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1 Introduction

Method comparison studies atempt to determine the extent of the agreement between
several methods measuring the same quantity. The ultimate goal is to establish prediction
equations that convert from one method to another with confidence limits that reflect the
accuracy of the conversion and account for all relevant sources of variation.

Comparing two methods of measurement is often conducted using the so-called
“Bland-Altman” procedure which first appeared in 1983 [1]. This procedure, where one
plots the difference against the mean for each pair of observations and compute limits of
agreement as prediction limits for future differences between pairs of measurements, has
become the de facto standard for analysis of method comparison studies without replicates
[2]. In a more recent publication [3] Bland & Altman recommended performing replicate
measurements and provided theory and examples for a couple of specific scenarios.

Carstensen [4] outlined a general model for comparing two or more methods of
measurement, linking the mean measurements across each of several methods by linear
functions and allowing arbitrary replication structure. The exchangeability structure of
replicates is captured by two-way interactions between method, item (i.e. person, sample)
and replicate. This approach generates formulae for translating measurements from one
method to another.

In this paper we focus on prediction limits for these translation formulae, in the case
where we have an observed measurement from one method and wish to predict the
corresponding measurements by the other methods. A natural requirement for such
translation formulae and prediction limits is that they behave symmetrically in the
methods compared, such that prediction from method 1 to method 2 and from that
prediction back to method 1 returns the initial observed value on method 1.

The algorithm proposed for fitting the models and obtaining maximum likelihood
estimates of the parameters in [4] is absurdly complicated, especially since the model is but
a nonlinear mixed effects model.

In this paper we use the BUGS software package[5] 1 for estimation. BUGS allows an
implementaion of the model which is symmetric in the methods, even if it is
overparametrized. Moreover BUGS has a facility for incorporating “blank” data arrays for
generating predictions and prediction limits that simultaneouly incorporate parameter
uncertainty and prediction variance, which we use to justify our approach to cmputation of
predictin limits.

We give some illustrative examples and describe the R-package “MethComp” that
generates and runs the BUGS code using either the R2WinBUGS interface between R and
WinBUGS (or, eventually, the BRugs package in R).

2 Notation

We introduce the following naming conventions for the text and R computer program in
the Appendix in order to make it compatible with the notation in [4]. We have data on I

1In this paper we take BUGS as a generic term for implementation of this language and associated MCMC
methods like Classic BUGS, WinBUGS, R2WinBUGS, BRugs and JAGS
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items (in clinical studies this will be the patient) measured using M different methods.
There are Rmi replicates of the measurement on item i by method m. The measurements
are denoted ymir, where the subscripts in the set {m, i, r} denoting method, item and
replicate respectively are always used in the order. In the case of measurements made
without replicates we drop the subscript r but the other two subscripts will always be
present. We make no assumptions about the completeness or regularity of the
observational scheme, but assume that the methods are exchangeable by specifying models
with the same structure for each method. In the specification of the variance-component
models we follow the terminology proposed by Littel et al. [6] where fixed effects are
denoted by Greek letters and random effects by Latin.

3 Limits of agreement and prediction.

The standard setup for comparison of two measurement methods is one where a single
measurement by each method is taken on each item. In that case the recommendation is to
compute the limits of agreement, that is, a prediction interval for the difference between
future measurements taken by each of the two methods on a single, new item.

Underlying this approach is a two-way analysis of variance model:

ymi = αm + µi + emi, emi ∼ N (0, σ2
m), with α2 = 0 for convenience (1)

The differences y1i − y2i have variance σ2
1 + σ2

2, and so the 95% prediction interval for a new
difference is:

α1 − α2 ± 1.96×
√

σ2
1 + σ2

2 = α1 ± 1.96×
√

σ2
1 + σ2

2

In practice the last term is computed as the empirical standard deviation of the differences.
There are two assumptions underlying this model:

1. The mean difference between the methods is constant over the range of
measurements.

2. The variation of the differences is constant over the range of measurements.

These assumptions are normally checked by making a so-called Bland-Altman plot [2],
where differences are plotted against averages of methods for each pair of observations.

The question of predicting a future measurement by method 2, y20, given an
observation by method 1, y10, can be treated in this framework by formulating model (1)
as:

y10 ∼ N (µ0, σ
2
1), y20 ∼ N (µ0 + α, σ2

2) (2)

with y10 and y20 independent. A 95% prediction interval for y20 − y10 is

α± 1.96
√

σ2
1 + σ2

2

which is estimated by the limits of agreement:

d̄± 1.96× s.d.(di), where di = y2i − y1i.
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The distribution of the unobserved measurement y20 is governed by two unknown
parameters, µ0 and α. Since we are dealing with a new item, most likely not drawn from
the same population as the data, we only have one datapoint available for estimating µ0,
namely y10. The maximum likelihood estimate under model (2) is then µ̂0 = y10. The
calibration sample provides data for estimation of α, namely α̂ = d̄. We benefit from using
all of the data in the estimation of α because we have assumed that the relationship
between methods (a constant difference of α) is the same regardless of the value of µ.
Therefore, the estimated mean for the unknown new observation y20 is y10 + d̄. The
variance of this estimator is σ2

1 + (σ2
1 + σ2

2)/N , where N is the number of paired
observations in the calibration sample. Since the variance of (the future observation) y20 is
σ2

2, the prediction interval for y20 will be:

y10 + d̄± 1.96
√

σ2
1 + (σ2

1 + σ2
2)/N + σ2

2 = y10 + d̄± 1.96

√
N + 1

N
(σ2

1 + σ2
2)

This is another way of expressing the limits of agreement as a prediction interval for
y20 − y10: The estimate of the distribution of y20 given y10 is obtained by offsetting the
distribution of y20 − y10 by y10. This is because the µis are not assumed to be drawn from a
population distribution but specified instead by either circumstance or design and that the
assumption of exchangeability with µ0 is not reasonable. The prediction procedure
therefore becomes symmetric in y1 and y2 in the sense that if we first predict y20 from y10

and then predict y1 based on the predicted value of y20, we will end up with the value of
y10 with which we started.

4 Linear relationships between methods

In this section we generalize the framework for method comparison to models that
accommodate more than two methods of measurement, replicates with different
exchangeability structures and linear relationships between methods, instead of adopting
the usual assumption of a constant difference between methods.

