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1 Introduction

1.1 SCD and DIGRAM

DIGRAM is part of a larger statistical package, SCD, containing facilities for analysis of discrete data. A general introduction to the program may be found in Kreiner (2003). 

The original version of DIGRAM (Kreiner, 1989) was a program dedicated to analysis of high-dimensional contingency tables by block recursive graphical models. While graphical modeling is still important for DIGRAM focus has to some degree shifted towards a range of problems where conditional independence plays important roles, but where a graphical models are not regarded as a full-fledged model, but rather as a non-parametric skeletons on which proper models may be build. In addition to graphical modeling DIGRAM now supports:

1) Analysis of collapsibility across categories in multidimensional contingency tables.

2) Analysis of inherent order and monotonous relationships among nominal or partially ordered variables.

3) MCA analysis of marginal and conditional homogeneity in multidimensional contingency tables.

4) Non-parametric loglinear modeling of ordinal categorical data.

5) Analysis of multidimensional Markov Chains.

6) Item analysis by graphical and loglinear Rasch models (Kreiner and Christensen (2002, 2004 and 2006)

These notes describe the item analysis.

Sections 2,3 and 4 provide a little bit of background information on item analysis by graphical and loglinear Rasch models while the remaining sections describe what you have to do to make DIGRAM perform the analysis. Section 5 tells you how to set things up for an item analysis. Section 6 deals with interaction graphs for IRT models. Section 7 discusses non-parametric analyses of differential item functioning and local dependence. Section 8 is on the classical Rasch model for dichotomous items. Sections 9 and 10 describe the general case of polytomous items and models of uniform DIF and local dependence. Analysis of multidimensionality is discussed in Section 11. Section 12 describes analysis of criterion validity – a somewhat overlooked topic among Rasch modelers. Finally Section 13 tells you how to escape to other programs where you may find techniques and methods for item analysis not provided by DIGRAM.

Two appendices are included. The first presents all the commands implemented in the current version of DIGRAM. The second describes all the new features introduced since version 1.0.
1.2 Item analysis

The purpose of item analysis is to examine whether or not a summated index scale summarizing responses to a finite set of items is a valid and objective measure of a latent trait variable. DIGRAM supports two different but related approaches to item analysis:

1) Non-parametric analysis of differential item functioning (DIF), local dependency (LD) and multidimensionality (MD).

2) Estimation and fit of graphical and loglinear Rasch models

DIGRAM may also be used for analysis of criterion validity and for initial latent regression analysis by analysis of partial and marginal relationships between the summated score and one or more exogenous variables.

1.3 Two  examples

Two examples are used throughout these notes. The first originated in a study of Health in Copenhagen County. We will here be concerned with the validity of the SF36 subscale measuring physical functioning. The scale summarizing responses to the following ten items:

Does your health now limit you in these activities? If so, how much?


PF1)  Vigorous activities


PF2)  Moderate activities


PF3)  Lifting or carrying groceries


PF4)  Climbing several fligths of stairs


PF5)  Climbing one flight of stairs


PF6)  Bending, kneeling, or stooping


PF7)  Walking more than a mile


PF8)  Walking several blocks


PF9)  Walking one block


PF10) Bathing or dressing yourself

In the example discussed in Section 10, responses to these questions were coded 
0 :  Not limited
1:   Limited a little

2:   Limited a lot
The summary PF scale therefore measured physical impairment rather than physical functioning.
The data for the second example was collected for a study of the construct validity of a so-called PADL (Physical Activities of Daily Living) measure of functional ability of healthy elderly. Data was collected from 734 70-year old in the County of Copenhagen, Denmark. The PADL scale consisted of a total of 16 items covering three different domains as shown in Table 1.1. Responses for the example used throughout these notes were coded as 0 = “Cannot do it at all, or cannot do it without getting tired” and 1 = “can do it without getting tired” 

Table 1.1 PADL items.

	Mobility function
	Lower limb function
	Upper limb function

	A: Are you able to walk

     indoors?
	G: Are you able to wash the

     lower part of the body?
	G: Are you able to wash the

     upper part of the body?

	B: Are you able to walk out

    of doors in nice weather?
	H: Are you able to cut your

     toenails?
	M: Are you able to cut your

      fingernails?

	C: Are you able to walk out

    of doors in nice weather?
	I: Are you able to go to the

    toilet yourself?
	N: Are you able to comb

     your hair?

