume bias and variability are uniform throughout the
range of measurement, assumptions which can be checked graphically (Section 2.1).

Table 1 shows a set of systolic blood pressure data from a study in which simul-
taneous measurements were made by each of two experienced observers (denoted ] and
R) using a sphygmomanometer and by a semi-automatic blood pressure monitor
(denoted S). Three sets of readings were made in quick succession. We shall start by
considering only the first measurement by observer ] and the machine (i.e. J1 and SI)
to illustrate the analysis of unreplicated data (Figure 1).

The mean difference (observer minus machine) is d = —16.29 mmHg and the
standard deviation of the differences is s; = 19.61 mmHg. If the differences are
normally distributed, we would expect 95% of the differences to lie between d — 1.96s,
and d + 1.96s; (we can use the approximation d & 2s; with minimal loss of accuracy).
We can then say that nearly all pairs of measurements by the two methods will be
closer together than these extreme values, which we call 95% limits of agreement. These
values define the range within which most differences between measurements
by the two methods will lie. For the blood pressure data these values are
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Systolic blood pressure measurements made simultaneously by two observers (J and R) and an
automatic blood pressure measuring machine (S), each making three observations in quick succession (data

Subject J1 J2 J3 R1 R2 R3 S1 S2 S3
1 100 106 107 98 98 1 122 128 124
2 108 110 108 108 112 110 121 127 128
3 76 84 82 76 88 82 95 94 98
4 108 104 104 110 100 106 127 127 135
5 124 112 112 128 112 114 140 131 124
6 122 140 124 124 140 126 139 142 136
7 116 108 102 118 110 102 122 112 112
8 114 110 112 112 108 112 130 129 135
9 100 108 112 100 106 112 119 122 122
10 108 92 100 108 98 100 126 113 111
11 100 106 104 102 108 106 107 113 111
12 108 112 122 108 116 120 123 125 125
13 112 112 110 114 112 110 131 129 122
14 104 108 104 104 108 104 123 126 114
15 106 108 102 104 106 102 127 119 126
16 122 122 114 118 122 114 142 133 137
17 100 102 102 102 102 100 104 116 115
18 118 118 120 116 118 118 117 113 112
19 140 134 138 138 136 134 139 127 113

20 150 148 144 148 146 144 143 155 133
21 166 154 154 164 154 148 181 170 166
22 148 156 134 136 154 132 149 156 140
23 174 172 166 170 170 164 173 170 154
24 174 166 150 174 166 154 160 155 170
25 140 144 144 140 144 144 158 152 154
26 128 134 130 128 134 130 139 144 141
27 146 138 140 146 138 138 153 150 154
28 146 152 148 146 152 148 138 144 131
29 220 218 220 220 218 220 228 228 226

30 208 200 192 204 200 190 190 183 184

31 94 84 86 94 84 88 103 99 106

32 114 124 116 112 126 118 131 131 124

33 126 120 122 124 120 120 131 123 124

34 124 124 132 126 126 120 126 129 125

35 110 120 128 110 122 126 121 114 125

36 90 90 94 88 88 94 97 94 96

37 106 106 110 106 108 110 116 121 127

38 218 202 208 218 200 206 215 201 207

39 130 128 130 128 126 128 141 133 146

40 136 136 130 136 138 128 153 143 138

41 100 96 88 100 96 86 113 107 102

42 100 98 88 100 98 88 109 105 97

43 124 116 122 126 116 122 145 102 137

44 164 168 154 164 168 154 192 178 171

45 100 102 100 100 104 102 112 116 116

46 136 126 122 136 124 122 152 144 147

47 114 108 122 114 108 122 141 141 137

48 148 120 132 146 130 132 206 188 166

49 160 150 148 160 152 146 151 147 136

50 84 92 98 86 92 98 112 125 124
51 156 162 162 156 158 162 162 165 189
52 110 98 98 108 100 98 117 118 109
53 100 106 106 100 108 108 119 131 124
54 100 102 94 100 102 96 136 116 113
55 86 74 76 88 76 76 112 115 104
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Table 1 Continued

Subject J1 J2 J3 R1 R2 R3 S1 S2 S3
56 106 100 110 106 100 108 120 118 132
57 108 110 106 106 118 106 117 118 115
58 168 188 178 170 188 182 194 191 196
59 166 150 154 164 150 154 167 160 161
60 146 142 132 144 142 130 173 161 154
61 204 198 188 206 198 188 228 218 189
62 96 94 86 96 94 84 77 89 101
63 134 126 124 132 126 124 154 156 141
64 138 144 140 140 142 138 154 155 148
65 134 136 142 136 134 140 145 154 166
66 156 160 154 156 162 156 200 180 179
67 124 138 138 122 140 136 188 147 139
68 114 110 114 112 114 114 149 217 192
69 112 116 122 112 114 124 136 132 133
70 112 116 134 114 114 136 128 125 142
71 202 220 228 200 220 226 204 222 224
72 132 136 134 134 136 132 184 187 192
73 158 162 152 158 164 150 163 160 152
74 88 76 88 90 76 86 93 88 88
75 170 174 176 172 174 178 178 181 181
76 182 176 180 184 174 178 202 199 195
77 112 114 124 112 112 126 162 166 148
78 120 118 120 118 116 120 227 227 219
79 110 108 106 110 108 106 133 127 126
80 112 112 106 112 110 106 202 190 213
81 154 134 130 156 136 132 158 121 134
82 116 112 94 118 114 96 124 149 137
83 108 110 114 106 110 114 114 118 126
84 106 98 100 104 100 100 137 135 134
85 122 112 112 122 114 114 121 123 128
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Figure 1 Systolic blood pressure measured by observer J using a sphygmomanometer and by machine S,
with the line of equality
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—16.29 — 1.96 x 19.61 and —16.29 + 1.96 x 19.61 mmHg or —54.7 and +22.1 mmHg.
Provided differences within the observed limits of agreement would not be clinically
important we could use the two measurement methods interchangeably.