4.1 Introduction

The most general model for establishing linear prediction equations between methods
which allows (random) interactions is:

ymir = αm + βm(µi + air + cmi) + dmr + emir (3)

for m = 1, . . . ,M , i = 1, . . . , I and r = 1, . . . , Rmi. In most setups of relevance, I will be
much larger than M and R; the latter two will typically be smaller than 5. The parameter
µi is the underlying (but unobserved) true measurement value for item i, and αm and βm

are the parameters that defines the linear relationship between µi and the mean
measurement of item i made by method m. The remaining parameters are assumed to be
normally distributed, zero mean random effects:

• emir is the residual error, with method-specific standard deviation σm.
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• dmr is the method by replicate interaction with method-specific standard deviation
ωm.

• cmi is the method by item interaction or “matrix effect” with method-specific
standard deviation τm.

• air is the item by replicate interaction, with standard deviation ν.

• If only two methods are involved, it is not possible to estimate separate variances for
each method for the method×item or the method×replicate random effects.

This is the reason that the variance component cmi is multiplied with βm. For M = 2
where the variance cannot not depend on m, the model would not be invariant under
under rescaling of one of the methods. For M ≥ 3 the two formulations lead to the
same model.

4.2 Scaling

The model (3) is qualitatively different from the two-way analysis of variance model (1),
because the methods are scaled relative to each other. In (1) we require that all methods
measure on the same scale, otherwise differences between methods would be meaningless.

The model (3) will be invariant under scaling of measurements from one method; if
e.g. the y1s all were mutiplide by e.g. 2, then we would just get β1, ω1 and σ1 twice as big,
and corresponding change in α1, but the relationship between methods would otherwise be
the same.

4.3 Interpretation of variance components

All the two-way interactions, method×item, method×replicate and item×replicate are left
unspecified in model (3). However, it should be considered how much of the interactions
should be systematic (i.e. depending on other fixed, measured quantities like time/day):

method×replicate: In contrast to the other two-way interactions this one will have a
limited number of levels, and as such be more likely to be modelled by a systematic
effect instead. For example, if replicates are made on different days, a linear effect of
day of measurement could be included in the model accounting for differential decay
of measurements with time between methods.

method×item: In clinical chemistry this is often called a “matrix” effect, referring to the
method-specific solution (matrix) used in the laboratory, which may interact
differently with the items. The effect measures the random interactions with items
that may influence the outcome. There is usually not much point in putting any
further structure on this interaction, as the systematic part of the method × item
interaction form the core of the model — the linear relationship between methods
across the measurement scale represented by the items.
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item×replicate: This is a random effect between replicates within item, but common for
all methods, so it is not possible to have a method-specific variance for this.
Furthermore, since the general linear structure of the relationship between methods
formally allows methods to measure on different scales, this random effect must
necessarily be on the “dimensionless” scale of the µs. Unless there is a special
structure to the items, it is difficult to see what possible systematic effects could be
brought to bear on this term.

This effect must be included in the model if replicates are linked across methods, e.g.
if replicates are taken by all methods in parallel. An example of this would be
measurement of a clinical feature by different methods, where replicates on the same
persons are done on different days with a few days apart, but with all methods used
each day. The item by replicate measurement would then model the random
day-to-day variation of individuals, and induce a correlation between measurement by
different methods taken on the same day.

Since the µs, the αs and the βs are only determined up to a linear/scale
transformation (see section 5.1), the size of variance component ν is not meaningful
in itself. It is only interpretable when scaled to a particular method as βmν. Given
the assumption of of linear (i.e. scaled) relationsgip between it is clear that the
between replicates variation is specific to the measurement scale, and hence must be
reported on a specific (or all) scale.

5 Estimation

5.1 The parametrization

The linear relationship linking methods in model (3) gives the following translation formula
from method 1 to method 2 is (for the mean):

y2 = α2 + β2µ = α2 + β2(y1 − α1)/β1 =
(
α2 − α1β2/β1

)
+ (β2/β1)y1

i.e. the intercept and slope used for conversion from metod 1 to 2 are:

y2 = α2·1 + β2·1y1

i.e.: α2·1 = α2 − α1β2/β1

β2·1 = β2/β1

Model (3) is overparametrized — a linear transformation of the µs will just result in a
linear transformtion of the αs and βs; a transformation µi 7→ ξi = γ + δµi will give the
model for the means:

ymi = αm + βmµi = αm + βm(ξi − γ)/δ = (αm − βmγ/δ) + (βm/δ)ξi

However α2·1 and β2·1 are invariant under replacement of αm by αm − βmγ/δ and βm by
βm/δ, m = 1, 2, this is left to the reader as a small algrebraic exercise.
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5.2 Managing the overparametrization

In our implementation in BUGS we maintain the symmetry between methods by retaining
the over-parametrised model (3), but use a prior (and hence posterior) for the µis with
finite support, in practice a uniform on a suitable interval (details are in the Appendix). In
practise this will keep the µis from wandering off to plus or minus infinity and keep chains
in a bounded area of the parameter space. However, there is no guarantee that the µs, αs
and βs will converge. What we can hope (and in practise see) is that the relevant linear
functions of the αs and βs converge nicely, i.e. the parameters αk·j and βk·j that represent
the intercept and slope in the linear translation formulae from method j to method k.
Thus we set up the model as specified in (3), but report the posterior of the parameters
αk·j = αk − αjβk/βj and βk·j = βk/βj and the variance components (i.e. the estimated
standard deviations).

The posterior distributions of the µs are normally not of any interest.

5.3 Prediction limits - analytical solution

Prediction limits for the translation formulae based on the BUGS-implementation of model
(3) can be constructed in two different ways.