	D: Are you able to manage

    stairs?
	J: Are You able to dress the

    lower part of the body?
	O: Are you able to wash

     your hair?

	E: Are you able to get

    outdoors?
	K:Are you able to take

    shoes/stockings on/off?
	P: Are You able to dress the

    upper part of the body? 

	F: Are you able to get up

    from a chair or bed?
	
	


The result of the item analysis of the PADL items was presented in a paper by Avlund et.al. (1993). Everything reported in that paper on the PADL tiredness scale will be illustrated throughout these notes together with new results throwing new light on the validity and applicability of the PADL instrument.

Data for the three examples are distributed as DIGRAM projects together with the SCD/DIGRAM. The SF36 project is called PF3 and the ADL project is referred to as the ADLtired project.

1.4 Conditional independence

Conditional independence plays an important role for IRT and Rasch models, because important concept like local independence, absence of differential item functioning (DIF) and sufficiency and are concept defined in terms of conditional independence.
Two variables, X and Y, are conditionally independent given a set of conditioning variables, U,V and W, if the conditional distribution of X and Y given (U,V,W) factorizes as a product of the conditional distributions of each of the variables:
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For brevity we write X╨Y to indicate that variables X and Y are marginally independent and X╨Y|U,V,W whenever conditional independence (1.1) holds. We refer to Lauritzen (1996) for an exhaustive discussion of conditional independence and the role this concept plays for graphical models.

For certain procedures testing assumptions of Rasch models we need to distinguish not only between conditional dependence and conditional independence, but also between positive and negative conditional association. We write  X<+>Y | U,V,W to indicate positive conditional association between X and Y given U,V,W and X<(>Y|U,V,W to indicate negative conditional association. 

1.5 Acronyms

The following acronyms are used throughout these notes:
Table 1.3 Acronyms

	B-H
	Benjamini-Hochberg

	CICC
	Conditional item characteristic curve

	CML
	Conditional maximum likelihood estimate

	CLR
	Conditional likelihood ratio test

	CTT
	Classical test theory

	DIF
	Differential item functioning

	FDR
	False discovery rate

	GRM
	Graphical Rasch model

	GLLRM
	Graphical loglinear Rasch model

	ICC
	Item characteristic curve

	IRT
	Item response theory

	LD
	Local dependence

	LH
	Local homogeneity

	LI
	Local independence

	MC
	Monte Carlo

	MCMC
	Markov Chain Monte Carlo

	PML
	Per Martin-Löef

	RM
	Rasch model

	RM2
	Rasch model for dichotomous items

	RMP
	Rasch model for polytomous items

	UDIF
	Uniform differential item functioning

	ULD
	Uniform local dependence

	W-P
	Wright-Panchapakesan


1.6 Overview of DIGRAM’s item analysis commands
You only need relatively few commands to perform an item analysis in DIGRAM. They are summarized in Table 1.4.

Table 1.4 Item analysis commands
	Command
	Arguments
	Comments
	Described in section

	ITEMS
	Variables
	Selects items and calculate the score and score groups
	5.1

	FLIPITEMS
	None
	Reorientates items
	5.1

	CUT
	Cut points
	Redefines score groups
	5.2

	EXOGENOUS
	variables
	Selects exoegenous variables
	5.3

	SCREEN I
	None apart from the “I”
	Item screening of item bias and local dependence
	7.3

	DETECT
	Maximum number of dimensions
	Exploratory analysis of 
	11.1

	RASCH
	Parameters specifying the analysis to be performed
	Item analysis by Rasch’s model for dichotomous items
	8

	GRM
	Model terms
	
	9 & 10

	CHECK I
	None apart from the “I”
	Tests the Markov properties of the model
	

	SHOW
	I: Items & exogenous variables

S: Score distribution and score groups
	
	

	STAB
	variables
	Creates table counting the joint distribution of variables and score groups
	

	DISPOSE
	I : Items

E: Exogenous variables
	
	

	BIAS
	Parameters 
	Analysis of item bias
	

	ROSENBAUM
	None
	Analysis of local dependence
	

	PLOT
	None
	
	

	
	
	
	


1.7 Adjusting for multiple testing
Multiple testing is a very serious problem for item analysis where a large number of overall and item fit statistics are calculated.