Note that despite the superficial similarity these are not the same thing as
confidence limits, but like a reference interval. Of course, we could use some
percentage other than 95% for the limits of agreement, but we find it convenient to
stick with this customary choice.

As we indicated, the calculation of the 95% limits of agreement is based on the
assumption that the differences are normally distributed. Such differences are, in fact,
quite likely to follow a normal distribution. We have removed a lot of the variation
between subjects and are left with the measurement error, which is likely to be normal
anyway. We then added two such errors together which will increase the tendency
towards normality. We can check the distribution of the differences by drawing a
histogram or a normal plot. If the distribution is skewed or has very long tails the
assumption of normality may not be valid. This is perhaps most likely to happen when
the difference and mean are related, in which case corrective action can be taken as
described in Section 3. Further, a non-normal distribution of differences may not be as
serious here as in other statistical contexts. Non-normal distributions are still likely to
have about 5% of observations within about two standard deviations of the mean,
although most of the values outside the limits may be differences in the same
direction. We note that is not necessary for the measurements themselves to follow a
normal distribution. Indeed, they often will not do so as subjects are chosen to give a
wide and uniform distribution of the quantity measured rather than being a random
sample.

If there is a consistent bias it is a simple matter to adjust for it, should it be
necessary, by subtracting the mean difference from the measurements by the new
method. In general, a large s; and hence widely spaced limits of agreement is a much
more serious problem.

In the blood pressure example we can see that there are some very large differences
where the machine gave readings considerably above the sphygmomanometer. There
are in fact still about 5% of values outside the limits of agreement (4/85) but they all
lie below the lower limit. We can evaluate the impact of the two largest, apparently
outlying values (from subjects 78 and 80) by recalculating the limits excluding them.
The mean difference becomes —14.9 mmHg and the 95% limits of agreement are
—43.6 to +15.0 mmHg. The span has reduced from 77 to 59 mmHg, a noticeable but
not particularly large reduction. We do not recommend excluding outliers from
analyses, but it may be useful to assess their influence on the results in this way. We
usually find that this method of analysis is not too sensitive to one or two large
outlying differences.

From Table 1 we can see that these large discrepancies were not due to single odd
readings as the difference was present for all three readings by each method. In the
case of automatic blood pressure measuring machines this phenomenon is quite
common. For this reason a nonparametric approach was developed to handle such
data — we describe this method in Section 6.

As we remarked earlier (Section 1) the decision about what is acceptable agreement
is a clinical one; statistics alone cannot answer the question. From the above
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calculations we can see that the blood pressure machine may give values between
SSmmHg above the sphygmomanometer reading to 22 mmHg below it. Such differen-
ces would be unacceptable for clinical purposes.

2.1 Graphical presentation of agreement

Graphical techniques are especially useful in method comparison studies. Figure 1
shows the measurement by the observer using a sphygmomanometer plotted against
that by the machine. The graph also shows the line of equality, the line all points
would lie on if the two meters always gave exactly the same reading. We do not
calculate or plot a regression line here as we are not concerned with the estimated
prediction of one method by another but with the theoretical relationship of equality
and deviations from it. It is helpful if the horizontal and vertical scales are the same so
that the line of equality will make an angle of 45° to both axes. This makes it easier to
assess visually how well the methods agree. However, when the range of variation of
the measurements is large in comparison with the differences between the methods
this plot may obscure useful information.

A better way of displaying the data is to plot the difference between the
measurements by the two methods for each subject against their mean. This plot for
the blood pressure data (Figure 2) shows explicitly the lack of agreement that is less
obvious in Figure 1. The plot of difference against mean also allows us to investigate
any possible relationship between the discrepancies and the true value. We can
examine the possible relation formally by calculating the rank correlation between the
absolute differences and the average; here Spearman’s rank correlation coefficient is
rs = 0.07. The plot will also show clearly any extreme or outlying observations. It is
often helpful to use the same scale for both axes when plotting differences against
mean values (as in Figure 2). This feature helps to show the discrepancies in relation
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Figure 2 Systolic blood pressure: difference (J—S) versus average of values measured by observer J and
machine S
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Figure 3 Systolic blood pressure: difference (J—S) versus average of values measured by observer J and
machine S with 95% limits of agreement

to the size of the measurement. When methods agree quite closely, however, equal
scaling may be impracticable and useful information will again be obscured. We can
add the 95% limits of agreement to this plot (Figure 3) to provide a good summary
picture.

In such studies we do not know the true values of the quantity we are measuring, so
we use the mean of the measurements by the two methods as our best estimate. It is a
mistake to plot the difference against either value separately, as the difference will be
related to each, a well-known statistical phenomenon.?

2.2 Precision of the estimated limits of agreement

We can calculate standard errors and confidence intervals for the limits of
agreement if we can assume that the differences follow a distribution which is
approximately normal. The variance of d is estimated by sfl/n, where n is the sample
size. Provided the differences are normally distributed, the variance of s; is
approx1mately estimated by sd/Z(n—l) (ThlS because s7 is distributed as
x> x 03/(n—1) and v/x? has approximate variance 1/2.) The mean difference d and

sg are independent. Hence the variance of the limits of agreement is estimated by

Var(d + 1.96s;) = Var(d) + 1.96°Var(sy)

2 2
Sd 2 Sa
=44196"—4 —
n * 2(n —1)

(L, 198N\,
S \n 2mn—1) K
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Unless # is small, this can be approximated closely by

B N 2
Var(d £ 1.965;) = (1 + 1‘26 )%’

2
—2.92%

n
= 1.7128—5

n

Hence, the standard errors of d—196s; and d+ 1.96s; are approximately
1.71s;/+/n = 1.71SE(d). Ninety-five per cent confidence intervals can be calculated
by finding the appropriate point of the ¢ distribution with n — 1 degrees of freedom.
The confidence interval will be ¢ standard errors either side of the observed value.

