
The International Journal of
Biostatistics

Volume 4, Issue 1 2008 Article 16

Statistical Models for Assessing Agreement in
Method Comparison Studies with Replicate

Measurements

Bendix Carstensen∗ Julie Simpson†

Lyle C. Gurrin‡

∗Steno Diabetes Center, bxc@steno.dk
†University of Melbourne, julieas@unimelb.edu.au
‡University of Melbourne, lgurrin@unimelb.edu.au

Copyright c©2008 The Berkeley Electronic Press. All rights reserved.



Statistical Models for Assessing Agreement in
Method Comparison Studies with Replicate

Measurements∗

Bendix Carstensen, Julie Simpson, and Lyle C. Gurrin

Abstract

Method comparison studies are usually analyzed by computing limits of agreement. It is
recommended that replicate measurements be taken by each method, but the resulting data are
more cumbersome to analyze. We discuss the statistical model underlying the classical limits of
agreement and extend it to the case with replicate measurements. As the required code to fit the
models is non-trivial, we provide example computer code to fit the models, and show how to use
the output to derive measures of repeatability and limits of agreement.
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1 Introduction
The problem of comparing two methods of measurement is still occasionally ap-
proached by computing correlation coefficients, despite the fact that this has been
discouraged as irrelevant and misleading for more than 20 years [1, 2]. The pre-
ferred approach is to consider the differences between measurements by the two
methods, and produce prediction limits for the difference between pairs of future
measurements, known as the limits of agreement.

When replicate measurements are taken with each method on each item (i.e.
person or sample) measuring agreement becomes slightly more complicated. Bland
and Altman [3] presented details of various approaches to adopt in this case, mainly
based on calculations that can be performed “by hand”. Such tedious computations
are unnecessary since the underlying concept of limits of agreement is merely a
prediction from a statistical model that can be fitted with modern software for ran-
dom effects models. The estimates of the variance components are given directly
in the program output and can be used directly to generate limits of agreement and
measures of repeatability of the methods.

This has the advantage of bypassing a lot of hand-calculations and makes it
irrelevant whether the design is perfectly balanced or not.

Moreover, setting up a model focuses on the implications of the exchangeability
properties of the replicate measurements, e.g. whether replicates are exchangeable
within each method by item stratum or only within items (paired or linked repli-
cates).

2 Notation
In this paper we set up models for method comparison data with replicate measure-
ments. The models that are needed are models where the residual variances differ
by method, and this type of model is not very clearly presented in the manuals of
any of the major software packages, so therefore we provide the code needed in R,
Stata and SAS.

We assume the data are formatted as a dataset with four columns named:

meth, method of measurement, the number of methods being M ,

item, items (persons, samples) measured by each method, of which there are I ,

repl, replicate indicating repeated measurement of the same item by the same
method, and

y, the measurement.
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We denote the measurement by method m on item i, replicate r by ymir.
When specifying mixed models we use Greek letters for fixed effects and Latin

letters for random effects.

3 The classical approach
The classical setup for comparison of two measurement methods is one where one
measurement by each method is taken on each item, that is, without replicates. In
that case the recommendation is to compute the limits of agreement, a prediction
interval for the difference between future measurements with the two methods on a
new individual.

Underlying this approach is the two-way analysis of variance model:

ymi = αm + µi + emi, emi ∼ N (0, σ2
m)

The differences y1i − y2i have variance σ2
1 + σ2

2 , and the prediction interval for a
difference between two new measurements is therefore:

α1 − α2 ± 1.96×
√
σ2

1 + σ2
2

In practice, the term α1 − α2 is estimated by the mean difference, the last term
is computed as the empirical standard deviation of the differences, and the 1.96 is
replaced by 2 for convenience:

d̄± 2 s.d.(di)

— this is what is commonly termed the limits of agreement.
This is formally incorrect as a prediction interval, since the errors in estimation

of the parameters are not taken into account; formally the 95% prediction interval
for the difference should be computed as:

d̄± t0.975(I − 1)
√

1 + 1/I × s.d.(di)

where I is the number if items. The term t0.975(I − 1)
√

1 + 1/I is 2.05 for I = 30
and less than 2 if I > 61, so the pragmatic method gives slight underestimates of
the width of the limits of agreement for small studies. This is however based on a
heavy exploitation of the normality assumption of the error terms (emi).

There are two rather more interesting assumptions in the model:

1. The variation of the differences is constant over the range of measurements.

2. The difference between the methods is constant over the range of measure-
ments.
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Figure 1: Measurements of subcutaneous fat (in mm) by two different observers.
Data from the Steno Diabetes Center, 2006. The left panel is a Bland-Altman plot
based on the means over replicates with limits of agreement based on these. The
right panel is a Bland-Altman plot where the replicates are randomly matched, and
(item× repl) are used as independent items ignoring the exchangeability. The thick
broken (gray) lines almost on top of the limits of agreement represent the correct
limits of agreement computed from the variance component model in section 4.

These assumptions are checked by making a so-called Bland-Altman plot [2], where
differences are plotted against averages of methods.

Figure 1 presents data from a comparison of measurements of subcutaneous fat
by two observers at the Steno Diabetes Center. Measurements are in millimeters
(mm). Each person is measured three times by each observer. The sequence of
measurements is not considered to be of importance, so the replicate measurements
are exchangeable within person (item) and observer (method).

The graph indicates that the underlying assumptions are reasonably well ful-
filled. The limits of agreement in the first graph are based on the means of repeats
within item and method. These limits of agreement can only be interpreted as
prediction limits for the difference between means of three measurements by both
methods, which is normally not relevant. Hence we must set up a framework that
allows us to address the relevant prediction question based on single measurements.
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4 Models for replicate measurements
To determine prediction limits for differences between single measurements we
must resort to a more elaborate model for our data, where replicate measurements
are explicitly modeled:

ymir = αm + µi + cmi + emir, cmi ∼ N (0, τ 2
m), emir ∼ N (0, σ2

m) (1)

This is a model where the variation between items for method m is captured by τm
and the within item variation by σm. The formulation of this model is general and
refers to comparison of any number of methods — however, if only two methods
are compared, separate values of τ 2

1 and τ 2
2 cannot be estimated, only their average,

so in the case of only two methods we are forced to assume that τ1 = τ2 = τ .
Under this model the limits of agreement should be computed based on the

standard deviation of the difference between a pair of measurements by the two
methods on a new individual, j, say:

var(y1j − y2j) = 2τ 2 + σ2
1 + σ2

2

Therefore the limits of agreement are estimated by:

α̂1 − α̂2 ± 2×
√

2τ̂ 2 + σ̂2
1 + σ̂2

2

It therefore only remains to estimate the variance components in this linear mixed
model, which can be done using standard software. Using the subcutaneous fat
example, we present below the code and output for the statistical packages R, Stata
and SAS.