In order to reduce this problem DIGRAM applies the Benjamini-Hochberg (1995) procedure to control the false discovery rate at 5 % in most cases where more than one test statistic is reported. This does not solve the problem since multiple testing results will appear many times during the analysis, but it is definitely better than doing nothing.

2 Item response models fitted by DIGRAM

DIGRAM estimates and tests a range of Rasch type IRT models:

1) Rasch’s model for dichotomous items (RM2)

2) Generalized Rasch models for polytomous items (RMP) (often referred to as “partial credit models”).

3) Graphical and loglinear Rasch models (GRM and GLLRM) 

The frame of reference for these models is defined by the following types of variables:


Items:






(Y1,..,Yk)


A univariate latent variable:

(


A summary raw score:


S = (iYi


A set of exogenous variables: 
(X1,..,Xm)

Some, but not necessarily all exogenous variables may be so-called criterion variables that are known to be correlated to the latent variable.

In addition to the total score we also need rest scores defined by subtracting some items from the total score:

Rabcd = S-Ya-Yb-Yc-Yd
and score groups, G, defined by a set of cut points, s0,…,sm where 

G = 1 if s0 ( S ( s1 
G = g if sg-1 < S ( sg  for g>1
The minimum and maximum scores are referred to as smin and smax respectively. The definition of score groups does not require that s0 = smin and sm = smax. The scoregroup is treated as missing during analyses using G if scores are less than s0 or larger than sm.
The exogenous variables are formally integrated together with items and the latent variable into the GLLRM framework but only treated informally in connection with RM2, RMP and RSM models.

2.1 RM2: The Rasch model for dichotomous items.

Items are assumed to be coded as 0 or 1, where 1 indicates a response of a specific type, such that the raw score, S, is equal to the total number of responses of the given type. Responses to different items are assumed to 

1) locally independent, that is conditional independent given ( 

2) depend on unknown item parameters, (i,

such that the probability of the complete set of items is equal to
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Replacing (i by exp((i) and ( by exp(() (2.1) may be rewritten as
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(2.2)

(2.1) and (2.2) are two different parametrizations of one and the same model. We will refer to the parameters of (2.1) as the multiplicative parameters and to the parameters of (2.2) as the logarithmic parameters. 
Formula (2.1) was the original parameterization suggested by Rasch (1960). (2.2) may be preferable because it connects the Rasch models to random effect logistic regression models. A third and very popular parameterization of the Rasch model replaces (i with exp(-(i) such that the simultaneous distribution of item responses may be rewritten as
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(2.3)
The item parameters of (2.3) are often referred to as threshold parameters. During DIGRAM’s item analysis all three types of parameters will be calculated and reported. In the majority of situations, the parameters reported will, however, be the multiplicative parameters.

The parameters of the model are not identified unless certain restrictions are imposed. DIGRAM defines this restriction in the same way by setting
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or equivalently
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The raw score S = (iYi is a minimal sufficient statistic for ( in (2.1) – (2.3). The score distribution, P(S|() is a power series distribution,
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where the (-parameters are the elementary symmetric polynomials
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and
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Formulas (2.6) to (2.8) may of course be rewritten in terms of the logarithmic parameters, but appear a bit less ungainly when they put down in terms of multiplicative parameters.

The probability of a positive response on a single item may be calculated given either the latent variable or the total score as shown in (2.9) and (2.10):
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(2.10)

We refer to (2.9) as the values on the item characteristic curves (ICC) and to (2.10) as the values on the conditional item characteristic curves (CICC). The difference between ICC and CICC values will be fairly small when the number of items is large. For small number of items there may however be considerable difference between the two sets of item characteristic values. For model testing purposes observed frequencies of positive responses to specific items in different score groups should of course be compared to the CICC values end not to ICC values. 

Following Andersen (1970, 73, 80, 90) DIGRAM calculates conditional maximum likelihood (CML) estimates based on the conditional distribution of item responses given observed scores and conditional likelihood ratio tests (CLR) to test for homogeneity of item parameters in different groups defined either by scores or by values of exogenous variables.

Inserting the CML estimates into (2.5) as known item parameters we may obtain estimates of the person parameters for different scores by solving the following equations:
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(2.11)

The estimates obtained by solving (2.11) for s=1,..,k-1 would have been maximum likelihood estimates had the item parameters been known. The parameter estimates will be infinite for extreme scores. If finite estimates are absolutely required they will be given by the values of ( given by E(S|() = 0.25 and E(S|() = k-0.25 respectively.
Notice finally that no exogenous variables appear in the conventional Rasch model. Adding exogenous variable to the model and assuming that items and exogenous variables are conditionally independent of the exogenous variables given the latent variable such that (2.1) generalizes to
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leads to the measurement component of a so-called graphical Rasch model where an assumption of no differential item functioning relative to the exogenous variables are added to the Rasch models assumption of local independence. 

