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1 Preliminaries

These notes deal with fitting models for responses of type often

dealt with with generalized linear models (glm) but with the

complicating aspect that there may be repeated measurements

on the same unit.

The approach here is generalized estimating equations (gee).

There are two packages for this purpose in R: geepack and gee.

We focus on the former and note in passing that the latter does

not seem to undergo any further development.

The geepack package is described in the paper by Halekoh,

Højsgaard and Yun in Journal of Statistical Software,

www.jstatsoft.org, January 2006.

January 23, 2006 page 3



4

2 Working example – respiratory illness

Example 1 The data are from a clinical trial of patients with
respiratory illness, where 111 patients from two different clinics
were randomized to receive either placebo or an active
treatment. Patients were examined at baseline and at four visits
during treatment. At each examination, respiratory status
(categorized as 1 = good, 0 = poor) was determined.

• The recorded variables are:

Center (1,2), ID, Treatment (A=Active, P=Placebo),
Gender (M=Male,F=Female), Age (in years at baseline),
Baseline Response.

• The response variables are:

Visit 1 Response, Visit 2 Response, Visit 3 Response, Visit
4 Response.

Data for 8 patients are shown in Table 1.

January 23, 2006 page 4



5

center id treat sex age baseline visit1 visit2 visit3 visit4

1 1 1 P M 46 0 0 0 0 0

2 1 2 P M 28 0 0 0 0 0

3 1 3 A M 23 1 1 1 1 1

4 1 4 P M 44 1 1 1 1 0

5 1 5 P F 13 1 1 1 1 1

6 1 6 A M 34 0 0 0 0 0

7 1 7 P M 43 0 1 0 1 1

8 1 8 A M 28 0 0 0 0 0

Table 1: Respiratory data for eight individuals. Measurements on

the same individual tend to be alike.
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Interest is in comparing the treatments, but also to include
center, age, gender and baseline response in the model.

From Table 1 it is clear, that there is a dependency among the
response measurements on the same person – measurements on
the same person tend to be alike.

This dependency must be accounted for in the modelling. �
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Example 2 A first approach is to ignore the dependency. This
approach is not appropriate but illustrative.

Let yiv denote the response measured on the ith person at visit
v, where v = 1, . . . , 4 Since the response outcomes are binary,
yiv ∈ {0, 1}, it is tempting to consider the binomial distribution as
basis for the modelling. That is, to assume that yiv ∼ bin(1, µiv)

and that all yiv are independent.

As specification of µiv we consider in the following the linear
predictor

logit(µiv) = µ+ αcenter(i) + βtreat(i) + γ · agei + δ · baselinei

Note that the expression for logit(µiv) does not include the vist
v. We will write this briefly as

logit(µ) = center + treat+ age+ baseline

Other linear predictors can clearly be considered.
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Table 2 contains the parameter estimates under the model.

Estimate Std. Error z value Pr(>|z|)

(Intercept) −0.20 0.52 −0.39 0.70

center 1.07 0.22 4.94 0.00

sexM 0.11 0.27 0.41 0.68

age −0.02 0.01 −2.62 0.01

treatP −1.01 0.21 −4.79 0.00

Table 2: Parameter estimates when assuming independence

A more elaborate model is to allow for over/underdispersion.
That is, to make a quasi likelihood model where the variance
function is

φµiv(1− µiv)

The dispersion parameter φ is estimated as φ̂ = 1.009, i.e. there
is no indication of over/under dispersion. �
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3 Correlated Pearson–residuals

Based on the fitted (wrong) independence model we can

calculate the Pearson residuals

eiv =
yiv − µ̂ivp
µiv(1− µiv)

, i = 1, . . . , N, v = 1, . . . , 4

which under the model approximately have mean 0 and variance

1.