4.1 Practical estimation of the variance components
4.1.1 Data

For generality the dataset was set up with the variable names meth, item, repl
and y. All three examples below are using this data set-up:

meth item repl y
1 KL 1 1 1.6
2 KL 1 2 1.7
3 KL 1 3 1.7
4 KL 3 1 2.8
5 KL 3 2 2.9
6 KL 3 3 2.8
7 KL 5 1 2.7
8 KL 5 2 2.8
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9 KL 5 3 2.9
...
10 SL 1 1 1.7
11 SL 1 2 1.6
12 SL 1 3 1.7
13 SL 3 1 2.8
14 SL 3 2 2.7
15 SL 3 3 2.8
16 SL 5 1 3.0
17 SL 5 2 2.9
18 SL 5 3 2.9
...

4.1.2 R

The function to use in R is lme, but the syntax is somewhat arcane, see e.g. [6].
If the random argument in lme is a list, and the name of the first element is the
name of a variable in the dataset, all terms are nested in this variable. The example
here requires that the variables meth, item and repl are factors.

> lme( y ˜ meth + item,
+ random = list( item = pdIdent( ˜ meth-1 ) ),
+ weights = varIdent( form = ˜1 | meth ),
+ data=fat
+ )
Linear mixed-effects model fit by REML

Data: fat
Log-restricted-likelihood: 188.3488
Fixed: y ˜ meth + item
(Intercept) methSL item2 item3

1.6896001995 -0.0448837209 -0.8653286307 1.1326030428
...

Random effects:
Formula: ˜meth - 1 | item
Structure: Multiple of an Identity

methKL methSL Residual
StdDev: 0.059556 0.059556 0.07717392

Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | meth
Parameter estimates:

KL SL
1.0000000 0.9383578
Number of Observations: 258
Number of Groups: 43

R gives the interaction s.d. and one of the residual s.d.s in the section named
Random effects:, whereas the ratio of the residual standard deviations is found
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under the section Variance function. In this case the interaction s.d. is
0.059556, the residual s.d. for method KL is 0.077174 and for method SL it is
0.077174 × 0.938358 = 0.072417. The estimated difference in means between
method 1 and 2 is 0.044837, so the limits of agreement are then given by:

0.044883± 2×
√

2× 0.0595562 + 0.0771742 + 0.0724172 = (−0.23, 0.32)

4.1.3 Stata

The function to use in Stata is xtmixed, which is only available as of Stata
version 9, [5, 7]. To calculate separate residual variances for each of the meth-
ods, xtmixed requires generation of new variables that has a unique code for
each (method×item) and each (method×item×replicate) combination. Addition-
ally, xtmixed parametrizes the residual variances, as the variance for the method
with the smallest residual variance and the difference in residual variances between
the two methods. Therefore we must take care to use the method with the smallest
residual variance as the reference. Doing it the wrong way around produces some
warning messages and estimates without standard errors.

Using the var option produces estimates of the variance parameters and not the
sd.s. The nocons option is required to exclude the usual residual variation term
which is no longer required (output truncated to the right):

gen meth1 = ( meth == 1 )
gen MI = item + 100 * meth1
gen MIR = _n

xi: xtmixed y i.meth1 i.item || MI: || MIR:meth1, nocons var

...
------------------------------------------------------------

y | Coef. Std. Err. z P>|z| [95% Co
-----------+------------------------------------------------
_Imeth1_1 | .0448837 .015868 2.83 0.005 .013782
_Iitem_2 | -.8653287 .0735594 -11.76 0.000 -1.00950
_Iitem_3 | 1.132603 .0735594 15.40 0.000 .988429

...
------------------------------------------------------------

Random-effects Parameters | Estimate Std. Err. [95% Co
-----------------------------+------------------------------
MI: Identity var(_cons) | .0035469 .0011984 .001829
-----------------------------+------------------------------
MIR: Identity var(meth1) | .0007116 .0012102 .000025
-----------------------------+------------------------------

var(Residual) | .0052442 .0007997 .003889
------------------------------------------------------------
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The residual variance for method 2 is 0.0052442 and for method 1 0.0052442 +
0.0007116 = 0.0059558, and the method by item interaction variance is 0.0035469.
The estimated difference in means between method 1 and method 2 is 0.0448837,
so the limits of agreement for the difference between method 1 and method 2 are:

0.0448837± 2×
√

2× 0.0035469 + 0.0052442 + 0.0059558 = (−0.23, 0.32)

4.1.4 SAS

The procedure to use is proc mixed[4], and with the generic names of the vari-
ables we use the following code to fit the model (output truncated to the right):
proc mixed data = rdata ;

class meth item ;
model y = meth item / s;
random meth * item ;
repeated item / group = meth ;

run ;

...

Covariance Parameter Estimates

Cov Parm Group Estimate

meth*item 0.003547
item meth 1 0.005956
item meth 2 0.005244
...
Solution for Fixed Effects

Standard
Effect meth item Estimate Error DF t Value

Intercept 1.6277 0.05259 42 30.95
meth 1 0.04488 0.01587 42 2.83
meth 2 0 . . .
item 1 0.01703 0.07356 42 0.23
item 2 -0.8483 0.07356 42 -11.53
item 3 1.1496 0.07356 42 15.63
...

SAS gives the desired variance components directly as in the model formulation
and also the difference between means, so the limits of agreement are:

0.04488± 2×
√

2× 0.003547 + 0.005956 + 0.005244 = (−0.23, 0.32)

Note that SAS requires considerably less fidgeting with variables than do Stata, it
has a syntax that is more in line with the way models are usually specified than that
of R, and it gives estimates of the parameters used in the specification of the model.
No wonder that proc mixed has become a de facto standard for fitting variance
components models!
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4.2 Limits of agreement
The limits of agreement based on the mixed model are shown in the right hand panel
of figure 1. These correct limits are virtually indistinguishable from those based on
a random pairing of replicates within item and using these item by replicate pairings
as observations. We shall return to this point below.

5 Linked replicates
In the example above, we have assumed that the replicates were exchangeable
within each method by item stratum. Sometimes, however, replicates are taken
in parallel by each of the methods, which means that the values are linked by a
common environment; typically time or sampling occasion.

5.1 The oximetry example
An example of this is the oximetry study, done at the Royal Children’s Hospital in
Melbourne to examine the agreement between pulse oximetry and co-oximetry in
small babies. Many were very sick and therefore had very low oxygen saturation
levels — the normal range is between 95 and 100%. Each baby was measured three
times by each method; performed at three different times for each infant.

There were 61 babies in the study, of these, four had only measurements on two
occasions, and one on only one occasion.

Since replicates are linked across methods we need to incorporate this in the
model by including an extra random effect common within each item by replicate
stratum:

ymir = αm + µi + air + cmi + emir,

air ∼ N (0, ω2), cmi ∼ N (0, τ 2
m), emir ∼ N (0, σ2

m)
(2)

Recall that with only two methods we cannot estimate two separate, method-specific
values of τ .