Firstly, we pursue an analytically based approach. The translation formulae will be
based on estimates of α2·1 and β2·1 (e.g. posterior medians), and prediction limits on
estimates of the variance components. Paralleling the computations in [4] we have for a
potential observation on a new person, 0, by method 2, y20 (omitting replicate number as
we are interested in prediction of a single measurement from a single measurement):

y20 = α2 + β2(µ0 + a0) + c20 + d2 + e20

If we want to predict this from a measurement by method 1, y10, we use:

y10 = α1 + β1(µ0 + a0) + c10 + d1 + e10 ⇒ µ0 + a0 =
y10 − α1 − c10 − d1 − e10

β1

and hence the prediction:

y20 = α2 + β2(µ0 + a0) + c10 + d1 + e20

= α2 + β2
y10 − α1 − c10 − d1 − e10

β1

+ c20 + d2 + e20

= α2.1 + β2.1y01 − β1/β2(c10 + d1 + e10) + c20 + d2 + e20

Note that the random individual×replicate term air = a0 vanishes from these calculations.
This is because the new (single) observation is assumed to come from the same item and
same replicate and thus the (item,replicate) specific terms cancel out by subtraction.
Finally, by taking the variance of the right hand side of the equation and ignoring the
estimation error in the αs and βs we have

s.d.(y2·1) =
√

(β2/β1)2(τ 2
1 + ω2

1 + σ2
1) + (τ 2

2 + ω2
2 + σ2

2)
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A conversion equation can be constructed by taking the posterior median of α2·1 + β2·1y1

for a suitable grid of y1s. Similarly, prediction limits can be constructed by taking the
posterior median of α2·1 + β2·1y1 ± 1.96× s.d.(y2·1) for the chosen grid of yss. Note that a
graph with the line of conversion and these limits will be applicable both ways.

In practical situations the effect of method×replicate will rarely be present, in which
case the standard deviation of the prediction reduces to:

s.d.(y2·1) =
√

(β2/β1)2(τ 2
1 + σ2

1) + (τ 2
2 + σ2

2)

5.3.1 Posterior medians for the intercept and slope

When reporting the results we would like to have one conversion method, i.e. we would like
the following to hold:

α1·2 = −α2·1/β2·1 and β1·2 = 1/β2·1

The latter is automatically fulfilled for the posterior medians of the slopes because:

1

median(β2·1)
= median

(
1

β2·1

)
= median(β1·2)

— a simple consequence of the fact that the inverse is a monotone function. For other
quantiles of the posterior we have similar results (allowing for the fact the the inverse is a
decreasing function.

But this nice property does not hold for the intercept parameters, because both αs and
βs are involved; in general:

median(α1·2) 6= median(−α2·1/β2·1)

However, we can get a sensible compromise by using:

α̃1·2 =
(
median(α1·2) + median(−α2·1)/median(β2·1)

)
/2

Multiplying this by median(β2·1) = 1/median(β1·2), we get:(
median(α1·2)/median(β1·2) + median(−α2·1)

)
/2 = α̃2·1

that is the quantity computed this way gives the same intercepts regardless of whether we
compute it as α̃1·2 and convert to α̃2·1 or vice versa.

5.4 Prediction limits - simulation solution

Alternatively, we may incorporate prediction in BUGS estimation routine by setting up a
series of dummy item numbers and a grid of values on one particular method, with the
corresponding measurements on all other methods declared to be missing. This structure is
replicated for each method of measurement using a different set of dummy item numbers
and grid values.

During the sampling process, BUGS generates values for the missing nodes representing
the posterior distribution of predicted measurements on the remaining methods given the
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hypothetical observed value on the index method (i.e. the method for which the grid values
were supplied).

In order to prevent these hypothetical data from influence the estimation of model
parameters, we use the cut function provided in BUGS. This allows use of the current
sampled values of parameters to generate realisations from predictive nodes, but does not
allow data contributing to these nodes (such as the grid of values from each method that
are being used to generate predicted measurements on other methods) to contribute
information back to the simulation and thus estimation process.

6 Example

6.1 Oximetry measurements in infants

Patients who are critically ill are unable to send enough oxygen into the bloodstream, and
so the level of oxygen saturation is monitored as an indicator of the severity of the patient’s
condition. The traditional method of measurement uses a sample of blood on which a
chemical analysis is performed to determine the level of various gases in the blood
(“co-oximetry”). A newer much more convenient method uses a device called a pulse
oximeter which relies on a small sensor placed on a finger or toe to determine oxygen
saturation by measuring the reflectance of light through the blood vessels (“pulse
oximetry”).

The data in this example come from a study performed at the Royal Children’s
Hospital in Melbourne to examine the agreement between pulse oximetry and co-oximetry
in infants born preterm, many of whom were especially sick and therefore had oxygen
saturation levels lower than those usually available to test the accuracy of pulse oximetry.

Sixty one infants contributed each 3 samples to the study taken pairwise by the two
methods, so the measurements are linked across methods. In some cases the values for both
the co.ox and pulse.ox measurements were not available on the second and third samples.
Four infants had complete data on only two occasions and one baby has only complete data
on one, giving a total of 354 measurments. The data are presented as a graph in figure 1.

6.2 Results

We fitted four different models for this dataset implied by equation (3) where dmr is always
zero and either cmi or air or both are zero, giving four possible models:

ymir = αm + βm µi + emir

ymir = αm + βm (µi + air ) + emir

ymir = αm + βm µi + cmi + emir

ymir = αm + βm (µi + air ) + cmi + emir

The linking of the replicates across methods requires that the item by replicate interaction
is included in the model, but we chose to fit the two models without this for illustrative
purposes.

The presence of replicate measurements allows estimation of method-specific residual
variances σ2

m but since there are only two methods we are forced to assume a common
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variance τ 2 for the matrix effects c1i and c2i. Parameter definitions and descriptions are
listed in table 1 and posterior summary statistics for these same quantities of interest are
shown in table 2 and the distribution for each of these quantities are shown in figure ??.

Table 1: Parameter definitions and descriptions form model (3). Note that all variance
components are reported on all scales even if there may be only one.

α2·1 = α2 − α1β2/β1 Intercept for predicting y2 from y1

β2·1 = β2/β1 Slope for predicting y2 from y1

ι2·1 = α2·1/(1− β2·1)
= (α2β1 − α1β2)/(β1 − β2) Prediction intersect with the identity line

σ2·1 =
√

(β2/β1)2(τ 2 + σ2
1) + (τ 2 + σ2

2) Standard deviation of predicting y2 from y1

σmtot =
√

β2
mν2 + β2

mτ 2
m + σ2

m) Total standard deviation of ym

βmν Replicate by item variation on the ym scale

βmτ Method by item variation on the ym scale

σm Method-specific residual variation

Table 2: Summary statistics, from four different models. We ran 3 chains using 2,500
burnin iterations, and then sampled every third value for the next 2,500 iterations, giving a
posterior sample of 2,500. Numbers are posterior medians and 2.5 and 97.5 percentiles.