For the blood pressure data s; = 19.61 mmHg, so the standard error of the bias d is
sq/v/n =19.61/v/85 = 2.13mmHg. For the 95% confidence interval, we have 84
degrees of freedom and t=1.99. Hence the 95% confidence interval for the bias is
—16.29 —1.99 x 2.13 to —16.29 +1.99 x 2.13, giving —20.5 to —12.1mmHg. The
standard error of the 95% limits of agreement is 1.71SE(d) = 3.64 mmHg. The 95%
confidence interval for the lower limit of agreement is —54.7 —1.99 x 3.64 to
—54.74+1.99 x 3.64, giving —61.9 to —47.5mmHg. Similarly the 95% confidence
interval for the upper limit of agreement is 22.1 — 1.99 x 3.64 to 22.1 + 1.99 x 3.64,
giving 14.9 to 29.3 mmHg. These intervals are reasonably narrow, reflecting the quite
large sample size. They show, however, that even on the most optimistic interpretation
there can be considerable discrepancies between the two methods of measurement and
we would conclude that the degree of agreement was not acceptable.

These confidence limits are based on considering only uncertainty due to sampling
error. There is the implicit assumption that the sample of subjects is a representative
one. Further, all readings with the sphygmomanometer were made by a single (skilled)
observer. The calculated uncertainty associated with the limits of agreement is thus
likely to be somewhat optimistic.

3 Relationship between difference and magnitude

In Section 2 we assumed that the mean and standard deviation of the differences are
the same throughout the range of measurement. The most common departure from the
assumptions is an increase in variability of the differences as the magnitude of the
measurement increases. In such cases a plot of one method against the other shows a
spreading out of the data for larger measurements. The mean difference (d) may also
be approximately proportional to the magnitude of the measurement. These effects are
seen even more clearly in the difference versus mean plot. For example, Table 2 shows
measurements of plasma volume expressed as a percentage of the expected value for
normal individuals. The data are plotted in Figure 4(a). It can be seen immediately
that the two methods give systematically different readings, and that all the



Measuring agreement in method comparison studies 143

Table 2 Measurements of plasma volume expressed as a percentage of normal in 99 subjects, using two
alternative sets of normal values due to Nadler and Hurley (data supplied by C Doré, see Cotes et al.?")

Sub Nadler Hurley Sub Nadler Hurley Sub Nadler Hurley
1 56.9 52.9 34 93.5 86.0 67 104.8 97.1
2 63.2 59.2 35 94.5 84.3 68 105.1 97.3
3 65.5 63.0 36 94.6 87.6 69 105.5 95.1
4 73.6 66.2 37 95.0 84.0 70 105.7 95.8
5 741 64.8 38 95.2 85.9 71 106.1 95.5
6 77.1 69.0 39 95.3 84.4 72 106.8 95.9
7 77.3 67.1 40 95.6 85.2 73 107.2 95.4
8 77.5 70.1 41 95.9 8b.2 74 107.4 97.3
9 77.8 69.2 42 96.4 89.2 75 107.5 97.7

10 78.9 73.8 43 97.2 87.8 76 107.5 93.0

11 79.5 71.8 44 97.5 88.0 77 108.0 97.6

12 80.8 73.3 45 97.9 88.7 78 108.2 96.1

13 81.2 73.1 46 98.2 91.2 79 108.6 96.2

14 81.9 74.7 47 98.5 91.8 80 109.1 99.5

15 82.2 74.1 48 98.8 92.5 81 110.1 99.8

16 83.1 741 49 98.9 88.0 82 111.2 105.3

17 84.4 76.0 50 99.0 93.5 83 11.7 103.6

18 84.9 75.4 51 99.3 89.0 84 11.7 100.2

19 86.0 74.6 52 99.3 89.4 85 112.0 100.0

20 86.3 79.2 53 99.9 89.2 86 113.1 98.8

21 86.3 77.8 54 100.1 91.3 87 116.0 110.0

22 86.6 80.8 55 101.0 90.4 88 116.7 103.5

23 86.6 77.6 56 101.0 91.2 89 118.8 109.4

24 86.6 77.5 57 101.5 91.4 90 119.7 1121

25 87.1 78.6 58 101.5 93.0 91 120.7 111.3

26 87.6 78.7 59 101.5 91.2 92 122.8 108.6

27 87.8 81.6 60 101.8 92.0 93 124.7 112.4

28 88.6 79.3 61 101.8 91.8 94 126.4 113.8

29 89.3 78.9 62 102.8 96.8 95 127.6 115.6

30 89.6 85.9 63 102.9 92.8 96 128.2 118.1

31 90.3 80.7 64 103.2 94.0 97 129.6 116.8

32 91.1 80.6 65 103.8 93.5 98 130.4 121.6

33 92.1 82.8 66 104.4 95.8 99 133.2 115.8

observations lie above the line of equality. It is less easy to see that the differences
increase as the plasma volume rises, but a plot of difference versus mean shows such
an effect very clearly (Figure 4b).

We could ignore the relationship between difference and magnitude and proceed as
in Section 2. The analysis will still give limits of agreement which will include most
differences, but they will be wider apart than necessary for small plasma volumes, and
rather narrower than they should be for large plasma volumes. It is better to try to
remove this relationship, either by transformation of the measurements, or, if this
fails, by a more general method.

3.1 Logarithmic transformation

Under these circumstances, logarithmic (log) transformation of both measurements
before analysis will enable the standard approach to be used. The limits of agreement
derived from log transformed data can be back-transformed to give limits for the ratio
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Figure 4 (a) Measurements of plasma volume as listed in Table 2; (b) plot of differences versus average with
95% limits of agreement

of the actual measurements.” While other transformations could in principle be used
(such as taking square roots or reciprocals), only the log transformation allows the
results to be interpreted in relation to the original data. As we think that there is a
clear need in such studies to be able to express the results in relation to the actual
measurements we do not think that any other transformation should be used in this
context.