Note that the variance of the extra random effect (air) cannot depend on method,
but in principle it could depend on item-specific features, or some of it might be
taken as a fixed effect, the latter could for example include an effect of time if
replicates were taken at specific times.

When subtracting measurements by the two methods the effects air cancel, so
under this extended model we have the same expression for the variance of the
differences as before:

var(y1j − y2j) = 2τ 2 + σ2
1 + σ2

2,
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so the limits of agreement are again:

α̂1 − α̂2 ± 2×
√

2τ̂ 2 + σ̂2
1 + σ̂2

2

Model (2) differs from the previous model (1) in the estimation of the variance
components. The model where the replicates are non-exchangeable within method
has some of the variation allocated to the item×replicate method.

It should be noted that the model with random effects of both method×item and
item×replicate is a so-called “crossed” model and therefore usually will take longer
time to fit.

5.2 Fitting the model
In the following we briefly indicate the code to fit the model with the crossed ef-
fects of meth×item and item×repl. The full code and the output generated is
shown in the appendix.

5.2.1 R

The convention in the lme syntax is that when the random option is a list and the
first element has the name of a variable from the dataset all the effects are nested in
this. In the example below, both meth and repl are nested in item, i.e. we have
meth×item and item×repl as random effects.

The R-code for fitting the model is:

lme( y ˜ meth + item,
random=list( item = pdIdent( ˜ meth-1 ),

repl = ˜1 ),
weights = varIdent( form = ˜1 | meth ),
data=ox )

5.2.2 Stata

When using Stata we need to generate a few interaction variables prior to calling
xtmixed:

. gen meth1 = (meth==1)

. gen meth2 = (meth==2)

. gen MI = item + 100*meth

. gen IR = item + 100*repl

. gen MIR = _n

. xi:xtmixed y i.meth i.item || _all:R.MI || _all:R.IR ///
|| MIR:meth2, nocons var

9
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5.2.3 SAS

SAS has the absolutely simplest syntax — we just need to add the desired interac-
tion:

proc mixed data = rdata ;
class meth item repl;
model y = meth item / s;
random meth * item item * repl ;
repeated item / group = meth ;

run ;

5.3 Results
For the oximetry data we have the following results for the variance components,
when fitting the correct model as well as the model where we (wrongly) assume
exchangeable replicates:
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Figure 2: The oximetry data. Left panel: Bland-Altman plot for means over repli-
cates (gray), and paired replicates (black). The individual replicates are connected
with a gray line to the mean. Right panel: Bland-Altman plot for the individual
replicates. Gray limits of agreement are based on estimates from a model assuming
exchangeability of replicates within methods, black limits on the correct model for
the linked replicates.
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Model m× i i× r Residual Total
(random eff.) τ ω σ1 σ2 Σ1 Σ2 Limits of agreement

m× i, i× r 2.93 3.42 2.22 3.99 5.02 6.02 2.47 ( −9.87;14.81)
m× i 2.19 4.07 5.24 4.62 5.68 2.47 (−12.18;17.12)

We see that failure to account for the i× r interaction only slightly underestimates
the total s.d.s, Σ1 =

√
τ 2 + ω2 + σ2

1 and Σ2 =
√
τ 2 + ω2 + σ2

2 , but a substantial
part of it is allocated to the wrong variance component, and so produces too wide
limits of agreement.

Failure to take the replication structure into account results in over-estimation
of the prediction interval for the difference between future measurements. This is
illustrated in figure 2, where the left panel shows the limits obtained using classical
methods, and the right panel shows the limits derived from mixed effects mod-
els. The difference between limits obtained by using the linked replicates as items,
and fitting the correct model is very small in this case, whereas the effect of using
means strongly underestimates the limits and failing to take account of the replica-
tion structure in the models strongly overestimates the limits.

6 Repeatability
The limits of agreement are not always the only issue of interest — the assessment
of method specific repeatability and reproducibility are of interest in their own right.
Repeatability can only be assessed when replicate measurements by each method
are available.

The repeatability coefficient for a method is defined as the upper limits of a pre-
diction interval for the absolute difference between two measurements by the same
method on the same item under identical circumstances. If the standard deviation
of a measurement is σ the repeatability coefficient is 2×

√
2σ = 2.83× σ ≈ 2.8σ.

The repeatability of measurement methods is calculated differently under the
two models; under the model assuming exchangeable replicates (1), the repeatabil-
ity is based only on the residual standard deviation, i.e. 2.8σm; under the model for
linked replicates (2) there are two possibilities depending on the circumstances.

If the variation between replicates within item can be considered a part of the
repeatability it will be 2.8

√
ω2 + σ2

m. However, if replicates are taken under sub-
stantially different circumstances, the variance component ω2 may be considered
irrelevant in the repeatability and one would therefore base the repeatability on the
measurement errors alone, i.e. use 2.8σm. In such cases one would presumably
try to model the effects of differing replication circumstances by a systematic ef-
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fect. Hence there is no subject-matter-free way of defining repeatability from the
variance components in the models.

In the oximetry example the measurements were taken rater close in time and
hence it would be natural to include the between replicate variation in the calcula-
tion of repeatability. For co-oximetry the repeatability is 2.8 ×

√
3.422 + 2.222 =

2.8×4.08 = 11.4% and for pulse oximetry it is 2.8×
√

3.422 + 3.992 = 2.8×5.25 =
14.7%. Hence the upper 95% limits for the absolute difference between two repeat
measurements by the two methods is 11.4 and 14.7% respectively, where as the lim-
its of agreement (CO−pulse) are (−9.9; 14.8)%. Thus the discrepancy between the
two methods is largely attributable to the rather poor repeatability of both methods.

This conclusion would clearly not have been possible without taking replicate
measurements by the two methods.

Had we deemed the between replicate variation to be irrelevant, the repeatabili-
ties would have been only 2.8 × 2.22 = 6.2% for CO and 2.8 × 3.99 = 11.2% for
pulse; substantially smaller, but still major contributors to the width of the limits of
agreement.

7 Getting it wrong and getting it almost right
In a dataset with replicate measurements there are two ways to treat the data along
the lines indicated by Bland & Altman [2] which covers the situation with only one
measurement per method and item:

1. Take means over replicates within each method by item stratum.

2. Replicates within item are taken as items.

Suppose that we have the following model (model 2) for the measurements:

ymir = αm + µi + air + cmi + emir,

air ∼ N (0, ω2), cmi ∼ N (0, τ 2
m), emir ∼ N (0, σ2

m)
(3)

Note that we are allowing the interaction between method and item to have separate
variances for each method — with only two methods these cannot be estimated
separately, but they can of course still be used in calculations. The random i × r
interaction term is only relevant if the replicates are linked across methods (paired
replicates).