Model 1 Model 2(i, r) Model 3(m, i) Model 4(i, r)(m, i)

α2·1 6.44 (−0.66;13.11) 9.18 (3.10;14.88) 5.36 (−3.87;13.84) 3.94 (−9.46; 19.34)
β2·1 0.88 ( 0.79; 0.98) 0.85 (0.77; 0.93) 0.90 ( 0.78; 1.02) 0.91 ( 0.72; 1.08)
σ2·1 6.81 ( 6.23; 7.52) 5.86 (5.26; 6.52) 7.18 ( 6.43; 8.42) 7.61 ( 5.73; 17.01)
ι2·1 54.9 (−14.5; 66.3) 59.6 (40.2; 66.7) 52.9 (−67.7; 160) 50.9 ( −181; 261)
σ1tot 4.21 ( 3.69; 4.87) 4.19 (3.67; 4.80) 4.79 ( 4.04; 5.83) 6.53 ( 4.95; 14.02)
σ2tot 5.69 ( 5.07; 6.47) 6.41 (5.62; 7.18) 5.76 ( 5.15; 6.60) 7.25 ( 5.85; 12.81)
β2ν 3.10 (2.27; 3.82) 3.54 ( 2.75; 4.35)
β2τ 2.13 ( 0.79; 3.68) 4.31 ( 2.50; 11.59)
σ1 4.21 ( 3.69; 4.87) 1.87 (0.62; 3.31) 4.12 ( 3.63; 4.70) 1.63 ( 0.21; 2.83)
σ2 5.69 ( 5.07; 6.47) 5.60 (4.90; 6.32) 5.30 ( 4.70; 6.05) 4.26 ( 3.54; 4.97)

In this example there seems to be edge effects in the predictions from the model (fig.
2). In the central part of data there is a very good agreement with the prediction and the
limits based on the posterior median of the analytically derived quantities in section 5.3.

The model chosen for the variance structure does have some influence on the
conversion formulae or the prediction intervals as seen from figure 4. In particular, the two
models where the item by replicate effect is included exhibits narrower prediction limits as
would be expected since this variance component does not enter in the prediction formulae.
This is because some of the variation in the data is allocated to ν2 hence the sum of the
variance components determining the width of the prediction interval is smaller.
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7 Discussion

Extending the comparison of methods of measurement to accommodate replicates,
item-specific effects that vary across methods and non-constant bias comes at the expense
of losing the computational ease of the “Bland-Altman” procedure. Beyond fitting the
extended model is the need to generate prediction limits over the range of the observed
data.

We have shown how to fit the general models outlined in [4] and generate prediction
limits using BUGS. We found, however, that the approach using a grid of value for observed
measurements on one method and using the posterior for the values of another method
performed no better than using the medians of the posterior distributions for the relevant
parameters and generating the prediction limits analytically. Hence we have chosen to
implement only the analytical procedure in the MethComp package.

The prediction limits generated for the example in section 6 provided empirical support
for the heuristic argument in section 3 that the limits of prediction should be symmetric in
the models and will be the same regardless of whether one is predicting measurements on
Method 2 from observed measurements on Method 1 or vice versa. We have ensured the
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Figure 1: Scatterplot of the oximetry data with observations from the same infant joined by
line segments. The gray points are the means of the three replicates, the gray lines are the
two regression lines using the replicate measurments.
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symmetry of the prediction limits in the BUGS model specification by eschewing the use of
one method of measurement as a reference. We overcame the resulting non-identifiability of
the model by using bounded support for the prior distribution of the parameters.

Care must be taken to specify an appropriate model for complex data structures
involving replicates on two or more methods. The benefit of producing a correct model is a
proper characterisation of the sources of variation and tighter prediction limits if the
replicates are linked across methods.
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Figure 2: Scatterplot of the oximetry data with observations from the same infant joined
by line segments. The red and blue lines are the posterior medians and 2.5 and 97.5 per-
centiles in the predictive distribution under the model, using a grid of hypothetical observa-
tions 40,42,. . . ,98. BUGS was run with 10,000 iterations and subsequently sampling every
10th of the next 10,000 iterations. The broken lines represents the posterior median of the
analytically calculated prediction limits. The green line is the identity line.
Top: Method by item and residual variances in model (model 3).
Bottom: Item by replicate, method by item and residual variances in model (model 4).
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Figure 3: Prediction limits based posterior medians of α2·1, β2·1 and the prediction standard
deviations, based om models (3) (red, wrong) and (4) (blue, correct).
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Figure 4: Prediction limits based posterior medians of α2·1, β2·1 and the prediction standard
deviations based on model 4 from table 2.
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A Computational aspects

A.1 The MethComp package for R

The function in the MethComp package that does the work is also called MethComp. It works
by extracting information from a supplied dataframe and writing a file with BUGS code.
The data are formatted as a data frame with four columns named meth (for the method of
measurement), item (the item measured by each method), repl (the replicate indicating
repeated measurement of the same item by the same method) and the outcome y,
corresponding to the notation earlier in the paper. The prior for the µs is set to be uniform
on an interval which corresponds to the range of all measurements expanded by 30% of its
length at either end. Finally, the prior for the variances are taken to be uniform on
intervals from 0 to 10 times the width of the range of data.

Initial values are then constructed from the dataframe and sent off to WinBUGS

together with the code, using the bugs function from the R2WinBUGS package or running
directly in R using the routines of the BRugs package. The returned posteriors of the αs
and βs are then converted to posteriors of the parameters of the linear conversion formulae
(alphai.j,betai.j) and the posterior of the point where the conversion line intersects the
identity line (id.cuti.j). The model parameters and node names in the BUGS code appear
in table 3.

Table 3: Model parameters and the corresponding node in the BUGS computing code.

Model parameter BUGS parameter

µi mu[i]

αm alpha[m]

βm beta[m]

cmi e.mi

air e.ir

dmr e.mr

emir e.mir

τm sigma.mi[m]

ν sigma.ir

ωm sigma.mr[m]

σm sigma.mir[m]
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B Manual for the MethComp package, 0.1.1

The following is a printout of the help pages for the functions and datasets available in the
MethComp package.

abconv Derive linear conversion coefficients from a set of indeterminate coefficients

Description

If a method comparison model is defined as ymi = αm + βmµi, m = 1, 2 the coefficients of the linear
conversion form method 1 to 2 are computed as well as the point where the linear conversion function
intersects the identity line. The function is designed to work on numerical vectors of posterior samples
from BUGS output.