2.2 RMP: The Rasch model for polytomous items.

The current version of DIGRAM assumes that all items have the same number of response categories. Responses are coded as 0, 1, ..., m-1 where m is the number of response categories
.

The polytomous Rasch model in DIGRAM generalize the model for dichotomous items by retaining the assumption of a univariate latent variable, a locally independent set of items, and a sufficient raw score. The conditional distribution of item responses to items given the latent variable is for this model given by
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where (iy are multidimensional item parameters. To identify the parameters we need constraints corresponding to the constraints for the dichotomous model, setting (i0 = 1 for all items and 
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The probability (2.13) may of course be rewritten with logarithmic parameters as
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We refer to the model defined by (2.13) and (2.14) as a generalized Rasch model. 
The distribution (2.14) may be reparameterized as a partial credit model (Masters, 1982) setting 
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where (-parameters, (ij = (i(j-1) - (ij , are sometimes referred to as item thresholds due to the role they play in a specific type of response behaviour. Rather than talking about a partial credit model we prefer, however, to talk about a partial credit interpretation in order to draw attention to the fact that several different data generating processes may lead to the model given by (2.13) or (2.14), and to the equally obvious fact that the partial credit interpretation is not a valid description of the way people respond to the type of questions included in the ADL and SF-36 items. The Rasch model given by (2.14) and (2.15) may be appropriate for the SF-36 items, but the partial credit interpretation is not.

The generalized Rasch model has the same sufficiency property as the dichotomous Rasch model. The raw score, S = (iyi, is a minimal sufficient statistic for ( with a power series distribution corresponding to (2.6). The ( and ( functions of (2.6) for the generalized Rasch model are computationally a little more difficult to handle, but in principle of the same kind as the functions defined by the dichotomous Rasch model. All results pertaining to the dichotomous Rasch model concerning the conditional distribution of item responses given the total score, conditional estimation of item parameters, estimation of person parameters, and conditional likelihood ratio tests of hypotheses for item parameters consequently apply for the generalized Rasch model in exactly the same way as for the dichotomous Rasch model.

Exogenous variables are missing in the generalized Rasch model in the same way as in the model for dichotomous items. In order to provide a framework for a cogent analysis of differential item functioning we have to add the exogenous variables to the model in the same way as it was done for the model for dichotomous items replacing (2.12) with 
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The result is once again the measurement component of a graphical Rasch model of the type discussed in the next section.

2.3 GRM: Graphical Rasch models

Graphical and loglinear Rasch models are discussed by Kreiner and Christensen (2002, 2004 and 2006).

A graphical Rasch model is a Rasch model embedded as a measurement component in a larger structural framework in the shape of a graphical model describing associations among the latent and exogenous variables. The measurement component of the model refers explicitly to the exogenous variables by assuming that items are conditionally independent of the exogenous variables given ( as in (2.11) and (2.14). The graphical Rasch model at the same time preserves the assumptions of unidimensionality, local independence and sufficiency of the raw score characteristic of the conventional Rasch models and adds the presumption that there is no DIF relative to the exogenous variables.

Graphical Rasch models are characterized by two Markov graphs. The first, the IRT graph, shown in Figure 2.1, includes items, the latent variable and exogenous variables in a structure encoding local independence and absence of structural DIF in the sense that items and exogenous variables are conditionally independent given (. The second called the Rasch graph adds the raw score is added to the variables of the first graph. This graph encodes sufficiency and absence of score related DIF in the sense that items are assumed to be conditionally independent of both ( and exogenous variables given the raw score. The Rasch graph is shown in Figure 2.2.

In addition to the two Markov graphs defining the model, two other graphs derived from these graphs will be useful during the analysis. These graphs are shown in Figure 2.3 and 2.4. The first is the marginal Rasch graph characterizing the joint distribution of the manifest variables of the model. The other is the moral
 Rasch graph with separation properties corresponding to the global Markov properties of the marginal graph.
[image: image20.png]
Figure 2.1. The IRT graph of a graphical Rasch model for the SF-36 items.