In the model the correct limits of agreement would be:

α1 − α2 ± 2
√
τ 2
1 + τ 2

2 + σ2
1 + σ2

2
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7.1 Averaging over replicates
If we are using means of replicates to form the differences we have (Rmi is the
number of replicates by method m on item i):

d̄i = ȳ1i· − ȳ2i· = α1 − α2 +

∑
r air

R1i

−
∑

r air

R2i

+ c1i − c2i +

∑
r e1ir

R1i

−
∑

r e2ir

R2i

The terms with air are only relevant for linked replicates in which case R1i = R2i

and therefore the term vanishes. Thus:

var(d̄i) = τ 2
1 + τ 2

2 + σ2
1/R1i + σ2

2/R2i < τ 2
1 + τ 2

2 + σ2
1 + σ2

2

so the limits of agreement calculated based on the means are much too narrow as
prediction limits for differences between future single measurements.

7.2 Replicates as items
If replicates are taken as items, then the calculated differences are:

dir = y1ir − y2ir = α1 − α2 + c1i − c2i + e1ir − e2ir

which has variance τ 2
1 + τ 2

2 + σ2
1 + σ2

2 , and therefore using the empirical variance
of the differences in principle gives the correct limits of agreement. However the
differences are not independent:

cov(dir, dis) = τ 2
1 + τ 2

2 , cor(dir, dis) =
τ 2
1 + τ 2

2

τ 2
1 + τ 2

2 + σ2
1 + σ2

2

This is negligible if the residual variances are very large compared to the interaction,
so the estimate of the “correct” variance based on these differences is likely to be
only slightly downwards biased.

If replicates are exchangeable within method by item strata it is not clear how
to produce the differences — it can be done in a number of different ways since the
replicates can be matched within item in several different ways. If replicates are
paired at random, the variance will still be correct, assuming model (2) (without the
i× r interaction term)

var(y1ir − y2is) = τ 2
1 + σ2

1 + τ 2
2 + σ2

2

but again the differences will be positively correlated within item:

cov(y1ir − y2is, y1it − y2iu) = τ 2
1 + τ 2

2
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so the estimate of τ 2
1 + σ2

1 + τ 2
2 + σ2

2 as the empirical variance of y1ir − y2is for a
random matching of replicates between methods will be an underestimate, albeit not
a large one. In the fat dataset (with exchangeable replicates) the correct upper limit
of agreement based on the model is 0.315, the upper limit based on the numbering
in the dataset is 0.312, but the median upper limit over 1000 random matchings of
replicates within items is 0.309.

8 Conclusion
Based on this, we offer the following general advice in the analysis of method
comparison studies with replicate measurements:

• Do not use hand calculations — they are overly complicated and outdated in
the computer age — software for mixed models was constructed for a reason.

• Set up the correct model, taking the exchangeability structure of the data into
account: If replicates are linked across methods, include the item by replicate
random effect, otherwise not.

• Fit the model and use the estimated parameters (and your subject-matter
knowledge) to draw conclusions based on:

– the limits of agreement between methods

– repeatability of methods

• If you absolutely refuse to use modern statistical software, use (item×replicate)
as items; if replicates are not linked, then make a random pairing. However,
the correlations will bias the limits of agreement downward, and you will
miss important information on the repeatability by not knowing the variance
components. Your analysis will still be suboptimal, but not a totally wrong as
it would be if you used averages over replicates.

Appendix: Programs
In this section we show the total results from fitting the models to the two datasets
by the three packages.
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R
The R-programs are completely self-contained since the two datasets used for il-
lustration are part if the MethComp package. Currently (June 2008) the package is
only available at www.biostat.ku.dk/ bxc/MethComp.

Exchangeable replicates
> library( MethComp )
Loading required package: R2WinBUGS
> library( nlme )
>
> data( fat )
> fat <- data.frame( item=factor(fat$Id),
+ meth=fat$Obs,
+ repl=factor(fat$Rep),
+ y=fat$Sub )
> str( fat )
’data.frame’: 258 obs. of 4 variables:
$ item: Factor w/ 43 levels "1","2","3","4",..: 1 1 1 3 3 3 5 5 5 11 ...
$ meth: Factor w/ 2 levels "KL","SL": 1 1 1 1 1 1 1 1 1 1 ...
$ repl: Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3 1 ...
$ y : num 1.6 1.7 1.7 2.8 2.9 2.8 2.7 2.8 2.9 3.9 ...
>
> # The convention is that within a list in random, the termes subsequent to
> # item are nested within item
>
> lme( y ˜ meth + item,
+ random = list( item = pdIdent( ˜ meth-1 ) ),
+ weights = varIdent( form = ˜1 | meth ),
+ data=fat
+ )
Linear mixed-effects model fit by REML

Data: fat
Log-restricted-likelihood: 188.3488
Fixed: y ˜ meth + item
(Intercept) methSL item2 item3 item4
1.6896001995 -0.0448837209 -0.8653286307 1.1326030428 -1.0077856154

item5 item6 item7 item8 item9
1.2014605811 -0.7673239282 -0.1844287691 -0.2510954358 0.6155712309

item10 item11 item13 item14 item15
-0.5496348547 2.1282212996 -0.6750365145 1.2326030428 -0.9973239282

item16 item17 item18 item19 item20
-0.3851590597 -0.0007302905 -0.0844287691 -0.0836984786 0.1815076070

item21 item22 item24 item25 item27
-0.4347939144 0.2510954358 0.3170318119 0.0496348547 -0.4503651453

item28 item29 item30 item31 item32
-1.0365206086 0.9318727523 0.3163015214 0.0992697095 -1.1891236514

item33 item34 item35 item36 item37
-0.0333333333 2.1163015214 0.8170318119 0.3815076070 1.4666666667

item38 item39 item40 item41 item42
-0.4666666667 -0.7991236514 0.8518257263 2.4148409403 -0.4666666667

item43 item44 item45 item46
-0.1170318119 0.2496348547 0.1481742737 -0.0170318119

Random effects:
Formula: ˜meth - 1 | item
Structure: Multiple of an Identity

methKL methSL Residual
StdDev: 0.059556 0.059556 0.07717392

Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | meth
Parameter estimates:

KL SL
1.0000000 0.9383578
Number of Observations: 258
Number of Groups: 43
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From the output (red entries) we get the following quantities:

αSL − αKL = −0.0448837209
τ = 0.059559

σKL = 0.07717392
σSL/σKL = 0.9383578

Linked replicates
> library( MethComp )
Loading required package: R2WinBUGS
> library( nlme )
>
> data( ox )
> ox$item <- factor(ox$item)
> ox$repl <- factor(ox$repl)
> str( ox )
’data.frame’: 354 obs. of 4 variables:
$ meth: Factor w/ 2 levels "CO","pulse": 1 1 1 1 1 1 1 1 1 1 ...
$ item: Factor w/ 61 levels "1","2","3","4",..: 1 1 1 2 2 2 3 3 3 4 ...
$ repl: Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3 1 ...
$ y : num 78 76.4 77.2 68.7 67.6 68.3 82.9 80.1 80.7 62.3 ...
>
> # The convention is that within a list in random, the termes subsequent to
> # item are nested within item
>
> lme( y ˜ meth + item,
+ random=list( item = pdIdent( ˜ meth-1 ),
+ repl = ˜1 ),
+ weights = varIdent( form = ˜1 | meth ),
+ data=ox
+ )
Linear mixed-effects model fit by REML