Usage

abconv( a1, b1 = 1:4, a2 = NULL, b2 = NULL,
col.names = c("alpha.2.1", "beta.2.1", "id.2.1") )

Arguments

a1 Numerical vector of intercepts for first method. Alternatively a dataframe where the
vectors are selected from.

b1 Numerical vector of slopes for first method. If a1 is a dataframe, this is assumed to
be a numerical vector of length 4 pointing to the columns of a1 with the intercepts
and slopes.

a2 Numerical vector of intercepts for second method.

b2 Numerical vector of slopes for second method.

col.names Names for the resulting three vectors.

Value

A dataframe with three columns: intercept and slope for the conversion from method 1 to method 2,
and the value where the conversion is the identity.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.biostat.ku.dk/~bxc

References

B Carstensen: Comparing and predicting between several methods of measurement, Biostatistics, 5, pp
399-413, 2004

See Also

BA.plot, MethComp

Examples

abconv( 0.3, 0.9, 0.8, 0.8 )

http://www.biostat.ku.dk/~bxc
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BA.plot Bland-Altman plot for dataframes

Description

Computes limits of agreement and produces a Bland-Altman plot of differences versus averages for two
methods of measurement. The function is just a wrapper allowing a dataframe with columns item,
meth and y (and possibly repl) to be used as input to a Bland-Altman plot, using BlandAltman.

Usage

BA.plot( y1, y2, meth.names = NULL,
mean.repl = FALSE, comp.levels=1:2, ...)

Arguments

y1 Measurements by method 1. Alternatively a dataframe with columns meth, item, y,
and possibly repl.

y2 Corresponding measurements by method 2. Ignored if y1 is a dataframe.

meth.names Names for the two methods. Used for annotation of the plot. If not supplied and y1
is a dataframe this is derived from the factor level names of meth.

mean.repl Logical. If there are replicate measurements by each method should the means by
item and meth be formed before further ado. WARNING: This will give too narrow
limits of agreement.

comp.levels Levels of the meth factor to compare. May be used to switch the order of the
methods compared by specifying comp.meth=2:1.

... Further arguments passed on the the BlandAltman function.

Value

A list with 2 elements:

lim.agree A matrix of limits of agreement as rows and estimate and c.i. as columns.

p.value P-value for the hypothesis that the mean difference is 0. Usually a lame thing to use.

Side effect: A Bland-Altman plot is produced using the function BlandAltman.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.biostat.ku.dk/~bxc

References

JM Bland and DG Altman: Statistical methods for assessing agreement between two methods of
clinical measurement, Lancet, i, 1986, pp. 307-10

See Also

BlandAltman, MethComp

http://www.biostat.ku.dk/~bxc
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Examples

data( ox )
str( ox )
# A wrong and a correct plot of the data.
par( mfrow=c(1,2), mar=c(4,4,1,4) )
BA.plot( ox, mean.repl=TRUE , ymax=30 ) # Too narrow limits
BA.plot( ox, mean.repl=FALSE, ymax=30 ) # (Almost) correct limits
# The same illustrating the use of method names
par( mfrow=c(1,2), mar=c(4,4,1,4) )
BA.plot( ox, mean.repl=TRUE , meth.names=c("one","two"), ymax=30 )
BA.plot( ox, mean.repl=FALSE, meth.names=c("one","two"), ymax=30 )

BlandAltman Bland-Altman plot of differences versus averages.

Description

For two vectors of equal length representing measurements of the same quantity by two different
methods, the differences are plotted versus the average. The limits of agreement (prediction limits for
the differences) are plotted, optionally with c.i.s.

Usage

BlandAltman(x, y,
x.name = NULL, y.name = NULL, maintit = "",
cex = 1, pch = 16, col.points = "black", col.lines = "blue",
limx=NULL, ymax=NULL, xlab=NULL, ylab=NULL,
print = TRUE, conf.int = TRUE,
digits = 3, alpha = 0.05,
... )

Arguments

x Numerical vector of measurements by 1st method.

y Numerical vector of measurements by 2nd method. Must of same length as x.

x.name Label for the 1st method (x).

y.name Label for the 2nd method (y).

maintit Main title for the plot

cex Character expansion for the points.

pch Plot symbol for points.

col.points Color for the points.

col.lines Color for the lines indicating limits of agreement.

limx x-axis limits.

ymax Scalar. The y-axis will extend from -ymax to +ymax.

xlab x-axis label.

ylab y-axis label.

print Logical: Should the limits of agreement and the c.i.s of these be printed?
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conf.int Logical: Should confidence inetrvals for the mean difference and the limits of
agreement be plotted too?

digits How many decimal places should be used when printing limits of agreement? Used
both for the printing of results and for annotation of the plot.

alpha 1 minus confidence level used when computing confidence intervals and limits of
agreement.

... Further arguments passed on the the plot() function making the plot.

Value

A list with 2 elements:

lim.agree A matrix of limits of agreement as rows and estimate and c.i. as columns.

p.value P-value for the hypothesis that the mean difference is 0. Usually a lame thing to use.

Author(s)

Jaro Lajovic,〈jaro.lajovic@mf.uni-lj.si〉, 2004; modified 2007 by Bendix Carstensen 〈bxc@steno.dk〉,
http://www.biostat.ku.dk/~bxc.

References

JM Bland and DG Altman: Statistical methods for assessing agreement between two methods of
clinical measurement, Lancet, i, 1986, pp. 307-310.

JM Bland and DG Altman. Measuring agreement in method comparison studies. Statistical Methods
in Medical Research, 8:136-160, 1999.

See Also

BA.plot, MethComp.

Examples

data( ox )
# Wrong to use mean over replicates
mtab <- with( ox, tapply( y, list(item, meth), mean ) )
CO <- mtab[,"CO"]
pulse <- mtab[,"pulse"]
BlandAltman( CO, pulse )
# (almost) Right to use replicates singly
mtab <- with( ox, tapply( y, list(interaction(item,repl), meth), mean ) )
CO <- mtab[,"CO"]
pulse <- mtab[,"pulse"]
BlandAltman( CO, pulse )

http://www.biostat.ku.dk/~bxc
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cardiac Measurement of cardiac output by two different methods.

