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Prevalence of many complex human diseases such as
asthma, cardiovascular disease, and diabetes has risen
greatly over the past two decades in developed countries.1,2

During the same period, the genetic causes of such
diseases have been increasingly emphasised as a means to
better understand their pathogenesis, with the ultimate
goal of improvement of preventive strategies, diagnostic
tools, and treatment.3–8 Considerable effort is being
expended in attempts to detect genetic loci contributing to
complex diseases.9 Association and linkage studies
comprise the two dominant strategies: association studies
aim to find disease-predisposing alleles at the population
level; and linkage studies focus on familial segregation.
Although both strategies have compelling strengths,
association analyses are more widely done and likely to
spread even further in the future, especially in the
pharmacogenetics domain.5

Technical developments in molecular genetics facilitate
these studies, as does use of gene-specific variants derived
from the human genome sequencing project.10

Furthermore, extensive catalogues of anonymous DNA
sequence variants across the human genome are being
compiled.11,12 Some large-scale, population-based human
samples have been, or are expected to be, gathered (eg,
EPIC,13 ISIS,14 Million Women Study,15 MRC/Wellcome
Trust Biobank UK),16–19 and use of DNA variants in drug
development is expanding.4 Coupling of high-throughput
molecular technology, many genetic variants, and
population-based samples offers unique opportunities for
understanding the cause of common diseases.

Genetic variants—or polymorphisms—arise from new
mutations. The simplest type of polymorphism is a single
base mutation, which substitutes one nucleotide for

Lancet 2003; 361: 598–604

Wellcome Trust Centre for Human Genetics, University of Oxford,
Oxford, OX3 7BN, UK (Prof L R Cardon PhD); Channing Laboratory,
Department of Medicine, Brigham and Women’s Hospital and
Harvard Medical School, Boston, MA, USA (L J Palmer PhD); and
Department of Epidemiology and Biostatistics, Case Western
Reserve University, Cleveland, OH (L J Palmer)

Correspondence to: Prof Lon Cardon
(e-mail: lon.cardon@well.ox.ac.uk)

another, referred to as a single nucleotide polymorphism
(SNP). SNPs do not necessarily have any relevance to
disease or outcome; they can be anonymous variants
within or between genes (ie, uncharacterised with respect
to protein coding or gene function), or could be
functional, causal mutations. More SNPs are thought to
exist in the human genome than any other type of
polymorphism.20 Nearly three million variants have been
reported and are catalogued in a public database
(http://www.ncbi.nlm.nih.gov/SNP/). In this review, we
restrict our attention to SNPs, owing to their widespread
presence and use, but the issues and principles described
are general and apply to other DNA polymorphisms.  

Genetic association studies aim to correlate differences
in disease frequencies between groups (or in trait levels for
continuously varying characters) with differences in allele
frequencies at an SNP. Thus, the frequencies of the two
variant forms (alleles) of an SNP are of primary interest
for identification of genes affecting disease. The simplest
study design for assessment of genotype-phenotype
correlation is the traditional case-control approach.
However, this design carries the strong assumption that
any noted differences in allele frequencies actually relate to
the outcome measured—ie, there are no unobserved
confounding effects,21 either directly attributable to the
causal marker or through another marker that is located
nearby. 

Unfortunately, allele frequencies are known to vary
widely within and between populations, irrespective of
disease status.22 This disparity in frequencies arises
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stratification on genotype-phenotype association studies, review methods to detect and account for it, and present
suggestions for future study design and analysis.

Search strategy and selection criteria
Reference material for this review was selected on the basis
of its relevance for specifically addressing the effects,
outcomes, or effect of population stratification on allelic
association studies. We used our own reference compilations
and PubMed to identify the references cited in this work.
Beyond our own material, our search terms included
“population stratification”, “admixture”, “spurious
association”, “genomic control”, and “pharmacogenetic
association”. For inclusion, recent reviews and research
articles appearing in high impact journals were preferred over
other sources.
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Genetic association studies
Statistical evidence for an association between an allele
and a phenotype comes from one of three situations.39

First, the allele itself might be functional and directly
affect expression of the phenotype. Second, the allele
might be correlated with, or be in linkage disequilibrium
with, a causative allele located nearby. Third, the
association could be attributable to chance or artifact—eg,
confounding or selection bias.