From these we can estimate the covariance matrix Σ̂ in Table 3

which shows covariances between measurements on the same

individual.
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1 2 3 4

1 1.01 0.45 0.38 0.45

2 0.45 1.01 0.53 0.45

3 0.38 0.53 0.98 0.52

4 0.45 0.45 0.52 1.00

Table 3: Covariance matrix based on Pearson residuals.
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Since the elements on the diagonal in Table 3 are about 1, the

matrix can also be regarded as a correlation matrix.

If the observations were independent then the true (i.e.

theoretical) correlations should be zero.

The estimated correlations in Table 3 suggest that there is a

positive correlation.

The task in the following is to account for the correlation

between measurements on the same individual.
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4 Marginal vs. conditional models

Linear mixed models of the type

y = Xβ + Zu+ e

can be described as conditional models. Suppose that

Var(e) = σ2I. Then the conditional distribution of y given u is

y|u ∼ N(Xβ + Zu, σ2I)

so in the conditional distribution, the components of y are

independent.

Generally, we impose a structure on u in terms of Var(u) = G.

The marginal distribution of y is

y ∼ N(Xβ,ZGZ + σ2I)

so marginally the components of y are dependent with the

structure given in V = ZGZ ′ + σ2I.
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So this way, one can see the linear mixed model formula as a way

of building up a model in which the responses are correlated.

An alternative approach is to construct a marginal model

directly, e.g.

y ∼ N(Xβ, V )

by specifying directly a structure on V .
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5 Marginal models for glm–type data

A way of dealing with correlated glm–type observations is to

create a “marginal model” directly. That is, to create a model

for e.g. a 4–dimensional response vector which consist of binary

variables.

We follow the approach by Liang and Zeger (1986).

The term “marginal model” is quoted, because formally we do

not specify a proper statistical model (in terms of making

distributional assumptions).

All we do is to to specify

1. how the mean E(y) depends on the covariates through a link

function g(E(y)) = Xβ and

2. how the variance Var(y) varies as a function of the mean

(the variance function), i.e. Var(y) = v(E(y)).
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With these specifications, one can derive a system of estimating

equations by which an estimate β̂ and Var(β̂) can be obtained.

Asymptotically β̂ ∼ N(β, ...).

So we make fewer assumptions than if we specify a full

statistical model. This extra flexibility comes at a price:

• The estimate β̂ may not be the best possible.

• Hypothesis testing is based on Wald tests (since, as there is

no distribution and hence no likelihood).

• Model checking is difficult.

One can regard GEEs as a “quick and dirty” method.
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6 Estimating equations for gee–type

data

For correlated glm–type data, estimating equations have in the

litterature become known as generalised estimating equations

(GEEs).

• GEEs can, in connection with correlated glm–type data, be

regarded as an extension of the esimation methods (score

equations) used GLMs/QLs. This justifies the term

“generalized”.

• On the other hand, the estimating equations used in

connection with correlated glm–type data are are rather

specialized type of estimating equations. As such, the term

“generalized” is a little misleading.

For this reason the function for dealing with these types of data

in the geepack package is called geeglm().
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With GEEs for GLM–type data

• the emphasis is on modeling the expectation of the

dependent variable in relation to the covariates (just like

with GLMs), whereas

• the correlation structure is considered to be a nuisance (not

of interest in itself), which is accounted for by the method.
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6.1 Specifications needed for GEEs

The setting is as follows: On each of i = 1, . . . , N subjects, there

are made ni measurements yi = (yi1, . . . , yini).

• Measurements on different subjects are assumed to be

independent

• Measurements on the same subject are allowed to be

correlated.