Description

For each subject cardiac output is measured repeatedly (three to six times) by impedance cardiography
(IC) and radionuclide ventriculography (RV).

Usage

data(cardiac)

Format

A data frame with 120 observations on the following 4 variables.

meth a factor with levels IC RV

item a numeric vector giving the item number.

repl a numeric vector with replicate number.

y the measuremnts of cardiac output.

Details

It is not entirely clear from the source whether the replicates are exchangeable within (method,item) or
whether they represent pairs of measurements. From the description it looks as if replicates are linked
between methods, but in the paper they are treated as if they were not.

Source

The dataset is adapted from table 4 in: JM Bland and DG Altman: Measuring agreement in method
comparison studies. Statistical Methods in Medical Research, 8:136-160, 1999. Originally supplied to
Bland & Altman by Dr LS Bowling, see: Bowling LS, Sageman WS, O’Connor SM, Cole R, Amundson
DE. Lack of agreement between measurement of ejection fraction by impedance cardiography versus
radionuclide ventriculography. Critical Care Medicine 1993; 21: 1523-27.

Examples

library( MethComp )
library( R2WinBUGS )
data(cardiac)
options( bugs.directory="c:/Stat/Bugs/WinBUGS14/" )
card.mi.ir <- MethComp( cardiac, random=c("mi","ir"), n.iter=100 )
card.mi <- MethComp( cardiac, random=c("mi"), n.iter=100 )
card.mi.ir
card.mi
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Deming Regression with errors in both variables (Deming regression)

Description

The function makes a regression of y on x, assuming that both x and y are measured with error. This
problem only has an analytical solution if the ratio of the variances is known, hence this is required as
an input parameter.

Usage

Deming(x, y, vr = sdr^2, sdr = sqrt(vr), boot = FALSE, alpha = 0.05)

Arguments

x numerical variable.

y numerical variable.

vr The assumed known ratio of the (residual) variance of the ys relative to that of the
xs. Defaults to 1.

sdr do. for standard deviations. Defaults to 1. vr takes precedence if both are given.

boot Should bootstrap estimates of standard errors of parameters be done? If boot==TRUE,
1000 bootstrap samples are done, if boot is numeric, boot samples are made.

alpha What significance level should be used when displaying confidence intervals?

Details

The formal model underlying the procedure is based on a so called functional relationship:

xi = ξi + e1i, yi = α + βξi + e2i

with var(e1i) = σ, var(e2i) = λσ, where λ is the known variance ratio.

The estimates of the residual variance is based on a weighting of the sum of squared deviations in both
directions, divided by n− 2. The ML estimate would use 2n instead, but in the model we actually
estimate n + 2 parameters — α, β and the n ξs.

This is not in Peter Sprent’s book (see references).

Value

If boot==FALSE a named vector with components alpha, beta, sigma.x, sigma.y.

If boot==TRUE a matrix with rows Intercept, Slope, sigma.x, sigma.y, and colums giving the
estimates, the bootstrap standard error and the bootstrap estimate and c.i. as the 0.5, α/2 and
1− α/2 quantiles of the sample.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.biostat.ku.dk/~bxc.

http://www.biostat.ku.dk/~bxc
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References

Peter Sprent: Models in Regression, Methuen & Co., London 1969, ch.3.4.
WE Deming: Statistical adjustment of data, New York: Wiley, 1943. [This is a reference taken from a
reference list — I never saw the book myself].

See Also

MethComp

Examples

# Some data
x <- runif(100,0,5) + rnorm(100)
y <- 2 + 3 * x + rnorm(100,sd=2)
# Deming regression with equal variances, variance ratio 2.
Deming(x,y)
Deming(x,y,vr=2)
Deming(x,y,boot=TRUE)
# Plot data with the two classical regression lines
plot(x,y)
abline(lm(y~x))
ir <- coef(lm(x~y))
abline(-ir[1]/ir[2],1/ir[2])
abline(Deming(x,y,sdr=2)[1:2],col="red")
abline(Deming(x,y,sdr=10)[1:2],col="blue")
# Comparing classical regression and "Deming extreme"
summary(lm(y~x))
Deming(x,y,vr=1000000)

fat Measurements of subcutaneous and visceral fat

Description

43 persons had Subcutaneous and Visceral fat thickness measured at Steno Diabetes Center in 2006 by
two observers; all measurements were done three times. The interest is to compare the measurements
by the two observers. Persons are items, observers are methods, the three replicates are exchangeable
within (person,observer)=(item,method)

Usage

data(fat)

Format

A data frame with 258 observations on the following 6 variables.

Id Person id.

Obs Observers, a factor with levels KL and SL.

Rep Replicate — exchangeable within person and observer.

Sub Subcutaneous fat measured in mm.

Vic Visceral fat measured in mm.
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Examples

data(fat)
str(fat)

hba1c Measurements of HbA1c from Steno Diabetes Center

Description

Three analysers (machines) for determination of HbA1c (glycosylated haemoglobin) were tested on
samples from 38 individuals. Each had drawn a venous and capillary blood sample. These were
analysed on five different days.

Usage

data(hba1c)

Format

A data frame with 835 observations on the following 6 variables.

dev Type of machine used. A factor with levels BR.V2, BR.VC and Tosoh.

type Type of blood analysed (capillary or venous). A factor with levels Cap Ven

item Person-id. A numeric vector

d.samp Day of sampling.

d.ana Day of laboratory analysis.

y The measured value of HbA1c.

Details

In the terminology of method comparison studies, methods is the cross-classification of dev and type,
and replicate is d.ana. It may be of interest to look at the effect of time between d.ana and d.samp,
i.e. the time between sampling and analysis.

Source

Bendix Carstensen, Steno Diabetes Center.

References

These data were analysed as example in: Carstensen: Comparing and predicting between several
methods of measurement, Biostatistics 5, pp. 399–413, 2004.

Examples

data(hba1c)
str(hba1c)
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MethComp Fit a model for method comparison studies using WinBUGS

Description

A model linking each of a number of methods of measurement linearly to the ”true” value is set up in
BUGS and run via the function bugs from the R2WinBUGS package.