Data: ox
Log-restricted-likelihood: -911.7401
Fixed: y ˜ meth + item

(Intercept) methpulse item2 item3 item4 item5
76.0428384 -2.4704462 -7.0216227 5.1497034 -10.7281860 -1.1137199

item6 item7 item8 item9 item10 item11
3.1649924 9.7065633 3.5568599 -4.1821374 -14.4222445 12.7503731

item12 item13 item14 item15 item16 item17
-47.3135668 3.3219575 -1.1293724 6.2565251 -0.5367298 13.9153464

item18 item19 item20 item21 item22 item23
1.5322522 -2.0861271 -1.0351969 6.4653272 -0.4416475 4.5820322

item24 item25 item26 item27 item28 item29
8.2772197 2.1049894 2.7779659 -10.3186089 -10.8197187 0.7833716

item30 item31 item32 item33 item34 item35
2.6444795 -29.2466418 5.6528703 6.8769614 8.7365767 0.9285974

item36 item37 item38 item39 item40 item41
3.0492155 3.6735649 7.5298316 2.7392939 -8.6159587 -0.1044011

item42 item43 item44 item45 item46 item47
-4.3450727 -20.7468236 -16.2943647 2.0329985 4.5130501 3.4254305

item48 item49 item50 item51 item52 item53
-3.0309414 10.4662553 -24.8350417 -20.8508611 -0.3525354 -3.6222924

item54 item55 item56 item57 item58 item59
1.4299082 12.8385572 9.7971680 13.3501148 13.4953406 15.6657386

item60 item61
7.3963452 -1.7503731

Random effects:
Formula: ˜meth - 1 | item
Structure: Multiple of an Identity

methCO methpulse
StdDev: 2.928042 2.928042

Formula: ˜1 | repl %in% item
(Intercept) Residual

StdDev: 3.415692 2.224868

16

The International Journal of Biostatistics, Vol. 4 [2008], Iss. 1, Art. 16

http://www.bepress.com/ijb/vol4/iss1/16



Variance function:
Structure: Different standard deviations per stratum
Formula: ˜1 | meth
Parameter estimates:

CO pulse
1.000000 1.795365
Number of Observations: 354
Number of Groups:

item repl %in% item
61 177

From the output (red entries) we get the following quantities:

αpulse − αCO = −2.4704462
τ = 2.928042
ω = 3.415692

σCO = 2.224868
σpulse/σCO = 1.796365

Stata
Exchangeable replicates
. ** Indicator variable for methods
. ** (for the method with the largest residual variance)
. gen meth1 = ( meth == 1 )
.
. ** Interaction variable for method*item
. gen MI = item + 100 * meth1
.
. ** Generate a variable with a unique code for each
. ** method*item*replicate combination
. gen MIR = _n
.
. ** Linear mixed effects modelling
. xi: xtmixed y i.meth1 i.item || MI: || MIR: meth1, nocons var
i.meth1 _Imeth1_0-1 (naturally coded; _Imeth1_0 omitted)
i.item _Iitem_1-46 (naturally coded; _Iitem_1 omitted)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = 185.333
Iteration 1: log restricted-likelihood = 188.27598
Iteration 2: log restricted-likelihood = 188.34852
Iteration 3: log restricted-likelihood = 188.34884
Iteration 4: log restricted-likelihood = 188.34884

Computing standard errors:

Mixed-effects REML regression Number of obs = 258

-----------------------------------------------------------
| No. of Observations per Group

Group Variable | Groups Minimum Average Maximum
----------------+------------------------------------------

MI | 86 3 3.0 3
MIR | 258 1 1.0 1

-----------------------------------------------------------

Wald chi2(43) = 11799.40
Log restricted-likelihood = 188.34884 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
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y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Imeth1_1 | .0448837 .015868 2.83 0.005 .0137829 .0759845
_Iitem_2 | -.8653287 .0735594 -11.76 0.000 -1.009502 -.7211549
_Iitem_3 | 1.132603 .0735594 15.40 0.000 .9884293 1.276777
_Iitem_4 | -1.007786 .0735594 -13.70 0.000 -1.151959 -.8636119
_Iitem_5 | 1.201461 .0735594 16.33 0.000 1.057287 1.345634
_Iitem_6 | -.7673239 .0735594 -10.43 0.000 -.9114977 -.6231502
_Iitem_7 | -.1844288 .0735594 -2.51 0.012 -.3286025 -.040255
_Iitem_8 | -.2510955 .0735594 -3.41 0.001 -.3952692 -.1069217
_Iitem_9 | .6155712 .0735594 8.37 0.000 .4713975 .759745
_Iitem_10 | -.5496349 .0735594 -7.47 0.000 -.6938086 -.4054611
_Iitem_11 | 2.128221 .0735594 28.93 0.000 1.984048 2.272395
_Iitem_13 | -.6750365 .0735594 -9.18 0.000 -.8192103 -.5308628
_Iitem_14 | 1.232603 .0735594 16.76 0.000 1.088429 1.376777
_Iitem_15 | -.9973239 .0735594 -13.56 0.000 -1.141498 -.8531502
_Iitem_16 | -.3851591 .0735594 -5.24 0.000 -.5293328 -.2409853
_Iitem_17 | -.0007303 .0735594 -0.01 0.992 -.144904 .1434435
_Iitem_18 | -.0844288 .0735594 -1.15 0.251 -.2286025 .059745
_Iitem_19 | -.0836985 .0735594 -1.14 0.255 -.2278723 .0604753
_Iitem_20 | .1815076 .0735594 2.47 0.014 .0373338 .3256814
_Iitem_21 | -.4347939 .0735594 -5.91 0.000 -.5789677 -.2906201
_Iitem_22 | .2510953 .0735594 3.41 0.001 .1069216 .3952691
_Iitem_24 | .3170317 .0735594 4.31 0.000 .172858 .4612055
_Iitem_25 | .0496349 .0735594 0.67 0.500 -.0945389 .1938086
_Iitem_27 | -.4503651 .0735594 -6.12 0.000 -.5945389 -.3061914
_Iitem_28 | -1.036521 .0735594 -14.09 0.000 -1.180694 -.8923469
_Iitem_29 | .9318727 .0735594 12.67 0.000 .787699 1.076047
_Iitem_30 | .3163015 .0735594 4.30 0.000 .1721277 .4604752
_Iitem_31 | .0992697 .0735594 1.35 0.177 -.0449041 .2434435
_Iitem_32 | -1.189124 .0735594 -16.17 0.000 -1.333297 -1.04495
_Iitem_33 | -.0333334 .0735594 -0.45 0.650 -.1775071 .1108404
_Iitem_34 | 2.116302 .0735594 28.77 0.000 1.972128 2.260475
_Iitem_35 | .8170318 .0735594 11.11 0.000 .672858 .9612055
_Iitem_36 | .3815076 .0735594 5.19 0.000 .2373338 .5256814
_Iitem_37 | 1.466667 .0735594 19.94 0.000 1.322493 1.61084
_Iitem_38 | -.4666667 .0735594 -6.34 0.000 -.6108404 -.3224929
_Iitem_39 | -.7991237 .0735594 -10.86 0.000 -.9432975 -.6549499
_Iitem_40 | .8518256 .0735594 11.58 0.000 .7076519 .9959994
_Iitem_41 | 2.414841 .0735594 32.83 0.000 2.270667 2.559015
_Iitem_42 | -.4666667 .0735594 -6.34 0.000 -.6108404 -.3224929
_Iitem_43 | -.1170318 .0735594 -1.59 0.112 -.2612056 .0271419
_Iitem_44 | .2496348 .0735594 3.39 0.001 .105461 .3938086
_Iitem_45 | .1481743 .0735594 2.01 0.044 .0040005 .292348
_Iitem_46 | -.0170318 .0735594 -0.23 0.817 -.1612056 .1271419