The model formulation is similar to that of a GLM:

Systematic part: Relate the expectation E(yit) = µit to the

linear predictor via the link function

h(µit) = ηit = x′
itβ

Random part: Specify how the variance Var(yit) is related to

the mean E(yit) by specifying a variance function V (µit)

such that Var(yit) = φV (µit).
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The correlation part: In addition to these “GLM” steps we

need to impose a correlation structure for observations on

the same unit. This is done by specifying a

working correlation matrix.
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6.2 Deriving and solving GEEs

Consider observations y1, . . . , yn with common mean θ. The least

squares criterion for estimating µ is to minimize

Ψ(θ, y) =
X
i

(yi − θ)2

This is achieved by setting the derivative to zero:

ψ(θ; y) = Ψ′(θ; y) = 2
X
i

(yi − θ) = 0

We say that ψ(θ) = ψ(θ; y) is an estimating function and

ψ(θ; y) = 0 is an estimating equation.
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Consider data y = (y1, . . . , yn) and a model p(y; θ) where

θ ∈ Θ ⊆ Rp. The idea behind estimating functions is to find a

function ψ(θ) which immitates the score function

U(θ) =
d

dθ
log p(y; θ).

Let

ψ(θ) = ψ(θ, y)

be such a function denoted an estimating function. Solve

(usually by iteration) the estimating equations

ψ(θ) = 0 giving θ̂ = θ̂(y)

If Eθ(ψ(θ)) = 0 for all θ (which holds for the score function), then

ψ is said to be unbiased. (Note that unbiasedness is a property

of the estimation function rather than of the estimate θ̂.)
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In practice we frequently we consider weighted sums of

estimating functions of the formX
i

ai(yi − µi(θ))

which consequently is unbiased.
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Unbiasedness of the estimation function implies that θ̂ is

asymptotically consistent. Another property is that θ̂ is

asymptotically normal.

• The sensitivity of the estimating function is the p× p matrix

Sψ(θ) = Eθ(
∂ψ

∂θ
)

which indicates how “steep” ψ is “on average”. So a large

value of S is good.

• The variability of an estimating function is

Vψ(θ) = V arθ(ψ(θ)) = Eθ(ψ(θ)ψ(θ)>)

A small value of V is good because that indicates that

different samples give almost the same θ̂.

• The Godambe information matrix is defined as

Jψ(θ) = S>ψ (θ)Vψ(θ)−1Sψ(θ)
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• It then holds that

θ̂ ∼approx N(θ, Jψ(θ)−1)

Note: If ψ is the score function (arising from a likelihood) then

Sψ(θ) = −I(θ) and Vψ(θ) = I(θ) and hence Jψ(θ) = I(θ).

If ψ(θ) has the form ψ = X>(y − µ) then

Sψ(θ) = X>[
∂µ

∂θ1
: · · · :

∂µ

∂θp
].

Moreover,

Vψ(θ) = E(ψ(θ))2 = E(X>(y − µ)(y − µ)>X)

which is not so easy to calculate. In principle, however, this

quantity can be estimated using

V̂ψ(θ) = X>(y − µ̂)(y − µ̂)>X

In practice, this may cause problem since V̂ψ in this case may

not be invertible.
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The GEE by Liang and Zeeger (1986) for estimating a p vector

β is given by

ψ(β) =
X
i

∂µ′i
∂β

Σ−1
i (yi − µi(β)) (1)

Since g(µij) = x′ijβ, the deriavative ∂µ′
i

∂β
has as its kjth entry

[
∂µ′i
∂β

]kj =
xikj

g′(µik)

The variance is

Σi = φA
1/2
i R(α)A

1/2
i

where Ai is diagonal with the v(µij)s on the diagonal and R(α) is

the correlation matrix.

The correlation matrix is generally unknown, so therefore one

specifies a “working correlation matrix”, e.g. with an

autoregressive in a repeated measurements problem.