[image: image21.png]
Figure 2.2. The Rasch graph of a graphical Rasch model for the ten SF-36 items
[image: image22.png]
Figure 2.3 The marginal Rasch graph of the graphical model for the ten PF items.
[image: image23.png]
Figure 2.4 The moral Rasch graph of the graphical model for the ten PF items.

The Markov graphs of Rasch models play different roles during the analysis. The IRT probably provides the best visual representation of the model. The Rasch graph is included to remind us that the Rasch model is characterized as the only IRT model with a sufficient score implying conditional independence between items on one hand and the latent variable and the exogenous variables on the other, (Y1,..,Yk) ╨ ((,X1,..Xm) | S. A marginal item analysis addresses the distribution of the manifest variables of the model. The marginal model is a chain graph model characterized by the Marginal Markov graph. One part of the item analysis consists of tests of conditional independence hypotheses implied by the model. In order to identify these hypotheses we have to find the separation properties in the moral Rasch graph, so this is the graph that the program uses to guide the analysis. We have included a plot of the moral graph, but it has little visual value in itself.
2.4 GLLRM: Graphical and loglinear Rasch models

A loglinear Rasch model (Kelderman, 1984 and 1989) is a Rasch model in which the assumptions of local independence and no DIF have been relaxed. The model permits uniform DIF and uniform local dependence where the effect of exogenous variables on certain items and the strength of associations among items do not depend on the latent variable. The conditional distribution of items given the latent variable and the exogenous variables may under this assumption be seen as a loglinear model, where main effect depend on the latent variables, but where interaction parameters are homogenous across different levels of (.

The assumption that the interaction between items and exogenous variables are independent of the latent variable implies that the conditional distribution of item responses can be written as a loglinear model in the following way:

Let Ti be a subset of items and exogenous variables, e.g. Ti = {Ya, Yb, Yc, Xe, Xf, Xg}for i = 1,...,r, and let T = {T1,...,Tr). 

A loglinear Rasch model with generating set T defines the conditional distributions of item responses in the following way: 
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  (2.17)

where ti = (ti1,..,tir) is the observed responses to the items and exogenous variables included in Ti.

The parameters of (2.17) are multiplicative parameters. The model may of course be redefined in terms of logistic parameters as 
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  (2.18)

where (= ln(() and (y = ln((y).

Formula (2.18) shows that the conditional distribution of the item responses given ( = ( and the exogenous variables is a standard loglinear model in which the main effects of the items depend additively on ( such that the raw score is sufficient for ( as in the conventional Rasch models. The model is usually taken to be hierarchical. 

DIGRAM will only fit a limited set of loglinear Rasch models
 containing two-factor interactions, but no higher-order interaction. A generator of one of the models addressed by DIGRAM will therefore either be:

1) generators of uniform local dependence (ULD)defined by item pairs, Li = (Ya,Yb), 

or

2) generators of uniform differential item functioning (UDIF) defined by one item and one exogenous variable, Di = (Ya,Xb)

such that (2.16) reduces to 
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where 

li = (li1, li2) are the observed values of ULD generators

(il are  ULD parameters,

di = (di1, di2) are observed values of UDIF generators

(id are  UDIF parameters.

Restraints are needed to identify the parameters of a loglinear Rasch model. We use the same kind of restraints on the main effect item parameters as for the generalized Rasch model and fix the LD- and DIF parameters by selecting one value of from the range of each of the items and exogenous values as the reference value such that (z,ref  = (ref,z  = 1 for all z.

The raw score is a sufficient statistic for ( in models defined by (2.17) to (2.19) as in the generalized Rasch model. If the model only contains generators of local dependence the conditional distribution of the score given ( will be a power series distribution like (2.6) where the (-parameters are symmetric functions of both item parameters and parameters for local dependence.

If the model also includes generators of item bias, the conditional distribution of the score given ( and the exogenous variables are conditional power series distributions
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where the symmetric (-functions depend on X through the DIF parameters.

Apart from some technical problems, everything related to conditional inference in the conventional Rasch models carry over to the loglinear Rasch models. Details will be given in the subsequent sections of these notes.

Finally, a GLLRM is a loglinear Rasch model embedded in a graphical model where the association between the latent and exogenous variables is a chain graph model as defined by Lauritzen (1996) while the measurement component of the model is a loglinear Rasch model as defined above. The arguments for embedding the measurement model in a graphical framework and the consequences of doing so are discussed by Kreiner and Christensen (2002, 2004 and 2006).