Many study designs are available for association
analyses, which can be broadly broken down into family-
based designs (extended pedigrees, relative-pairs, parent-
child trios, nuclear families) and non-family-based studies
(case-control, cohort). Historically, case-control studies
have been the workhorse of both mainstream
epidemiology and genetic association studies.40 They are
recognised as being well suited for localisation of
susceptibility loci,39 and they are more powerful than
family-based linkage analyses for detection of weak
genetic effects.5,41 There are several important advantages
to use of a case-control design in genetic association
studies: the methodology is well understood from its
widespread use in epidemiology; cases and controls are
convenient to enrol and offer more efficient recruitment
than family-based sampling; late-onset diseases can be
studied; very large samples can be gathered; disease-allele
frequency, penetrance, and attributable risk can be
simultaneously estimated; and unrelated controls can
provide increased power over studies of genetically-related
individuals (yet do not always do so).42,43 However,
although case-control genetic association studies have
been widely used in attempts to identify loci that affect
complex human disease, their inconsistency is a generally
recognised limitation.33,34 The absence of reproducibility is
generally ascribed to inadequate statistical power,
biological and phenotypic complexity, population-specific
linkage disequilibrium, effect-size bias, and population
stratification.5,33,34,44,45 Undetected population stratification
has caused the most concern and is an issue both for
direct candidate-gene approaches and indirect association
via linkage disequilibrium mapping.46

Because potential for spurious outcomes as a result of
undetected population substructure has led to such
serious concern about the case-control design, to the
point of limiting its use as a standard association design,
we might expect that many studies are well known to have
had such substructure. In fact, few studies can be
unequivocally ascribed to have yielded erroneous
outcomes attributable to underlying allelic stratification.

Two examples are consistently cited as illustrative of
spurious outcomes because of population stratification.
The most frequently cited example comes from a study of
the association between an HLA haplotype and diabetes
on a Pima Indian reservation.47 This study showed a
classic case of confounding attributable to admixture of
white European and Pima Indian ancestry on the
association of the haplotype Gm3;5,13,14 with non-
insulin-dependent diabetes mellitus (figure). The
association disappeared when analysis was restricted to
full-heritage Pima-Papago Indians.47 This example, which
is actually one of genetic admixture rather than of
stratified subsamples of different ethnic origin, is often
cited to show the perils of poor epidemiologic design
because the classic conditions for confounding by ethnic
origin were met—failure to control for ethnic origin
introduced bias because diabetes prevalence and
frequency of the haplotype of interest were both much
higher in individuals of American Indian ancestry than in
those of European ancestry. The second example of
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because each population has a unique genetic and social
history, and thus ancestral patterns of geographical
migration, mating practices, reproductive expansions and
bottlenecks, and stochastic variation all yield differences in
allele frequencies between individuals,23 yet none is
necessarily associated with any particular disease. These
population-frequency discrepancies are widespread
throughout the genome including many genes of known
medical relevance.24,25 Consequently, the assumption of no
confounding effects in genetic applications of the case-
control design could be violated a priori for reasons that
are at least partly outside the control of the investigator. In
effect, nearly all outbred populations are confounded by
genetic admixture at some level; the challenge is not
merely to show that it exists, but to avoid making
erroneous conclusions because of it.

When cases and controls have different allele
frequencies attributable to diversity in background
population, unrelated to outcome status, a study is said to
have population stratification. Two circumstances must be
met for population stratification to affect genetic
association studies: differences in disease prevalence must
exist between cases and controls; and variations in allele
frequency between groups must be present.26 Despite the
misconception that any differences in allele frequency will
lead to spurious association, the presence of either of these
two circumstances alone is not sufficient to cause
population stratification. The same type of undetected
population stratification, which causes serious concern for
traditional association studies, comprises the essential
information for an alternative method of gene
localisation—admixture mapping.27–31 Here, we restrict our
focus to undetected population stratification as a concern
for association studies, rather than other mapping tools
such as admixture assessment or linkage analysis. 