For the data of Table 2, log transformation is highly successful in producing
differences unrelated to the mean. Figure 5 shows the log transformed data and the
difference versus mean plot with superimposed 95% limits of agreement. The data
clearly meet the requirements of the statistical method very well. The mean difference
(log Nadler — log Hurley) is 0.099 with 95% limits of agreement 0.056 and 0.141.
Because of the high correlation and reasonably large sample size the confidence
intervals for the limits of agreement are narrow. For example, the 95% confidence
interval for the lower limit is from 0.049 to 0.064.

These results relate to differences between log percentages and are not easy to
interpret. As noted above, we can back-transform (antilog) the results to get values
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Figure 5 (a) Measurements of plasma volume after log transformation; (b) Difference between plasma volume
measurements plotted against their average after log, transformation with 95% limits of agreement
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relating to the ratios of measurements by the two methods. The geometric mean ratio
of values by the Nadler and Hurley methods was 1.11 with 95% limits of agreement
1.06 to 1.15. Thus the Nadler method exceeds the Hurley method by between 1.06 and
1.15 times, i.e. by between 6% and 15%, for most measurements.

This example illustrates the importance of both the bias (d) and the standard
deviation of between-method differences (s;). Here there is a clear bias with all
observations lying to one side of the line of equality (Figure 4a). However, because the
scatter around the average difference is rather small we could get excellent agreement
between the two methods if we first applied a conversion factor, multiplying the
Hurley method or dividing the Nadler method by 1.11.

We can make the transformation process more transparent by working directly with
the ratios. Instead of taking logs and calculating differences we can simply calculate
the ratio of the two values for each subject and calculate limits of agreement based on
the mean and SD of these. Figure 6 shows the plot corresponding to this approach,
which is almost identical to Figure 5(b).

The type of plot shown in Figure 6 was suggested as a general purpose approach for
method comparison studies,* although without any suggestion for quantifying the
differences between the methods. Another variation is to plot on the vertical axis the
difference between the methods as a percentage of their average.’

3.2 A regression approach for nonuniform differences

Sometimes the relationship between difference and mean is complicated and log
transformation may not solve the problem. For example, the differences may tend to
be in one direction for low values of the quantity being measured and in the other
direction for high values. For data sets for which log transformation does not remove
the relationship between the differences and the size of the measurement, a plot in the
style of Figure 5(b) is still enormously helpful in comparing the methods. In such
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cases, formal analysis as described in Section 2 will tend to give limits of agreement
which are too far apart rather than too close, and so should not lead to the acceptance
of poor methods of measurement. Nevertheless, it is useful to have better approaches
to deal with such data.

We propose modelling the variability in the SD of the d; directly as a function of the
level of the measurement, using a method based on absolute residuals from a fitted
regression line. If the mean also changes as a function of level we can first model that
relation and then model the SD of the residuals. This approach is based on one used to
derive age-related reference intervals.®

We first consider the mean difference between the methods in relation to the size of
the measurement. We suggested in our first paper on method comparison studies' that
when the agreement between the methods varies as the measurement varies, we can
regress the difference between the methods (D) on the average of the two methods (A).
However, we did not give a worked example, and did not consider there the possibility
that the standard deviation of the differences, sz, might also vary with A. A similar idea
was put forward by Marshall et al.,” who use a more complex method than that
proposed here.

Unless the plot of the data shows clear curvature (which is very unlikely in our
experience) simple linear regression is all that is needed, giving

D =by+bA (3.1)

If the slope b; is not significant then D = d, the mean difference. We have deliberately
not defined what we mean by significant here as we feel that this may require clinical
judgement as well as statistical considerations. If by is significantly different from zero
we obtain the estimated difference between the methods from equation (3.1) for any
true value of the measurement, estimated by A.

Table 3 shows the estimated fat content of human milk (g/100 ml) determined by
the measurement of glycerol released by enzymic hydrolysis of triglycerides and

Table 3 Fat content of human milk determined by enzymic procedure for the determination of triglycerides
and measured by the Standard Gerber method (g/100 ml)®

Trig. Gerber Trig. Gerber Trig. Gerber
0.96 0.85 2.28 217 3.19 3.15
1.16 1.00 2.15 2.20 3.12 3.15
0.97 1.00 2.29 2.28 3.33 3.40
1.01 1.00 2.45 243 3.51 3.42
1.25 1.20 2.40 2.55 3.66 3.62
1.22 1.20 2.79 2.60 3.95 3.95
1.46 1.38 2.77 2.65 4.20 4.27
1.66 1.65 2.64 2.67 4.05 4.30
1.75 1.68 2.73 2.70 4.30 4.35
1.72 1.70 2.67 2.70 4.74 4.75
1.67 1.70 2.61 2.70 4.71 4.79
1.67 1.70 3.01 3.00 4.71 4.80
1.93 1.88 2.93 3.02 4.74 4.80
1.99 2.00 3.18 3.03 5.23 5.42

2.01 2.05 3.18 3.11 6.21 6.20




Measuring agreement in method comparison studies 147

measurements by the standard Gerber method.® Figure 7(a) shows that the two
methods agree closely, but from Figure 7(b) we can see a tendency for the differences
to be in opposite directions for low and high fat content. The variation (SD) of the
differences seems much the same for all levels of fat content. These impressions are
confirmed by regression analyses. The regression of D on A gives

D =0.079 — 0.02834 g/100 ml

as noted by Lucas et al.® The SD of the residuals is 0.08033.