GLLRMs have Markov graphs similar to the Markov graphs of GRMs, but with edges and arrows connecting locally dependent items and biased items with the exogenous variables behind the item bias. Global Markov properties of GLLRMs may be derived by analysis of the moral GLLRM graph in exactly the same way as for the GRMs and used as a starting point for the analysis of DIF and LD in GLLRMs.

When evidence of DIF and LD surfaces during an item analysis we have to decide what to do about it. The purist would probably argue that the proper way to handle these problems is to delete items. It may, however, be claimed (Kreiner and Christensen, 2006) that DIF and LD are minor problems – that items are essentially construct valid and measurement essentially objective – if DIF and LD is uniform.

GLLRMs are models that permit uniform DIF and LD. When evidence suggesting DIF and/or LD has been disclosed and when an analysis of the contents of the items has failed to find problems with the contents of the items we therefore suggest that you try to fit a GLLRM to data to see what can be saved without sacrificing too many apparently sound items.

3 Analysis of differential item functioning, local dependence and multidimensionality

Construct validity requires that there is no DIF and that items are locally independent. Presence of differential item functioning also means that comparisons can not be objective in the sense discussed by Rasch (1966). Disclosure of DIF and local dependence (LD) are therefore always important parts of item analysis.

Before we describe how you may use DIGRAM to deal with these problems we need to clarify some results relating to DIF and LD and to define a few additional concepts.
3.1 Differential item functioning and item bias

Differential functioning and item bias is usually regarded as synonymous terms, but will here be defined to mean two different things. 

Two assumptions have to be met if the requirement of no DIF is satisfied:

1) Items must be conditional independent of exogenous variables given the latent trait variable: (Y1,..,Yk) ╨ (X1,..,Xm) | (
2) Items has to be conditional independent of exogenous variables given the summated score: (Y1,..,Yk) ╨ (X1,..,Xm) | S

We refer to 1) as the requirement that there is no structural DIF and to 2) as a requirement of no manifest DIF. Note, that both requirements has to be met if a summated scale is to be regarded as completely free of DIF. Conventional item response models only satisfies the first requirement. The Rasch model is the only known model wher both requirements apply. 
The two requirements were stated in terms of the complete sets of items and exogenous variables. From 1) and 2) it follows, however, that conditionally independence also applies to single items and exogenous variables.

3) Items must be conditional independent of exogenous variables given the latent variable measured by the index scale: Yi╨Xj | (
4) Items has to be conditional independent of exogenous variables given the index scale: Yi╨Xj|S

We refer to 3) and 4) as requirements of no structural and manifest item bias. Absence of DIF implies that all items will be unbiased, but the fact that all items are unbiased does not automatically imply that there is no DIF. The definition of unbiased items may nevertheless be used for very simple non-parametric tests for no DIF. The condition that there is no manifest DIF for instance lies behind application of Mantel-Haenszel techniques for analysis of DIF for dichotomous items and exogenous variables (Dorans and Holland, 1993). 
The hypothesis of no manifest DIF obviously has to be tested for all items and all exogenous variables. During these analyses evidence may turn up suggesting both that an item is biased relative to several exogenous variables and that several items are biased relative to the same exogenous variable. Some of this evidence may be spurious. The analysis obviously has to distinguish between genuine and spurious evidence. 

The hypotheses of no manifest DIF has been discussed for many years in psychometrics, but only with the exogenous variables treated in a fairly informal way. One of the motives for extending the conventional Rasch models to graphical Rasch models was that the GRM facilitated a more formal discussion of what happens during analysis of manifest DIF and in particular the risk of tripping over spurious evidence of DIF.
To see this consider Figure 3.1 showing the Moral Rasch graph for a GRM with six items and three exogenous variables.

[image: image28.png]
Figure 3.1 The moral Rasch graph of a GRM with six items and three exogenous variables. The score is labeled “#”.

The hypotheses of no manifest DIF is easily seen to be consequences of the global Markov properties of the GRM because items are separated from exogenous variables by the score (#) in the sense that any path from an item to an exogenous variables has to go through the score.