In absence of a good guess of R(α) the identity matrix is often a

good choice.
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Typically R(α) is estimated from data iteratively by using the

current estimate of β to calculate a function of the Pearson

residuals

eij =
yij − µij(β)p
v(µij(β))

(2)

The dispersion parameter is often estimated as

φ̂ =
1

N − p

NX
i=1

niX
j=1

e2ij (3)
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6.3 Newton–iteration

The fitting algorithm then becomes

1. Compute an initial estimate of β from a glm (i.e. by

assuming independence)

2. Compute an estimate R(α) of the working correlation on

the basis of the current Pearson residuals and the current

estimate of β

3. Compute an estimate of the variance as

Σi = φA
1/2
i R̂(α)A

1/2
i

4. Compute an updated estimate of β based on the

Newton–step

β := β + [
X
i

∂µ′i
∂β

Σ−1
i

∂µi

∂β′
]−1[

X
i

∂µ′i
∂β

Σ−1
i (yi − µi(β))]
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Iterate through 2–4 until convergence. Note that φ needs not to

be estimated until the last iteration.

The GEE estimate β̂ of β is often very similar to the estimate

obtained if observations were treated as being independent. In

other words, the estimate β̂ for GEEs is often very similar to the

estimate obtained by fitting a QL–model to the data.
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6.4 Estimation of the covariance of β̂

There are two classical ways of estimating the covariance Cov(β̂).

6.4.1 Model based estimate

Cov(β̂)m = I−1
0 , I0 =

X
i

∂µ′i
∂β

Σ−1
i

∂µi

∂β′

This is the “GEE–version” of inverse Fisher information used

when esitmating Cov(β) in a glm. Here Cov(β̂)m consistently

estimates Cov(β̂) if i) the mean model and ii) the working

correlation are correct.
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6.4.2 Emperical estimate – sandwich estimate

Cov(β̂)e = I−1
0 I1I

−1
0

where

I1 =
X
i

∂µ′i
∂β

Σ−1
i Cov(yi)Σ

−1
i

∂µi

∂β′

Here Cov(β̂)e is a consistent estimate of Cov(β̂) even if the

working correlation is misspecified, i.e. if Cov(yi) 6= Σi.

In practice, Cov(yi) is replaced by (yi − µi(β))(yi − µi(β))′.
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6.5 The working correlation matrix

The notion of working correlation matrices can be introduced

through Example 1 on the respiratory data.

Recall that the measurements on the ith person are

yi = (yi1, . . . , yi4).

It is natural do imagine that the correlation between two

measurements on the same unit decrease as the time between

the measurements increase. A particular simple way of

modelling this as

Corr(yit, yik) = α|t−k|

If |α| < 1 then α|t−k| tends to 0 as |t− k| increase which is what

we wanted. This correlation structure is called an autoregression

of order 1, briefly written ar(1).
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The ar(1) correlation structure can be written in matrix form as

a correlation matrix:

R(α) =

2666664
1 α1 α2 α3

α1 1 α1 α2

α2 α1 1 α1

α3 α2 α1 1

3777775
Note that R depends on a single unknown parameter α which

must be estimated from data.

Some additional classical working correlation matrices are

presented in Section 7.
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7 Exploring different working

correlations

Example 3 With the autoregressive working correlation
structure the correlation parameter is estimated as α̂ = 0.61

which implies that the correlation matrix is

1 2 3 4

1 1.00 0.61 0.37 0.23

2 0.61 1.00 0.61 0.37

3 0.37 0.61 1.00 0.61

4 0.23 0.37 0.61 1.00

It is noted that this correlation matrix does not fit very closely
to the empirical matrix in Table 3. �
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Example 4 Table 3 actually suggests that the correlation is
about the same no matter how far apart the measurements are
in time. This corresponds to the exchangable working
correlation matrix given by

R(α) =

2666664
1 α α α

α 1 α α

α α 1 α

α α α 1

3777775
(Exchangable means that one can swap the order of any two
measurements without changing the correlation structure).