In the second stage of the analysis we consider variation around the line of best
agreement (equation (3.1)). We need to model the scatter of the residuals from model
(3.1) as a function of the size of the measurement (estimated by A). Modelling is
considerably simplified by the assumption that these residuals have a normal
distribution whatever the size of the measurement, which is a fairly natural extension
of the assumption we make already in such analyses. We then regress the absolute
values of the residuals, which we will call R, on A to get

R=c¢y+c4 (32)

If we take a normal distribution with mean zero and variance o2, it is easy to show that
the mean of the absolute values, which follow a half-normal distribution, is o+/2/.
The standard deviation of the residuals is thus obtained by multiplying the fitted
values by +/7/2. The limits of agreement are obtained by combining the two
regression equations (see Altman®).

Although in principle any form of regression model might be fitted here, it is very
likely that if the SD is not constant then linear regression will be adequate to describe
the relationship. If there is no ‘significant’ relation between R and A the estimated
standard deviation is simply the standard deviation of the adjusted differences, the
residuals of equation (3.1).

In the general case where both models (3.1) and (3.2) are used, the expected value of
the difference between methods is given by D =by + b4 and the 95% limits of

T
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- [15] o
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Fat ¢(g/100 ml; Gerber) o Average fat content (g/100 ml)

Figure 7 (a) Fat content of human milk determined by enzymic procedure for the determination of triglycerides
and measured by the standard Gerber method (g/100 ml); (b) plot of difference (Triglyceride—Gerber) against
the average
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Diff. (g/100 ml; Trig-Gerber)

1 2 3 4
Average fat content (g/100 ml)

o4
[5;
o

Figure 8 Regression based limits of agreement for difference in fat content of human milk determined by
Triglyceride and Gerber methods (g/100 ml)

agreement are obtained as
D +1.96y/7/2R =D + 2.46R
or as
bo +b1A £ 2.46{co + 14} (3.3)

Returning to the example, there was no relation between the residuals from the first
regression model and A and so the SD of the adjusted differences is simply the
residual SD from the regression, so that s; = 0.08033. We can thus calculate the
regression based 95% limits of agreement as 0.079 — 0.0283a 4+ 1.96 x 0.08033 g/100
ml, where a is the magnitude (average of methods) of the fat content. These values are
shown in Figure 8. Of course, in clinical practice, when only one method is being used,
the observed value by that method provides the value of a.

4 The importance of repeatability

The comparison of the repeatability of each method is relevant to method comparison
because the repeatabilities of two methods of measurement limit the amount of
agreement which is possible. Curiously, replicate measurements are rarely made in
method comparison studies, so that an important aspect of comparability is often
overlooked. If we have only one measurement using each method on each subject we
cannot tell which method is more repeatable (precise). Lack of repeatability can
interfere with the comparison of two methods because if one method has poor
repeatability, in the sense that there is considerable variation in repeated measure-
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ments on the same subject, the agreement between the two methods is bound to be
poor. Even if the measurements by the two methods agreed very closely on average,
poor repeatability of one method would lead to poor agreement between the methods
for individuals. When the old method has poor repeatability even a new method which
was perfect would not agree with it. Lack of agreement in unreplicated studies may
suggest that the new method cannot be used, but it might be caused by poor
repeatability of the standard method. If both methods have poor repeatability, then
poor agreement is highly likely. For this reason we strongly recommend the
simultaneous estimation of repeatability and agreement by collecting replicated data.

It is important first to clarify exactly what we mean when we refer to replicate
observations. By replicates we mean two or more measurements on the same
individual taken in identical conditions. In general this requirement means that the
measurements are taken in quick succession.

One important feature of replicate observations is that they should be independent
of each other. In essence, this is achieved by ensuring that the observer makes each
measurement independent of knowledge of the previous value(s). This may be difficult
to achieve in practice.

4.1 Estimating repeatability

A very similar analysis to the limits of agreement approach can be applied to
quantify the repeatability of a method from replicated measurements obtained by the
same method. Using one-way analysis of variance, with subject as the factor, we can
estimate the within-subject standard deviation, s, from the square root of the residual
mean square. We can compare the standard deviations of different methods to see
which is more repeatable. Each standard deviation can also be used to calculate limits
within which we expect the differences between two measurements by the same
method to lie. As well as being informative in its own right, the repeatability indicates
a baseline against which to judge between-method variability.

The analysis is simple because we expect the mean difference between replicates to
be zero — we do not usually expect second measurements of the same samples to differ
systematically from first measurements. Indeed, such a systematic difference would
indicate that the values were not true replicates. A plot should show whether the
assumption is reasonable, and also whether the differences are independent of the
mean. If repeatability gets worse as the measurements increase we may need first to log
transform the data in the same way as for comparing methods.

Returning to the blood pressure data shown in Table 1, we can estimate the
repeatability of each method. For observer J using the sphygmomanometer the within-
subject variance is 37.408. Likewise for observer R we have s2 = 37.980 and for the
machine (S) we have szzv = 83.141. We can see that both observers have much better
repeatability than the machine and that their performance is almost identical.

Two readings by the same method will be within 1.96v/2s, or 2.77s, for 95% of
subjects. This value is called the repeatability coefficient. For observer ] using the
sphygmomanometer s, = v/37.408 = 6.116 and so the repeatability coefficient is
2.77 x 6.116 = 16.95 mmHg. For the machine S, s, =/83.141 =9.118 and the
repeatability coefficient is 2.77 x 9.118 = 25.27 mmHg. Thus, the repeatability of the
machine is 50% greater than that of the observer. We can compare these 95%
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repeatability coefficients to the 95% limits of agreement. The 95% limits of agreement
correspond to the interval —2.77s, to 2.77sy,. If these are similar, then the lack of
agreement between the methods is explained by lack of repeatability. If the limits of
agreement are considerably wider than the repeatability would indicate, then there
must be some other factor lowering the agreement between methods.

The use of the within-subject standard deviation does not imply that other
approaches to repeatability, such as intraclass correlation, are not appropriate. The
use of s,, however, facilitates the comparison with the limits of agreement. It also
helps in the interpretation of the individual measurement, being in the same units.