_cons | 1.644717 .05259 31.27 0.000 1.541642 1.747791
------------------------------------------------------------------------------

------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+------------------------------------------------
MI: Identity |

var(_cons) | .0035469 .0011984 .0018291 .0068779
-----------------------------+------------------------------------------------
MIR: Identity |

var(meth1) | .0007116 .0012102 .0000254 .0199439
-----------------------------+------------------------------------------------

var(Residual) | .0052442 .0007997 .0038893 .0070711
------------------------------------------------------------------------------
LR test vs. linear regression: chi2(2) = 23.45 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference
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From the output (red entries) we get the following quantities:

αKL − αSL = 0.0448837
τ2 = 0.0035469
σ2

SL = 0.0052442
σ2

KL − σ2
SL = 0.0007116

Linked replicates
. ** Indicator variables for methods
. ** (only that for the method with largest variance is used)
. gen meth1 = (meth==1)
. gen meth2 = (meth==2)

. ** Interaction variables for method*item and item*replicate

. gen MI = item + 100*meth

. gen IR = item + 100*repl

. ** Generate a variable with a unique code for each method*item*replicate combination

. gen MIR = _n

.

. ** Model with random effects for method*item and replicate*item

. xi:xtmixed y i.meth i.item || _all:R.MI || _all:R.IR ///
> || MIR:meth2, nocons var
i.meth _Imeth_1-2 (naturally coded; _Imeth_1 omitted)
i.item _Iitem_1-61 (naturally coded; _Iitem_1 omitted)

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -913.04529
Iteration 1: log restricted-likelihood = -911.85152 (backed up)
Iteration 2: log restricted-likelihood = -911.74102
Iteration 3: log restricted-likelihood = -911.74012
Iteration 4: log restricted-likelihood = -911.74012

Computing standard errors:

Mixed-effects REML regression Number of obs = 354

-----------------------------------------------------------
| No. of Observations per Group

Group Variable | Groups Minimum Average Maximum
----------------+------------------------------------------

_all | 1 354 354.0 354
MIR | 354 1 1.0 1

-----------------------------------------------------------

Wald chi2(61) = 772.87
Log restricted-likelihood = -911.74012 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Imeth_2 | -2.470446 .6332952 -3.90 0.000 -3.711682 -1.22921
_Iitem_2 | -7.021622 4.422289 -1.59 0.112 -15.68915 1.645904
_Iitem_3 | 5.149703 4.422289 1.16 0.244 -3.517823 13.81723
_Iitem_4 | -10.72819 4.422289 -2.43 0.015 -19.39571 -2.060659
_Iitem_5 | -1.113719 4.422289 -0.25 0.801 -9.781245 7.553808
_Iitem_6 | 3.164994 4.422289 0.72 0.474 -5.502532 11.83252
_Iitem_7 | 9.706565 4.422289 2.19 0.028 1.039039 18.37409
_Iitem_8 | 3.55686 4.422289 0.80 0.421 -5.110666 12.22439
_Iitem_9 | -4.182137 4.422289 -0.95 0.344 -12.84966 4.48539
_Iitem_10 | -14.42224 4.422289 -3.26 0.001 -23.08977 -5.754717
_Iitem_11 | 12.75037 4.422289 2.88 0.004 4.082848 21.4179
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_Iitem_12 | -47.31357 4.422289 -10.70 0.000 -55.98109 -38.64604
_Iitem_13 | 3.321958 4.422289 0.75 0.453 -5.345569 11.98948
_Iitem_14 | -1.129371 4.422289 -0.26 0.798 -9.796898 7.538155
_Iitem_15 | 6.256526 4.422289 1.41 0.157 -2.411 14.92405
_Iitem_16 | -.5367311 4.422289 -0.12 0.903 -9.204257 8.130795
_Iitem_17 | 13.91535 4.715682 2.95 0.003 4.672781 23.15791
_Iitem_18 | 1.532253 4.422289 0.35 0.729 -7.135274 10.19978
_Iitem_19 | -2.086126 4.422289 -0.47 0.637 -10.75365 6.5814
_Iitem_20 | -1.035196 4.715682 -0.22 0.826 -10.27776 8.20737
_Iitem_21 | 6.465328 4.422289 1.46 0.144 -2.202198 15.13285
_Iitem_22 | -.4416481 4.422289 -0.10 0.920 -9.109174 8.225878
_Iitem_23 | 4.582033 4.422289 1.04 0.300 -4.085493 13.24956
_Iitem_24 | 8.27722 4.422289 1.87 0.061 -.3903066 16.94475
_Iitem_25 | 2.104989 4.715682 0.45 0.655 -7.137578 11.34756
_Iitem_26 | 2.777965 4.422289 0.63 0.530 -5.889561 11.44549
_Iitem_27 | -10.31861 4.422289 -2.33 0.020 -18.98613 -1.651082
_Iitem_28 | -10.81972 4.422289 -2.45 0.014 -19.48724 -2.152191
_Iitem_29 | .7833705 4.422289 0.18 0.859 -7.884156 9.450897
_Iitem_30 | 2.64448 4.422289 0.60 0.550 -6.023047 11.31201
_Iitem_31 | -29.24664 4.422289 -6.61 0.000 -37.91417 -20.57911
_Iitem_32 | 5.652869 4.422289 1.28 0.201 -3.014657 14.3204
_Iitem_33 | 6.876962 4.422289 1.56 0.120 -1.790565 15.54449
_Iitem_34 | 8.736578 4.422289 1.98 0.048 .0690514 17.4041
_Iitem_35 | .928597 4.422289 0.21 0.834 -7.738929 9.596123
_Iitem_36 | 3.049215 4.422289 0.69 0.491 -5.618312 11.71674
_Iitem_37 | 3.673565 4.422289 0.83 0.406 -4.993961 12.34109
_Iitem_38 | 7.529832 4.422289 1.70 0.089 -1.137694 16.19736
_Iitem_39 | 2.739297 5.492224 0.50 0.618 -8.025264 13.50386
_Iitem_40 | -8.615959 4.422289 -1.95 0.051 -17.28349 .0515677
_Iitem_41 | -.1044024 4.422289 -0.02 0.981 -8.771929 8.563124
_Iitem_42 | -4.345072 4.422289 -0.98 0.326 -13.0126 4.322455
_Iitem_43 | -20.74682 4.422289 -4.69 0.000 -29.41435 -12.0793
_Iitem_44 | -16.29436 4.422289 -3.68 0.000 -24.96189 -7.626837
_Iitem_45 | 2.032999 4.422289 0.46 0.646 -6.634527 10.70053
_Iitem_46 | 4.513051 4.422289 1.02 0.307 -4.154475 13.18058
_Iitem_47 | 3.425431 4.422289 0.77 0.439 -5.242095 12.09296
_Iitem_48 | -3.03094 4.422289 -0.69 0.493 -11.69847 5.636586
_Iitem_49 | 10.46626 4.422289 2.37 0.018 1.798729 19.13378
_Iitem_50 | -24.83504 4.715682 -5.27 0.000 -34.07761 -15.59248
_Iitem_51 | -20.85086 4.422289 -4.71 0.000 -29.51839 -12.18333
_Iitem_52 | -.3525351 4.422289 -0.08 0.936 -9.020062 8.314991
_Iitem_53 | -3.622292 4.422289 -0.82 0.413 -12.28982 5.045235
_Iitem_54 | 1.42991 4.422289 0.32 0.746 -7.237617 10.09744
_Iitem_55 | 12.83856 4.422289 2.90 0.004 4.17103 21.50608
_Iitem_56 | 9.797168 4.422289 2.22 0.027 1.129642 18.46469
_Iitem_57 | 13.35012 4.422289 3.02 0.003 4.68259 22.01764
_Iitem_58 | 13.49534 4.422289 3.05 0.002 4.827816 22.16287
_Iitem_59 | 15.66574 4.422289 3.54 0.000 6.998213 24.33327
_Iitem_60 | 7.396344 4.422289 1.67 0.094 -1.271182 16.06387
_Iitem_61 | -1.750373 4.422289 -0.40 0.692 -10.4179 6.917154