The estimated value for α is now α̂ = 0.46 which fits much closer
to the empirical matrix in Table 3. �
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Example 5 The unstructured working correlation matrix is:

R(α) =

2666664
1 α12 α13 α14

α12 1 α23 α24

α13 α23 1 α34

α14 α24 α34 1

3777775
The ustructured working correlation matrix should be used only
with great care: If there are n measurements per unit there are
n(n+ 1)/2 parameters to estimate. This number becomes very
large even for moderate n. In practice this means that the
correlation parameters can be poorly estimated or that the
statistical program fails to produce a result. �
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Example 6 The independence working correlation matrix is
particularly simple:

R =

2666664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3777775
With the indpendence working correlation matrix, the actual
dependence between the observations is incorporated in the
model only through the emperical covariance (which informally
can be thought of as Table 3).

Note that R does not depend on any unknown parameter.

In absence of important prior knowledge, the independence
working correlation is often a good choice. �
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8 Comparison of the parameter

estimates

So far, five models have been considered: 1) observations are

assumed independent 2) a ar(1) working correlation 3) an

exchangable correlation 4) the unstructured working correlation

and 5) the independence working correlation.

Table 4 shows the parameter estimates/ standard errors.

The following general results are illustrated from this table

• The independence and exchangable working correlation

structures produce exactly the same parameter estimates as

one obtains if a GLM is fitted to data. That is always true.

• The standard errors produced by the GEEs are all of a

comparable size (they are practically identical). The

standard errors of the GEEs are about 50 % larger than the

GLM standard errors.
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Est.GLM SE.GLM Est.Ar1 SE.Ar1 Est.Exc SE.Exc

(Intercept) −0.20 0.52 −0.49 0.82 −0.20 0.82

center 1.07 0.22 1.18 0.34 1.07 0.33

sexM 0.11 0.27 0.13 0.42 0.11 0.41

age −0.02 0.01 −0.02 0.01 −0.02 0.01

treatP −1.01 0.21 −0.91 0.33 −1.01 0.32

Est.GLM SE.GLM Est.Un SE.Un Est.Ind SE.Ind

(Intercept) −0.20 0.52 −0.26 0.81 −0.20 0.82

center 1.07 0.22 1.08 0.33 1.07 0.33

sexM 0.11 0.27 0.13 0.41 0.11 0.41

age −0.02 0.01 −0.02 0.01 −0.02 0.01

treatP −1.01 0.21 −0.99 0.32 −1.01 0.32

Table 4: Comparison of parameter estimates.
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8.1 When do GEEs work?

GEE works best if

• the number of observations per subject is small and the

number of subjects is large

• in longitudinal studies (e.g. growth curves) the

measurements are taken at the same times for all subjects
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8.2 What to do – geeglm vs. lmer

Consider this example: On several subjects i, a binary response

yit has been measured on t = 1, . . . , 4 occasions. Suppose the

subjects have been given either control or treatment.

Marginal models – geeglm()

• The starting point for a marginal model with geeglm() is to

model the parameter pit = Pr(yit = 1) of interest, e.g.

logit pit = αtreat(i)

• We specify a variance function, e.g. Var(yit) = pit(1− pit).

• Then we specify a corelation structure which should

“capture” that yi1, . . . , yi4 are dependent, e.g. an ar(1)

structure.

• After fitting such a “model” we get a parameter estimate

α̂1, α̂2 together with a variance estimate Var(α̂k).
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• We do not get a (usable) measure of how “correlated”

measurements on the same unit are.

Conditional models – lmer()

• For a conditional model with lmer(), the starting point is to

assume that yit ∼ bern(pit) and that

logit pit = αtreat(i) + Ui, Ui ∼ N(0, σ2
U )

Hence, conditional on Ui, yi1, . . . , yi4 are independent

unconditionally they are not.

• After fitting such a “model” we get a parameter estimate

α̂1, α̂2 together with a variance estimate Var(α̂k) – and an

estimate of σ2
U .

• It is not clear how to obtain a (usable) measure of how

“correlated” measurements on the same unit are – at least

not on an interpretable scale.
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• Moreover, we have

pit =
exp(αtreat(i) + Ui)

1 + exp(αtreat(i) + Ui)

and as such, Ui are difficult to interpret.
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