Usage

MethComp( data,
random = c("mi", "ir"),
beta = TRUE,

n.chains = 3,
n.iter = 2000,

n.burnin = n.iter/2,
n.thin = ceiling((n.iter - n.burnin)/1000),

bugs.directory = options("bugs.directory")[[1]],
debug = FALSE,

clearWD = TRUE,
bugs.code.file = "qwzx.bug",

code.only = FALSE,
... )

## S3 method for class 'MethComp':
summary(object, ...)
## S3 method for class 'MethComp':
print(x, across, digits=3, ... )

Arguments

data Data frame with variables meth, item, repl and y. y represents a measurement on
an item (typically patient or sample) by method meth, in replicate repl.

random Which random effects should be included in the model?. Enter NULL if none is
desired.

beta Logical. Should a slope other than 1 be allowed? If FALSE the bias between methods
will be assumed constant.

n.chains How many chains should be run by WinBUGS — passed on to bugs.

n.iter How many total iterations — passed on to bugs.

n.burnin How many of these should be burn-in — passed on to bugs.

n.thin How many should samples — passed on to bugs.
bugs.directory

Where is WinBUGS (>=1.4) installed — passed on to bugs. The default is to use a
parameter from options(). If you use this routinely, this is most conveniently set in
your .Rprofile.

debug Should WinBUGS remain open after running — passed on to bugs.

clearWD Should the working directory be cleared for junk files after the running of WinBUGS
— passed on to bugs.
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bugs.code.file

Where should the bugs code go?

code.only Should MethComp just create a bugs code file and a set of inits?

... Additional arguments passed on to bugs.

object A MethComp object

x A MethComp object

across Should the summary of conversion formulae be printed with α, β and prediction sd.
across or down?

digits Number of digits after the decimal point when printing.

Details

The model set up for an observation ymir is:

ymir = αm + βm(µi + bir + cmi) + emir

where bir is a random item by repl interaction (included if "ir" %in% random) and cmi is a random
meth by item interaction (included if "mi" %in% random). The µi’s are parameters in the model but
are not monitored — only the αs, βs and the variances of bir, cmi and emir are monitored and
returned. The estimated parameters are only determined up to a linear transformation of the µs, but
the linear functions linking methods are invariant. The identifiable conversion parameters are:

αm·k = αm − αkβm/βk, βm·k = βm/βk

The posteriors of these are derived and included in the posterior, which also will contain the
posterior of the variance components (the sd’s, that is). Furthermore, the posterior of the point where
the conversion lines intersects the identity as well as the prediction sd’s between any pairs of methods
are included.
The function summary.MethComp method gives estimates of the conversion parameters that are
consistent. Clearly,

median(β1·2) = 1/median(β2·1)

because the inverse is a monotone transformation, but there is no guarantee that

median(α1·2) = median(−α2·1/β2·1)

and hence no guarantee that the parameters derived as posterior medians produce conversion lines that
are the same in both directions. Therefore, summary.MethComp computes the estimate for α2·1
alpha.2.1 as

(median(α1·2)−median(α2·1)/median(β2·1))/2

and the estimate of α1·2 correspondingly. The resulting parameter estimates defines the same lines.

Value

If code.only==FALSE, an object of class MethComp which is a list with three components:

summary Matrix with a summary of the posterior of the variance components and the
parameters linking the methods.

posterior Dataframe with the posterior samples of the interesting parameters.

org.summary Summary of the original parameters as monitored by WinBUGS.

random A character sting indicationg which random effects are in the model.

methods A character string of the names of the methods.

data The original data frame used in the computations. This is intended for us in
plot.MethComp.
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Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.biostat.ku.dk/~bxc, Lyle Gurrin, University
of Melbourne, http://www.epi.unimelb.edu.au/about/staff/gurrin-lyle.

References

B Carstensen: Comparing and predicting between several methods of measurement, Biostatistics, 5, pp
399-413, 2004

See Also

BA.plot,
code{BA.plot}

Examples

data( ox )
str( ox )
MethComp( ox, code.only=TRUE, bugs.code.file="ox-ex.bug", random=c("mi") )
shell( "type ox-ex.bug" ) # only works on windows

### These next lines only work if you properly name the path to WinBUGS
### What is written here is not necessarily correct on your machine.
library(R2WinBUGS)
# options( bugs.directory="c:/Program Files/WinBUGS14/" )
options( bugs.directory="c:/Stat/Bugs/WinBUGS14/")
ox.res <- MethComp( ox, random=c("mi"), n.iter=100 )
str( ox.res )
str( ox.res[[2]] )
print( ox.res )

milk Measurement of fat content of human milk by two different methods.

Description

Fat content of human milk determined by measurement of glycerol released by enzymic hydrolysis of
triglycerides (Trig) and measurement by the Standard Gerber method (Gerber). Units are (g/100 ml).

Usage

data(milk)

Format

A data frame with 90 observations on the following 2 variables.

meth a factor with levels Gerber Trig

y a numeric vector

http://www.biostat.ku.dk/~bxc
http://www.epi.unimelb.edu.au/about/staff/gurrin-lyle
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Source

The dataset is adapted from table 3 in: JM Bland and DG Altman: Measuring agreement in method
comparison studies. Statistical Methods in Medical Research, 8:136-160, 1999. See: Lucas A, Hudson
GJ, Simpson P, Cole TJ, Baker BA. An automated enzymic micromethod for the measurement of fat
in human milk. Journal of Dairy Research 1987; 54: 487-92.

Examples

data(milk)
str(milk)
plot(milk)
plot( y[meth=="Trig"]~y[meth=="Gerber"],data=milk,

xlab="Fat (g/100 ml; Gerber)",
ylab="Fat (g/100 ml; Trig.)")

abline(0,1)

ox Measurement of oxygen saturation in blood

Description

61 children had their blood oxygen content measured at the Children’s Hospital in Melbourne, either
with a chemical method analysing gases in the blood (CO) or by a pulse oximeter measuring
transcutaneously (pulse). Replicates are linked between methods; i.e. replicate 1 for each of the two
methods are done at the same time. However, replicate measurements were taken in quick succession
so the pairs of measurements are exchangeable within person.

Usage

data(ox)

Format

A data frame with 354 observations on the following 4 variables.

meth Measurement methods, factor with levels CO, pulse

item Id for the child

repl Replicate of measurements. There were 3 measurements for most children, 4 had only 2
replicates with each method, one only 1

y Oxygen saturation in percent.