Population stratification is probably the most often cited
reason for non-replication of genetic association results,
which have unfortunately been more the rule than the
exception.32–34 Leading scientific journals have noted the
importance of population stratification as a cause of non-
replicated association outcomes,35 and it is usual practice
in grant applications and manuscript peer-review to
demand that stratification is explicitly addressed.36 In the
past decade, the potential for this effect to yield false-
positive findings has led to a great shift in association study
design, away from the traditional case-control approach
and towards more demanding and (genotypically) less
efficient family-based designs. The primary impetus for
these costly design changes was to protect against false-
positive inference attributable to population stratification.  

However, family-based association designs are often
neither practical nor plausible,37 either for
pharmacogenetic studies (ie, development of personalised
drugs), population-based cohorts, or high-efficiency
studies to detect genes of modest effect. However, some
recent statistical and genetic developments offer promising
methods to detect stratification in population samples
rather than families, needing no essential changes to study
design. Furthermore, there is growing recognition that
population stratification might not have been as important
a problem as originally believed, and has probably been a
minor or even irrelevant factor for most non-replicated
association studies, albeit with notable exceptions in
studies of ethnically diverse samples.9,38 Here, we consider
the effects of population stratification on association
studies in terms of its potential confounding effect, the
empirical evidence for its occurrence, methods for its
detection and control, and its relevance to
pharmacogenetic applications. 
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population stratification includes studies of the
association between alcoholism and the dopamine D2
receptor, in which both alcoholism prevalence and DRD2
allele frequencies vary greatly by ethnic group.48,49 In fact,
there is much greater heterogeneity between these studies
than between cases and controls within any one study.48

These two examples show that population stratification
can induce important biases. However, these studies are
among the only clear examples available in published
work, and both are essentially examples of fundamentally
flawed epidemiology rather than just poor genetic
matching.32,50 As Morton and Collins38 have noted, if
investigators adhere to basic principles of good
epidemiologic design then related controls may be
unnecessary. 

Studies to assess population substructure with newly
developed methods51 are presently underway in many
academic and industry research groups worldwide.
Preliminary empirical data from large studies of different
ethnic groups suggest that when the potential for sample
heterogeneity is carefully addressed as part of study
design, heterogeneity is usually not seen to be
extensive.52–58 These findings indicate that the extent of
bias from stratification has been exaggerated.

Furthermore, even if some bias is present in a case-
control study because of population stratification, the
amount of bias is likely to be small apart from under
extreme conditions. Wacholder and colleagues26 have
shown—empirically by cancer studies of US white
populations of European origin, and theoretically with
simulated data—that bias is not substantial (<1%) in
case-control studies with unrelated controls unless there
are major correlated differences in allele frequency and
disease prevalence across ethnic groups, and the available

questionnaire data on ethnic origin are not
adequate to control bias. Bias will decrease as
the number of ethnic strata increases;
increasing the number of diverse ethnic
groups and their admixture will actually
decrease association bias from population
stratification.26 Further, in the presence of
genuine association, the maximum potential
bias will probably be associated with the effect
size of the loci in question26 and the sample
size under study.59 It has become apparent
over the past decade that the common,
complex human diseases of present interest—
such as most cancers, asthma, and
cardiovascular disease—are almost certainly
under the control of many genes of modest
individual effect and many non-genetic
factors.34,60

Although population stratification seems
far less of a confounding issue for population-
based studies than has been proposed, for
some study settings it will clearly be more
troublesome: studies of groups with sparse or
inaccurate knowledge of their ancestry;
studies of clear recent admixture; studies of
HLA alleles, whose frequencies differ
strikingly by ethnic group; studies of diseases
whose frequency varies strikingly by ethnic
origin. Still, each of the conditions noted by
Wacholder and colleagues26 must be met for
substantial bias to arise. A much bigger
general problem in genetic association
studies, and the probable cause of much non-
replication, is the simple overinterpretation of
marginal results because of absence of

stringency for statistical significance.5 Unless changes are
made in accepted significance thresholds and standard
practice of analysing one marker at a time, this difficulty
will only worsen as the amount of available genetic marker
data increases. 

Concerns associated with the potential for confounding
by ethnic origin have had a great effect on genetic
association study design, and as a result, on funding for
genetics research and published work. As discussed
below, these concerns have led to development and
widespread use of family-based controls as replacements
for case-control studies. In view of the limited empirical
support for undetected population stratification as a major
cause of false positive reports, and development of these
new methods of detection, it is not clear that the design
changes were warranted; it is even less clear that they
remain worthwhile now. 