5 Measuring agreement using repeated measurements

When we have repeated measurements by two methods on the same subjects it is
clearly desirable to use all the data when comparing methods. A sensible first step is to
calculate the mean of the replicate measurements by each method on each subject. We
can then use these pairs of means to compare the two methods using the limits of
agreement method. The estimate of bias will be unaffected by the averaging, but the
estimate of the standard deviation of the differences will be too small, because some of
the effect of measurement error has been removed. We want the standard deviation of
differences between single measurements, not between means of several repeats. Here
we describe some methods for handling such data, first for the case with equal
replication and then allowing unequal numbers of replicates.

We assume that even though multiple readings are available the standard clinical
measurement is a single value. Where it is customary to use the average of two or more
measurements in clinical practice (e.g. with peak expiratory flow) the approach
described below would not be used. Rather the limits of agreement method would be
applied directly to the means.

5.1 Equal numbers of replicates

When we make repeated measurements of the same subject by each of two methods,
the measurements by each method will be distributed about the expected measure-
ment by that method for that subject. These means will not necessarily be the same for
the two methods. The difference between method means may vary from subject to
subject. This variability constitutes method times subject interaction. Denote the
measurements on the two methods by X and Y. We are interested in the variance of
the difference between single measurements by each method, D =X —Y. If we
partition the variance for each method we get

Var(X) = 0'[2 + ajzd + Jﬁw

Var(Y) = o? + Uyzl + ayzw

where o7 is the variance of the true values, o7, and oy, are method times subject
interaction terms, and o2, and aﬁw are the within-subject variances from measure-
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ments by the same method, for X and Y, respectively. It follows that the variance of
the between-subject differences for single measurements by each method is

Var(X - Y) =0 = o’ + oy + o2, + ajw (5.1)

We wish to estimate this variance from an analysis of the means of the measurement
for each subject, D = X — Y, that is from Var(X — Y). With this model, the use of the
mean of replicates will reduce the within-subject variance but it will not affect the
interaction terms, which represent patient-specific differences. We thus have

2
. o
Var(X) = o7 + oy + -2
My
where m, is the number of observations on each subject by method X, because only the
within-subject within-method error is being averaged. Similarly

2
_ P P g,
Var(Y) = oy + oy + %

y

o O — ) | O% 2 Uyzw
Var(X — ¥) = Var(D) = s v
ar(X V) = Var(D) = o + %4 o} +

The distribution of D depends only on the errors and interactions, because the true
value is included in both X and Y, which are differenced. It follows from equation (5.1)
that

Var(X —Y) = Var(D) + (1 - mi> o, + (1 - m%) Ty (5.2)

If 52 is the observed variance of the differences between the within-subject means,
Var(X —Y) = o7 is estimated by

1 1
A2 2 2 2
Gy =55+ (l - m—x>sxw + (1 — %>syw (5.3)
In the common case with two replicates of each method we have
2 2
22 S e
5 =98;+ ) + 7

as given by Bland and Altman.? It is easy to see that the method still works when one
method is replicated and the other is not.

For an example, we compare observer | and machine S from Table 1. From Section
4.1 the within-subject variances of the two methods of measuring blood pressure are
37.408 for the sphygmomanometer (observer J) and 83.141 for the machine (S). The
mean difference is —15.62 mmHg. The variance of the differences between-subject
means is s3 = 358.493 and we have my = mg = 3 observations by each method on each
subject. From equation (5.3) the adjusted variance of differences is given by
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1 1
65 =358.493 + <1 - §> x 37.408 + <1 — §) x 83.141 = 438.859

S0 §g = V438.859 = 20.95mmHg and the 95% limits of agreement are
—15.62 — 1.96 x 20.95 = —56.68 and —15.62 + 1.96 x 20.95 = 25.44. This estimate is
very similar to that obtained using a single replicate (Section 2).

An approximate standard error and confidence interval for these limits of agreement
can be found as follows. Provided the measurement errors are normal and inde-
pendent, for n subjects n(m, — 1)s2, /o2, follows a chi-squared distribution with
n(my — 1) degrees of freedom, and so has variance 2n(m, — 1). Hence
2 4

n(myy—w 1) (54)

4
Var(s,) = % and Var(syzw> =

and the variance of the correction term of equation (5.3) is given by

1 1
Var<<1 —m—)sﬁw + (l _m_y>sy2w> —

2 4 2 2 4
L 20¢+ T DI (5.5)
my ) n(my —1) my ) n(my, —1)

Z(H’Lx — 1)0'4 Z(my - l)gﬁw

= 57—+ (5.6)

nm; nm

Similarly, the variance of sé is given by
20%

Var(s?) = —% 5.7
ar(s?) = L (57)

Applying equations (5.6) and (5.7) to equation (5.3) we have

20 2(m, — ot 2(m, —1)o?

Var(e2) = —2d_ 4 2 = Do, my = oy, (5.8)

2 2
n—1 nms nm;
Using the well-known results that

2
Var(f(z)) = (dj;(;)> Var(g)

z=E(2)

and hence that

2
Var(v/z) =~ (2%/5)2—15(5)\/“(2) = 4El(z) Var(z)
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we have for Var(dy)

1 (205 2(m—D)od,  20m — D)o,
Var(64) = 4—0(21 (n — + o~ + -
X y
1 (o3 | (me—Dof, (my—D)oj,
=-— 5 + 5 (5.9)
205 \n—1 nms nm,

The variance of the mean difference d is estimated by 63/n, and mean and standard
deviation of the differences are independent. Substituting the estimates of the
variances in equation (5.9), the variance of the limits of agreement d £ 1.966; is
estimated by

. 72 1.96% [ s — 15t (my— 1)),
Var(d +1.965,) = 24 + = n_d1+(m"nmz)sxw+( ynm2>y (5.10)
94 x y

For m, =m, = 2 this equation becomes

52 2 4 4 4
741966, =4 90 (544w e
Var(d £+ 1.966,) = pals 22 (n Hta T

and for unreplicated observations with m, =m, =1, &; is replaced by the direct
estimate s; and we have