_cons | 76.04284 3.138534 24.23 0.000 69.89142 82.19425
------------------------------------------------------------------------------

------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+------------------------------------------------
_all: Identity |

var(R.MI) | 8.573426 2.25398 5.121191 14.35284
-----------------------------+------------------------------------------------
_all: Identity |

var(R.IR) | 11.66695 2.263471 7.976607 17.06462
-----------------------------+------------------------------------------------
MIR: Identity |

var(meth2) | 11.00559 3.624397 5.771552 20.9862
-----------------------------+------------------------------------------------

var(Residual) | 4.950042 1.784803 2.441726 10.03508
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------------------------------------------------------------------------------
LR test vs. linear regression: chi2(3) = 55.24 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

From the output (red entries) we get the following quantities:

αpulse − αCO = −2.470446
τ2 = 8.573426
ω2 = 11.66695
σ2

CO = 4.950042
σ2

pulse − σ2
CO = 11.00559

SAS
Exchangeable replicates
20 proc mixed data = rdata ;
21 class meth item ;
22 model y = meth item / s;
23 random meth * item ;
24 repeated item / group = meth ;
25 run ;

NOTE: Convergence criteria met.
NOTE: The PROCEDURE MIXED printed pages 1-2.
NOTE: PROCEDURE MIXED used (Total process time):

real time 3.75 seconds
cpu time 1.52 seconds

The Mixed Procedure

Model Information

Data Set WORK.RDATA
Dependent Variable y
Covariance Structure Variance Components
Group Effect meth
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

meth 2 KL SL
item 43 1 2 3 4 5 6 7 8 9 10 11 13 14

15 16 17 18 19 20 21 22 24 25
27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46

Dimensions

Covariance Parameters 3
Columns in X 46
Columns in Z 86
Subjects 1
Max Obs Per Subject 258

Number of Observations
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Number of Observations Read 258
Number of Observations Used 258
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 -353.24387418
1 1 -376.69765836 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Group Estimate

meth*item 0.003547
item meth KL 0.005956
item meth SL 0.005244

Fit Statistics

-2 Res Log Likelihood -376.7
AIC (smaller is better) -370.7
AICC (smaller is better) -370.6
BIC (smaller is better) -363.3

Solution for Fixed Effects

Standard
Effect meth item Estimate Error DF t Value Pr > |t|

Intercept 1.6277 0.05259 42 30.95 <.0001
meth KL 0.04488 0.01587 42 2.83 0.0071
meth SL 0 . . . .
item 1 0.01703 0.07356 42 0.23 0.8180
item 2 -0.8483 0.07356 42 -11.53 <.0001
item 3 1.1496 0.07356 42 15.63 <.0001
item 4 -0.9908 0.07356 42 -13.47 <.0001
item 5 1.2185 0.07356 42 16.56 <.0001
item 6 -0.7503 0.07356 42 -10.20 <.0001
item 7 -0.1674 0.07356 42 -2.28 0.0280
item 8 -0.2341 0.07356 42 -3.18 0.0028
item 9 0.6326 0.07356 42 8.60 <.0001
item 10 -0.5326 0.07356 42 -7.24 <.0001
item 11 2.1453 0.07356 42 29.16 <.0001
item 13 -0.6580 0.07356 42 -8.95 <.0001
item 14 1.2496 0.07356 42 16.99 <.0001
item 15 -0.9803 0.07356 42 -13.33 <.0001
item 16 -0.3681 0.07356 42 -5.00 <.0001
item 17 0.01630 0.07356 42 0.22 0.8257
item 18 -0.06740 0.07356 42 -0.92 0.3648
item 19 -0.06667 0.07356 42 -0.91 0.3699
item 20 0.1985 0.07356 42 2.70 0.0100
item 21 -0.4178 0.07356 42 -5.68 <.0001
item 22 0.2681 0.07356 42 3.65 0.0007
item 24 0.3341 0.07356 42 4.54 <.0001
item 25 0.06667 0.07356 42 0.91 0.3699
item 27 -0.4333 0.07356 42 -5.89 <.0001
item 28 -1.0195 0.07356 42 -13.86 <.0001
item 29 0.9489 0.07356 42 12.90 <.0001
item 30 0.3333 0.07356 42 4.53 <.0001
item 31 0.1163 0.07356 42 1.58 0.1214
item 32 -1.1721 0.07356 42 -15.93 <.0001
item 33 -0.01630 0.07356 42 -0.22 0.8257
item 34 2.1333 0.07356 42 29.00 <.0001
item 35 0.8341 0.07356 42 11.34 <.0001
item 36 0.3985 0.07356 42 5.42 <.0001
item 37 1.4837 0.07356 42 20.17 <.0001
item 38 -0.4496 0.07356 42 -6.11 <.0001
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item 39 -0.7821 0.07356 42 -10.63 <.0001
item 40 0.8689 0.07356 42 11.81 <.0001
item 41 2.4319 0.07356 42 33.06 <.0001
item 42 -0.4496 0.07356 42 -6.11 <.0001
item 43 -0.10000 0.07356 42 -1.36 0.1813
item 44 0.2667 0.07356 42 3.63 0.0008
item 45 0.1652 0.07356 42 2.25 0.0300
item 46 0 . . . .