Treatment of population stratification in
association studies
The problem of population stratification can be viewed
essentially as one of sample matching. In general, for any
well-designed epidemiological case-control study, the
source population from which controls are sampled
should be that from which cases are also sampled.21

Population stratification can arise when the genetic
background of the source populations differs between
cases and controls.

One obvious solution to the difficulty of stratification is
to carefully match cases and controls on the basis of
genetic background (and study-specific environmental
factors), and thereby keep irrelevant allelic differences in
groups to a minimum. Inappropriate matching is a
frequently cited criticism of genetic epidemiology, and
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suboptimal in this respect),68,69 their use as a means to
protect against stratification in association studies comes
at a high cost of genotyping and sampling efficiency. This
cost will be compounded as studies begin to make use of
the large and ever-increasing collections of identified
SNPs.

Although there are definite situations in which familial
controls will be useful or even essential, such as studies
of subgroups defined by a rare allele or gene-
environment interaction involving a rare allele,42 or
situations of subtle background genetic differences that
arise in specific chromosomal regions rather than across
the genome at large, it is generally the case that use of
such controls will introduce great logistical and financial
complications, potentially introduce biases attributable
to overmatching, and act to reduce power to detect
genetic associations.

Controlling for stratification with anonymous genetic
markers
There are several methods that protect against population
stratification-related drawbacks but do not need family
samples. Pritchard and Rosenberg51 popularised the
notion of using anonymous genetic markers scattered
throughout the genome as indicators of the amount of
background diversity in cases and controls. They reasoned
that as long as the markers were independent of those
affecting the disease of interest, and largely did not
correlate with each other, they should reflect baseline
genetic differences between cases and controls. In this
way, the background level of population differences can
be formally quantified and tested, and in the absence of
any differences, the case-control study then proceeds. As
few as 30 SNPs were proposed as sufficient to detect
population substructure. In view of present molecular
technology and decreasing assay costs, this method is cost
effective and feasible for all but the very largest population
collections.

Although the Pritchard and Rosenberg approach offers
promise for detection of underlying population
differences, it does not offer a means to proceed if such
differences are indeed detected. At least two solutions to
this difficulty have been proposed. One, termed genomic
control,70-74 suggests that in the presence of population
substructure, the standard �2 statistic used in case-control
studies is inflated by a multiplicative factor, which is
proportional to the degree of stratification. This
multiplicative factor can be estimated with the set of
unlinked genetic markers scattered around the genome. It
can then be incorporated into the disease-marker
association tests (by rescaling the �2 test statistic) to
correct for background population differences.70,75 Because
power to detect stratification rises with sample size,
modest population differences are more pronounced in
large than in small samples.59

Another approach, termed structure assessment,59,76-78

also uses unlinked genetic markers to detect stratification,
but instead of estimating a scaling factor, it attempts to
define underlying subgroups in stratified samples on the
basis of the set of genomic markers. Subdivision into
homogeneous population groups means that subgroups
can be matched appropriately and the disease-marker
association test done in each matched subgroup. The total
test for disease association is then a statistical combination
of results from each component subgroup. A strength of
this particular approach is that it makes use of existing
markers that are known to differ in frequency between
ethnically diverse samples and thereby keeps genotyping
efficiency to a maximum.
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careful attention to standard epidemiological matching
could help to avoid the problem entirely.50 However, to
match for all genetic differences in a population is
impossible, and even concerted attempts to match on
surrogate indices such as geographic proximity, physical
characteristics, or self-reported family ancestry are not
certain to control for unmeasured, unknown population
ancestry differences. Epidemiological matching is
necessary, but not always sufficient, to control for
population stratification,61 so further matching is needed.
Virtually all present methods for dealing with stratification
attempt to genetically match cases and controls or, in the
absence of matching, at least estimate the genetic
differences so that they can be addressed statistically. 