Examples

data(ox)
str(ox)
with( ox, table(table(item)) )
par( mfrow=c(1,2), mar=c(4,4,1,4) )
BA.plot( ox, ymax=20 )
BA.plot( ox, ymax=20, mean.repl=TRUE )
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perm.repl Randomly permute replicates within methods

Description

Replicates are randomly permuted within (item,method) in a dataframe representing a method
comparison study.

Usage

perm.repl( data )

Arguments

data A data frame with columns meth, item, repl and y.

Value

A dataframe where the rows (i.e. replicates) are randomly permuted within (meth,item), and
subsequently ordered by (meth,item,repl)

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://www.biostat.ku.dk/~bxc

Examples

# Replicates are linked, so randomly permuting them inflates the
# limits of agreement.
data(ox)
par( mfrow=c(1,2), mar=c(4,4,1,4) )
BA.plot( ox, ymax=30, digits=1 )
BA.plot( perm.repl(ox), ymax=30, digits=1 )

plot.MethComp Plot estmiated conversion lines and formulae.

Description

Plots the pairwise conversion formulae between methods from a MethComp object.

http://www.biostat.ku.dk/~bxc
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Usage

plot.MethComp( x,
axlim = range( attr(x,"data")$y ),
which,

lwd.line = c(3,1), col.line = rep("black",2), lty.line=rep(1,2),
eqn = TRUE, digits = 2,
grid = FALSE, col.grid=gray(0.8),

pl.obs = FALSE,
col.pts = "black", pch.pts = 16, cex.pts = 0.8,

... )

Arguments

x A MethComp object

axlim The limits for the axes in the panels

which Numeric vector or vector of method names. Which of the methods should be
included in the plot?

lwd.line Numerical vector of length 2. The width of the conversion line and the prediction
limits. If the second values is 0, no prediction limits are drawn.

col.line Numerical vector of length 2. The color of the conversion line and the prediction
limits.

lty.line Numerical vector of length 2. The line types of the conversion line and the prediction
limits.

eqn Should the conversion equations be printed on the plot?. Defaults to TRUE.

digits How many digits after the decimal point shoudl be used when printing the conversion
equations.

grid Should a grid be drawn? If a numerical vector is given, the grid is drawn at those
values.

col.grid What color should the grid have?

pl.obs Logical or character. Should the points be plotted. If TRUE or "repl" paired values
of single replicates are plotted. If "perm", replicates are randomly permuted within
(item, method) befor plotting. If "mean", means across replicates within item,
method are formed and plotted.

col.pts What color should the observation have.

pch.pts What plotting symbol should be used.

cex.pts What scaling should be used for the plot symbols.

... Parameters to pass on. Currently not used.

Value

Nothing.

See Also

MethComp, print.MethComp
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Examples

data( hba1c )
str( hba1c )
hba1c <- transform( hba1c, meth = interaction(dev,type),

repl = d.ana )
# options( bugs.directory="c:/Program Files/WinBUGS14/" )
options( bugs.directory="c:/Stat/Bugs/WinBUGS14/")
hb.res <- MethComp( hba1c, n.iter=100 )
str( hb.res )
par( ask=TRUE )
plot( hb.res )
plot( hb.res, pl.obs=TRUE, which=1:4 )

plvol Measurements of plasma volume measured by two different methods.

Description

For each subject (item) the plasma volume is expressed as a percentage of the expected value for
normal individuals. Two alternative sets of normal values are used, named Nadler and Hurley
respectively.

Usage

data(plvol)

Format

A data frame with 198 observations on the following 3 variables.

meth a factor with levels Hurley Nadler

item a numeric vector

y a numeric vector

Source

The datset is adapted from table 2 in: JM Bland and DG Altman: Measuring agreement in method
comparison studies. Statistical Methods in Medical Research, 8:136-160, 1999. Originally supplied to
Bland & Altman by C Doré, see: Cotes PM, Doré CJ, Liu Yin JA, Lewis SM, Messinezy M, Pearson
TC, Reid C. Determination of serum immunoreactive erythropoietin in the investigation of
erythrocytosis. New England Journal of Medicine 1986; 315: 283-87.

Examples

data(plvol)
str(plvol)
plot( y[meth=="Nadler"]~y[meth=="Hurley"],data=plvol,

xlab="Plasma volume (Hurley) (pct)",
ylab="Plasma volume (Nadler) (pct)" )

abline(0,1)
par( mar=c(4,4,1,4) )
BA.plot(plvol)
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sbp Systolic blood pressure measured by three different methods.

Description

For each subject (item) there are three replicate measurements by three methods (two observers, J and
R and the automatic machine, S). The replicates are exchangeable within method, item.

Usage

data(sbp)

Format

A data frame with 765 observations on the following 4 variables.

meth Methods, a factor with levels J(observer 1), R(observer 2) and S(machine)

item Person id, numeric.

repl Replicat number, a numeric vector

y Systolic blood pressure masurement, a numeric vector

Source

The dataset is adapted from table 1 in: JM Bland and DG Altman: Measuring agreement in method
comparison studies. Statistical Methods in Medical Research, 8:136-160, 1999. Originally supplied to
Bland & Altman by E. O’Brien, see: Altman DG, Bland JM. The analysis of blood pressure data. In
O’Brien E, O’Malley K eds. Blood pressure measurement. Amsterdam: Elsevier, 1991: 287-314.

Examples

data(sbp)
par( mfrow=c(2,2), mar=c(4,4,1,4) )
BA.plot( sbp, comp=1:2 )
BA.plot( sbp, comp=2:3 )
BA.plot( sbp, comp=c(1,3) )
library( R2WinBUGS )
options( bugs.directory="c:/Stat/Bugs/WinBUGS14/" )
# Grossly inadequate number of iterations
sbp.1 <- MethComp( sbp, random=c("mi"), n.iter=100 )
sbp.1
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tab.repl Table of replicates by each method

Description

Creates a table classified by method and no. of replicate measurments which in each entry has the
number of items with that number of replicates on that method

Usage

tab.repl(data)

Arguments

data Data frame with variables meth, item, repl and y. y represents a measurement on
an item (typically patient or sample) by method meth, in replicate repl.

Value

A table classified by method and no. of replicate measurments.

Author(s)

Bendix Carstensen, 〈bxc@steno.dk〉

See Also

MethComp

Examples

data(ox)
tab.repl(ox)
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