From the output (red entries) we get the following quantities:

αKL − αSL = 0.04488
τ2 = 0.003547
σ2

KL = 0.005956
σ2

SL = 0.005244

Linked replicates
20 proc mixed data = rdata ;
21 class meth item repl ;
22 model y = meth item / s;
23 random meth*item item*repl ;
24 repeated item / group = meth ;
25 run ;

NOTE: Convergence criteria met.
NOTE: The PROCEDURE MIXED printed pages 1-2.
NOTE: PROCEDURE MIXED used (Total process time):

real time 3:22.36
cpu time 2:51.92

The Mixed Procedure

Model Information

Data Set WORK.RDATA
Dependent Variable y
Covariance Structure Variance Components
Group Effect meth
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

meth 2 CO pu
item 61 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61

repl 3 1 2 3

Dimensions

Covariance Parameters 4
Columns in X 64
Columns in Z 299
Subjects 1
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Max Obs Per Subject 354

Number of Observations

Number of Observations Read 354
Number of Observations Used 354
Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 1878.72378376
1 2 1823.48059503 0.00000054
2 1 1823.48033506 0.00000014
3 1 1823.48031459 0.00000010
4 1 1823.48024763 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Group Estimate

meth*item 8.5734
item*repl 11.6670
item meth CO 4.9500
item meth pu 15.9556

Fit Statistics

-2 Res Log Likelihood 1823.5
AIC (smaller is better) 1831.5
AICC (smaller is better) 1831.6
BIC (smaller is better) 1842.7

Solution for Fixed Effects

Standard
Effect meth item Estimate Error DF t Value Pr > |t|

Intercept 71.8220 3.1482 60 22.81 <.0001
meth CO 2.4704 0.6333 60 3.90 0.0002
meth pu 0 . . . .
item 1 1.7504 4.4223 60 0.40 0.6937
item 2 -5.2713 4.4223 60 -1.19 0.2380
item 3 6.9001 4.4223 60 1.56 0.1239
item 4 -8.9778 4.4223 60 -2.03 0.0468
item 5 0.6367 4.4223 60 0.14 0.8860
item 6 4.9154 4.4223 60 1.11 0.2708
item 7 11.4569 4.4223 60 2.59 0.0120
item 8 5.3072 4.4223 60 1.20 0.2348
item 9 -2.4318 4.4223 60 -0.55 0.5844
item 10 -12.6719 4.4223 60 -2.87 0.0057
item 11 14.5007 4.4223 60 3.28 0.0017
item 12 -45.5632 4.4223 60 -10.30 <.0001
item 13 5.0723 4.4223 60 1.15 0.2559
item 14 0.6210 4.4223 60 0.14 0.8888
item 15 8.0069 4.4223 60 1.81 0.0752
item 16 1.2136 4.4223 60 0.27 0.7847
item 17 15.6657 4.7157 60 3.32 0.0015
item 18 3.2826 4.4223 60 0.74 0.4608
item 19 -0.3358 4.4223 60 -0.08 0.9397
item 20 0.7152 4.7157 60 0.15 0.8800
item 21 8.2157 4.4223 60 1.86 0.0681
item 22 1.3087 4.4223 60 0.30 0.7683
item 23 6.3324 4.4223 60 1.43 0.1574
item 24 10.0276 4.4223 60 2.27 0.0270
item 25 3.8554 4.7157 60 0.82 0.4168
item 26 4.5283 4.4223 60 1.02 0.3100
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item 27 -8.5682 4.4223 60 -1.94 0.0574
item 28 -9.0693 4.4223 60 -2.05 0.0447
item 29 2.5337 4.4223 60 0.57 0.5688
item 30 4.3949 4.4223 60 0.99 0.3243
item 31 -27.4963 4.4223 60 -6.22 <.0001
item 32 7.4032 4.4223 60 1.67 0.0993
item 33 8.6273 4.4223 60 1.95 0.0557
item 34 10.4869 4.4223 60 2.37 0.0209
item 35 2.6790 4.4223 60 0.61 0.5469
item 36 4.7996 4.4223 60 1.09 0.2821
item 37 5.4239 4.4223 60 1.23 0.2248
item 38 9.2802 4.4223 60 2.10 0.0401
item 39 4.4897 5.4922 60 0.82 0.4169
item 40 -6.8656 4.4223 60 -1.55 0.1258
item 41 1.6460 4.4223 60 0.37 0.7111
item 42 -2.5947 4.4223 60 -0.59 0.5596
item 43 -18.9965 4.4223 60 -4.30 <.0001
item 44 -14.5440 4.4223 60 -3.29 0.0017
item 45 3.7834 4.4223 60 0.86 0.3957
item 46 6.2634 4.4223 60 1.42 0.1618
item 47 5.1758 4.4223 60 1.17 0.2465
item 48 -1.2806 4.4223 60 -0.29 0.7731
item 49 12.2166 4.4223 60 2.76 0.0076
item 50 -23.0847 4.7157 60 -4.90 <.0001
item 51 -19.1005 4.4223 60 -4.32 <.0001
item 52 1.3978 4.4223 60 0.32 0.7530
item 53 -1.8719 4.4223 60 -0.42 0.6736
item 54 3.1803 4.4223 60 0.72 0.4748
item 55 14.5889 4.4223 60 3.30 0.0016
item 56 11.5475 4.4223 60 2.61 0.0114
item 57 15.1005 4.4223 60 3.41 0.0012
item 58 15.2457 4.4223 60 3.45 0.0010
item 59 17.4161 4.4223 60 3.94 0.0002
item 60 9.1467 4.4223 60 2.07 0.0429
item 61 0 . . . .

From the output (red entries) we get the following quantities:

αCO − αpulse = 2.4704
τ2 = 8.5734
ω2 = 11.6670
σ2

CO = 4.9500
σ2

pulse = 15.9556
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[6] José C Pinheiro and Douglas M Bates. Mixed-effect models in S and S-PLUS.
Springer Verlag, New York, 2000.

[7] S Rabe-Hesketh and A Skrondal. Multilevel and Longitudinal Modeling Using
Stata. Stata Press, College Station, Texas, USA, 2005.

26

The International Journal of Biostatistics, Vol. 4 [2008], Iss. 1, Art. 16

http://www.bepress.com/ijb/vol4/iss1/16