Controlling for stratification with families
The most widespread study design for genetic matching
includes use of relatives as controls. There are many
family-based matching designs and corresponding
statistical methods for discrete and continuous traits.46,62,63

The most popular method, and that from which most
others are derived, is the transmission-disequilibrium test
(TDT).64,65 The TDT design requires an affected
individual and his or her parents, and uses the mendelian
principle that for any polymorphic marker, each parent
contributes one allele to an offspring. TDT simply
involves establishment of a pseudo case-control study, in
which cases are the parental alleles transmitted to the
affected proband, and controls are those that were not
transmitted. Protection from stratification comes from
matching of each case-control pair within a family, so that
any population-level allele frequency differences become
irrelevant.

Concern for false positives attributable to population
stratification has led to remarkably broad usage and
endorsement of the TDT design in human genetics
research over the past decade,35–37 as well as considerable
effort in methodological development. Theoretically and
empirically, TDT controls well for population
stratification; however, at least three properties of this
approach are worthy of emphasis. First, for each case-
control pair, DNA samples and genotypes are needed
from three people (two parents and one proband). The
design thus has two-thirds the genotyping efficiency of
one that uses all outcome and genetic information from
each participant.66,67 Second, to provide a test of marker-
outcome association, information is only conveyed when
parents are heterozygous at the marker—ie, they have
non-matching alleles. For an SNP, this occurrence
happens at most 50% of the time, and thus, at least half
the data for each parental sample are disregarded in every
study. Third, by design, the TDT has a burden of family
ascertainment, which is very difficult or impossible with
late-onset disorders and with some psychiatric conditions;
it is also impractical and potentially ethically sensitive in
pharmacogenetic or clinical trials. Furthermore,
statistically conditioning on irrelevant data (in this case,
conditioning on parental genotypes in the absence of
important stratification) will always lead to reduced
power. Thus, if stratification is not of sufficient
importance to affect a particular study, the study loses
power. It is also unclear whether the drawback of non-
replication of genetic associations is reduced for family-
based designs compared with population-based tests.44

While family-based designs offer several key strengths for
genetic studies, including the potential to conduct linkage
analysis, assessment of parent-of-origin differences,
genotype-phase inference for haplotyping, and assessment
of genotyping errors (although the TDT design is
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The theoretical basis for these methods is becoming
increasingly well-developed,59,72 and each of them has its
respective merits—eg, genomic control is easy to
implement and flexible in accommodating different
phenotypes and DNA samples, but can be conservative
and thus lose power in some applications. Structure
assessment has a strong population genetics basis and
allows for the effects of natural selection, but depends
critically on clear detection of substructure for accurate
false positive rates. The specific attributes of these
methods are likely to change as they are further refined,
though they already seem adequate to detect large
frequency differences.61,79 Although it remains unclear how
many markers or samples are needed to detect subtle
population differences,26 or indeed, whether or when subtle
differences are important factors in association studies,80

availability of the methods coincides very well with the
widescale availability of genetic markers and the means to
assay them rapidly and efficiently. These methods for
stratification detection offer promising and practical
alternatives to the use of family-based controls for allelic
association assessment.

All extant stratification tests and designs, family-based
and genome-based, have been developed with the express
aim of keeping false positive results from population
stratification to a minimum. However, population
stratification is rarely noted not only to yield false evidence
in favour of association but also to mask real effects.81,82

Implications for pharmacogenetic studies
An expanding area of interest in application of SNPs to
investigations of disease pathophysiology is stratification of
populations by their genetically determined response to
therapeutic drugs (pharmacogenetics).83 Ideally, one would
like to be able to stratify a population needing treatment
into those likely, or unlikely, to respond to treatment and
those likely, or unlikely, to have adverse side-effects. One
of the primary goals of pharmacogenetics is to understand
the role that sequence variation in individuals and
populations has in variability of responses to drugs, with
the aims of improvement of the efficacy of drug-based
interventions and expediting of targeted drug discovery
and development. Pharmacogenetic initiatives are
presently an area of very active research in complex
human diseases.84–89 Confirmation of initial findings could
mark the beginning of clinical use of genotyping at an
individual level as an adjunct to pharmacotherapy for
many diseases.