- s2 1962 s*
Var(d £ 1.96s;) =< d
ar( S) n + 252 n—1

_e(L, 1.96
TM\n ' 2(n—1)

as in Section 2.2. These values can be used to estimate 95% confidence intervals for the
limits of agreement.
For the blood pressure data, the variance of the limits of agreement is

Var(D 4 1.96sp) =

438.859 N 1.96° 358.493° N 2 x 37.4078% N 2 x 83.1412°
85 2 x 438.859 84 9 x 85 9 x 85

=11.9941

Hence the standard error is v/11.9941 = 3.463 mmHg. The 95% confidence interval for
the lower limit of agreement is —56.68 — 1.96 x 3.463 to —56.68 + 1.96 x 3.463, giving
—63.5 to —49.9 and for the upper limit of agreement 25.44 —1.96 x 3.463 to
25.44 4+ 1.96 x 3.463, giving 18.70 to 32.2 mmHg.

The standard error here is very similar to that found for only one replicate
(3.64mmHg) in Section 2.2. The use of replicates only reduces that part of the
variation due each method’s lack of precision, and the method times subject



154 JM Bland and DG Altman

interaction component remains. If this is large, e.g. if large discrepancies for a subject
exist in all replicates (as is often the case in our experience) replication does not
improve the precision of the limits of agreement much. We still advocate two
replicates, however, so that method repeatability can be investigated.

This method is different from that in our original paper' which ignored the subject
times method interaction. We now think that approximation was unreasonable and
that the method given here is clearly superior.

5.2 Unequal numbers of replicates

We now consider the case where there are unequal numbers of observations per
subject, m,; and m,; by methods X and Y on subject ¢. Such data can arise, for example,
if patients are measured at regular intervals during a procedure of variable length,
such as surgery. For example, Table 4 shows measurements of cardiac output by two
methods, impedance cardiography (IC) and radionuclide ventriculography (RV), on 12
subjects.” The solution for equally replicated data (equation (5.2)) depends on the well
known result that the variance of the mean of n independent random variables with
the same mean and variance o is o2 /n. If W; is the mean of m; observations with mean

Table 4 Cardiac output by two methods, RV and IS, for 12 subjects (data provided by Dr LS Bowling®)

Sub RV IC Sub RV IC Sub RV IC
1 7.83 6.57 5 3.13 3.03 9 4.48 3.17
1 7.42 5.62 5 2.98 2.86 9 4.92 3.12
1 7.89 6.90 5 2.85 2.77 9 3.97 2.96
1 7.12 6.57 5 3.17 2.46 10 4.22 4.35
1 7.88 6.35 5 3.09 2.32 10 4.65 4.62
2 6.16 4.06 5 3.12 2.43 10 4.74 3.16
2 7.26 4.29 6 5.92 5.90 10 4.44 3.63
2 6.71 4.26 6 6.42 5.81 10 4.50 3.63
2 6.54 4.09 6 5.92 5.70 11 6.78 7.20
3 4.75 4.71 6 6.27 5.76 11 6.07 6.09
3 5.24 5.50 7 7.13 5.09 11 6.562 7.00
3 4.86 5.08 7 6.62 4.63 11 6.42 7.10
3 4.78 5.02 7 6.58 4.61 11 6.41 7.40
3 6.05 6.01 7 6.93 5.09 11 5.76 6.80
3 5.42 5.67 8 4.54 4.72 12 5.06 4.50
4 4.21 4.14 8 4.81 4.61 12 4.72 4.20
4 3.61 4.20 8 5.11 4.36 12 4.90 3.80
4 3.72 4.61 8 5.29 4.20 12 4.80 3.80
4 3.87 4.68 8 5.39 4.36 12 4.90 4.20
4 3.92 5.04 8 5.67 4.20 12 5.10 4.50
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v and variance o2, so having variance o2 /m;, then the expected variance of the means
will be

Var (W) :1<Zi>az (5.11)

n m;

For subject  we have m,; observations by method X and m,; observations by method
Y. For each subject, we calculate the differences between means of measurements by
the two methods and then calculate the variance of these differences. The expected
value of this variance estimate is thus

_ 1 1 1 1
Var(D) = §,+;<Zﬁ>a§w +a;,+ﬁ<2@>a;w (5.12)

X1

Thus we have

Var(D) = Var(D) + (1 —% (Zmixi))aiw + (1 —% (Zmiy))ajw (5.13)

which reduces to equation (5.2) when m,; = m, and m,; = m,.

For the data of Table 4, we must first check the assumption that the variances are
independent of the subject means. For each method separately, we can plot the within-
subject standard deviation against the subject mean. As Figure 9 shows, the
assumption of independence is reasonable for these data. Then, for each subject, we
plot the difference between the means for the two methods against their average
(Figure 10). Again the assumption of independence is reasonable. We next estimate
az,zm and ayzw by one-way analyses of variance for RV and IC separately, giving
St = 0.1072 and syzw = 0.1379.

H(Z50) = 2 (Z5)

In this case
are the same, equal to 0.2097, because the data for each subject are balanced (this need
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Figure 9 Subject standard deviation against subject mean for each method of measurement of cardiac output
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Difference, RV - IC

2 4 6 8
Subject mean cardiac output

Figure 10 Subject difference, RV — IC, against mean

not be the case). The variance of the mean difference between methods for each
subject is 0.9123. To calculate the variance of the difference between single
observations by the two methods, we use equation (5.13). We have

Var(IC — RV) = 0.9123 + (1 — 0.2097) x 0.1072 + (1 — 0.2097) x 0.1379 = 1.1060

The standard deviation of differences between single observations by the two methods
is estimated by 6; = v/1.1060 = 1.0517. The mean difference was 0.7092, so the 95%
limits of agreement for RV — IC are 0.7092 —1.96 x 1.0517 = —1.3521 and
0.7092 +1.96 x 1.0517 = 2.7705. Thus, a measurement by RV is unlikely to exceed a
measurement by IC by more than 2.77, or be more than 1.35 below.