The issue of population stratification is of particular
relevance to pharmacogenetic studies, because these are,
almost without exception, case-control studies. For many
diseases, the response to pharmacotherapy varies with age,
and the number and type of drugs is changing rapidly.
There are also important ethical and legal issues associated
with collection of family data in a clinical trial setting.
These considerations effectively preclude availability of
family-based treatment data in the foreseeable future for
most complex human diseases.86 In the absence of these
data, case-control or cohort association studies are the
approaches of choice. Furthermore, most clinical trials are
presently undertaken in highly admixed and heterogeneous
populations from Europe or North America, increasing the
chance that population substructure might be present.
Assessments of selected pharmacogenetic loci have already
indicated significant population variability in allele
frequencies.24,25,61

As discussed above, several methods have been
developed to assess population stratification and, if
necessary, to correct an association test for the presence of

such stratification in population-based samples. However,
neither systematic testing for population stratification nor
application of these new statistical methods has yet been
incorporated into published pharmacogenetic studies.
Empirical assessment of any potential biases attributable
to substructure will be an important consideration for
future pharmacogenetic studies in admixed populations.90

An important issue that must be considered in
assessment of possible substructure is the size of the
detectable effect. Although extensive stratification leading
to large biases in a pharmacogenetic association analysis
are likely to be detectable with as few as 30–100 random
SNPs typed across the genome,51 it is not clear what level
of detectable stratification will be important with respect
to bias. Knowing how much population substructure is
too much will partly depend on the disease or drug target.
From a clinical viewpoint, one might reasonably expect
that there will be more flexibility in diseases such as
colorectal cancer, for which even marginal increases in
personalised medicine could have a large effect.91 For
chronic disorders with great adverse response profiles to
pharmacotherapies, however, a more conservative
approach might be needed, and a lower level of
stratification defined as acceptable.

Conclusions
Failure to replicate genetic association studies is a genuine
concern,9,34,44 yet more often it involves poor study design
and execution—in particular an absence of appreciation
for the sample sizes needed to detect modest genetic
effects and overinterpretation of marginal results—than
undetected population stratification. For most complex
human diseases, the reality of multiple disease-
predisposing genes of modest individual effect, gene-gene
interactions, gene-environment interactions, interpopula-
tion heterogeneity of genetic and environmental
determinants of disease, and the concomitant low
statistical power mean that both initial detection and
replication will probably be very difficult.9,34,37 Add to these
concerns the issues of multiple testing, laboratory and
other measurement error, and positive publication and
investigator-reporting biases, and it becomes apparent
that population stratification is one of many possible
reasons for non-replication of association results. We
must re-emphasise that, when substantial population
substructure does exist, promising methods for detection
and correction for it are now available.59,72–78,92 Growing
empirical and theoretical evidence suggests that well-
designed, well-conducted, and appropriately analysed and
interpreted population-based studies with unrelated
controls are largely robust to bias from population
stratification. Available data indicate that the most
practical and efficient way to acquire large enough sample
sizes to map the genetic determinants of many complex
human diseases by allelic association is by collection of
very large case-control or cohort samples.

We anticipate that use of genomic controls in genetic
association studies will become widespread, and could
pave the way for genome-wide association studies,5 which
has positive and negative aspects. Adoption of genomic
controls is especially important at this time, since we
stand at the threshold of availability of several very large
cohort opportunities in North America and Europe. For
example the Biobank UK project, the joint MRC and
Wellcome Trust initiative, will contain phenotypic
information from 500 000 representatives.16–19 One use of
this resource could involve genotyping the entire cohort
with a small sample of stratification-designed markers for
later subselection of genetically matched controls against
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each new case sample. In this way, genotyping the cohort
once offers reusable matching for future studies without
additional cohort genotyping. Another potential use of
genomic controls is in the area of retrospective
clarification—genomic control could allow follow-up of
past findings that were promising but not replicated by
other groups to see if population substructure was
responsible for the initial evidence for association, or
indeed, if it was accountable for masking the effect in the
replication sample.

In hindsight, the fear of population stratification has
probably been exaggerated. The pervasive reliance and
even insistence on family-based association studies to
protect against stratification has limited the breadth and
depth of appropriate study samples, and has reduced
power to detect true associations. A great deal of research
effort seems to have been compromised to protect against
a confounding factor that never realised its potential to
bias allelic association in complex traits. Although many
hurdles to detection of genes affecting common diseases
remain, important genes could have been missed because
of excessive fear of population stratification. 
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