5.3 Replicated data in pairs

The methods of Section 5.1 and Section 5.2 assume that the subject’s true value does
not change between repeated measurements. Sometimes, we are interested in
measuring the instantaneous value of a continually changing quantity. We might
make several pairs of measurements by two methods on each subject, where the
underlying true value changes from pair to pair. We can estimate the limits of
agreement by a components of variance technique. We use the differences for each
pair of measurements. The difference for pair of measurementsj on subject ¢ may be
modelled as

Dj =B+, +Ej;

where B is the constant bias, /; the subjects times methods interaction term, and X;
the random error within the subject for that pair of observations. The variance of Dj; is
thus
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2 _ 2 2
Oq = 041 + Oy

We can estimate aﬁ and aﬁw by components of variance estimation from one way
analysis of variance.'” Suppose that for subject ¢ we have m; pairs of observations and
there are n subjects. We have the within-subject or error mean square MS,, and the
between-subjects mean square MS,. Then the components of variance can be
estimated by 63, = MS,, and

T - om,

The sum of these estimates provides 63. The mean bias is estimated by
(>-mid;)/ (> m;), where d; is the mean difference for subject i. Hence we estimate
the 95% limits of agreement. Methods for the calculation of confidence intervals for
combinations of components of variance are given by Burdick and Graybill.!!

~2 (Zmi)z — Zmlz (MSb _MSw)

6 Nonparametric approach to comparing methods

The between-method differences do not always have a normal distribution. As we
noted in Section 2, in general this will not have a great impact on the limits of
agreement. Nevertheless, if there are one or more extreme discrepancies between the
methods a nonparametric approach may be felt preferable. Such a situation arguably
arises in the evaluation of (semi-) automatic blood pressure recording machines, as
was illustrated by the blood pressure data shown in Figure 1. For this reason, the
British Hypertension Society (BHS) protocol for evaluating these machines
recommended a simple nonparametric method.!?

We can retain the basic approach outlined in Section 2.1 up to and including the
plot of the differences versus mean values of the two methods. There are then two
similar ways of describing such data without assuming a normal distribution of
differences. First, we can calculate the proportion of differences greater than some
reference values (such as 10 mmHg). The reference values can be indicated on the
scatter diagram showing the difference versus the mean. Second, we can calculate the
values outside which a certain proportion (say 10%) of the observations fell. To do this
we simply order the observations and take the range of values remaining after a
percentage (say 5%) of the sample is removed from each end. The centiles can also be
superimposed on the scatter diagram. This second method is effectively a
nonparametric form of the limits of agreement method. The two nonparametric
methods are generally less reliable than those obtained using normal distribution
theory, especially in small samples. Confidence intervals can be constructed using the
standard method for binomial proportions or the standard error of a centile.

The BHS protocol for evaluating blood pressure measuring devices suggested the
use of the first of the above ideas, using the percentage of differences within certain
limits.!? Three such assessments are made, relating to the percentage of differences
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Table 5 Grading of blood pressure devices based on
differences between measurements (in mmHg) by device and
those by sphygmomanometer'?

Difference (mmHg)

Grade <5 <10 <15
A 60 85 95
B 50 75 90
C 40 65 85
D fails to achieve C
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Figure 11 Data from Figure 2 showing differences between methods of 415 mmHg

within 5, 10 and 15 mmHg. Table 5 shows the conditions which the data must meet to
receive a grade of A, B, or C, which were based on what could be achieved using a
sphygmomanometer.

An example is shown in Figure 11, using the same data as are shown in Figure 1.
Only the values of £15 are shown as the spread of differences was so large. For these
data the percentages of between-methods differences within 5, 10 and 15 mmHg were
16%, 35% and 49%, so that the device clearly gets a grade D.

The nonparametric method is disarmingly simple yet provides readily interpreted
results. It has been used before!>!* but apparently only rarely. Perhaps its simplicity
has led to the belief that it is not a proper analysis of the data.
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7 Discussion

Previously, we have described the limits of agreement approach!”? and the
nonparametric variant.!? In this paper we have extended the method in several ways.
We have also described a powerful method for dealing with data where the agreement
varies in a complex way across the range of the measurement and we have described
several approaches for replicated data.

Our approach is based on the philosophy that the key to method comparison studies
is to quantify disagreements between individual measurements. It follows that we do
not see a place for methods of analysis based on hypothesis testing. Agreement is not
something which is present or absent, but something which must be quantified. Nor do
we see a role for methods which lead to global indices, such as correlation coefficients.
They do not help the clinician interpret a measurement, though they have a place in
the study of associated questions such as the validity of measurement methods. Widely
used statistical approaches which we think are misleading include correlation,!!7:18:1?
regression,! and the comparison of means.! Other methods which we think
inappropriate are structural equations'® and intraclass correlation.!®

We advocate the collection of replicated data in method comparison studies, because
this enables us to compare the agreement between the two methods with the
agreement each method has to itself, its repeatability (Section 4.1). Such a study
should be designed to have equal numbers of measurements by each method for each
subject and the methods of Section 5.1 can be used for its analysis. We are rather
disappointed that so few of the studies which cite our work have adopted the use of
replicates. Other studies using replicates have usually adopted this as a convenience
because subjects are hard to find, often because the measurements are very invasive.
For these studies we offer two methods of analysis, one for use when the underlying
value is assumed to remain constant and the other for when it assumed to vary.

We think that any method for analysing such studies should produce numbers
which are useful to and easily understood by the users of measurement methods. For
rapid adoption by the research community they should be applicable using existing
software. The basic method which we have proposed and the extensions to cover the
most frequent situations meets both these criteria. Only the more unusual designs and
relationships between agreement and magnitude described in this paper should
require the intervention of a statistician.
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