Assume next that evidence suggests that F is biased relative to R. If this finding is correct we have to add an edge to the graph connecting F and R
. The result is shown in Figure 3.2.
[image: image29.png]
Figure 3.2 The moral Rasch graph of a GLLRM
 where F is biased relative to R.
Two unfortunate things happen because of the FR edge in Figure 3.2. The first is that F and the exogenous variables are no longer separated by the score because we can trace a part from F to Q and S going through R instead of the score. The hypotheses of no manifest bias of F relative to Q and S therefore no longer applies. The second is that the score no longer separates the remaining items from R and the other exogenous variables. The hypothesis of no manifest bias therefore no longer applies for any item or any exogenous variables. 

If the bias of F relative to R is the only genuine problem then it may be argued that manifest bias relating to other items and other exogenous variables is relatively weak and that the tests of no bias therefore has very little power, but that is besides the point. The point is that the risk of running into spurious evidence exists and that something has to be done if we want to distinguish between spurious and genuine evidence of DIF and item bias.

The following concepts will be useful to clarify our thinking about these problems.

The DIF source
Exogenous variables with a direct effect on items above and beyond the indirect effect through the latent trait are called sources of DIF and item bias. 

In situations where evidence suggests that an item is biased relative to several DIF sources we distinguish between genuine and spurious sources in the following way:

Assume that evidence of item bias has been disclosed for item Yi relative to a set of exogenous variables, B ( {X1,...,Xm}. Set BA = B \ A where A ( B.

We define the genuine source of DIF as a minimal subset of exogenous variables, A ( B, for which Yi is conditionally independent of BA given A, 

Yi  ╨  BA | S,A








(3.1)

The definition above only refers to manifest DIF and item bias, but the definition also applies to structural DIF.

In Figure 3.2 it has been assumed that R is the source of DIF for item A. The hypotheses that A is unbiased relative to Q and S are therefore acceptable if the association between F and Q and S are tested conditionally given the score and R. 
Item bias and spurious evidence of DIF
We can say a little more about the manifest DIF of the other items than what could be read directly off the graph in Figure 3.2. Assume that there is but one biased item, Ya, such that elimination of this specific item results in a rest score Ra = S-Ya without manifest DIF, Yb  ╨  X | Ra. for all b ( a. If the biased item is not excluded from the score it follows that Yb is conditionally associated with X given S. If Ya is positive related to X, Ya  <+> X | S then it follows that all other items are conditionally negatively associated with X given the total score, Yb  <(>  X | S and, of course, vice versa if Ya is negatively associated with X.
Note that hypotheses of conditional independence of the other items and R in Figure 3.2 are correct if we condition with respect to the score and A because all paths from R to the other items have to go through either the score or A. From this we define genuine and spurious item bias in the same way as we defined the genuine sources of DIF.

Assume that two items, Ya and Yb, appear to be biased relative to the same exogenous variable.
The bias of Yb is spurious and the bias of Ya is genuine if

Yb  ╨  X | S,Ya








(3.2)
Note that S = Ra + Ya from which it follows that (3.2) is equivalent to Yb  ╨  X | Ra,Ya. (3.2) is not in general equivalent to Yb  ╨  X | Ra. If we assume that items are locally independent and that the set of items without Ya fits a Rasch model then it follows that (3.2) implies Yb  ╨  X | Ra.
Heterogeneous item responses versus DIF and item bias

If evidence of DIF turns up, it will be an important task for the item analysis to identify a subset of items that are not biased. If this fails we have a situation where it appears is if we are measuring qualitatively different things in different groups in which case we prefer to talk about heterogeneous item responses instead of just DIF. 

If a subset of unbiased items is found we refer to this subset as a set of anchor items for the index scale. The set of anchor items (of which at least two but preferable more items are required) may be taken as evidence supporting the existence of the latent trait.
3.2 Local dependence

It is a fundamental assumption underlying the majority of standard IRT models including dichotomous and polytomous Rasch models that items are conditionally independent given the latent variable:
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If it is further assumed that item characteristic curves are monotonously increasing it follows in general that 

1) all item pairs are marginally positively correlated.

2) all item pairs are positively correlated conditionally given any function of the remaining items.

3) All item pairs are negatively correlated given the total score. 

For Rasch models sufficiency of subscores imply that

4) items are pairwise conditionally independent given subscores including one but not both items.

1) to 4) are used as the foundation of tests of local independence of items. If the assumptions of the Rasch models hold then it follows for all pairs of items that 

  Yi<+>Yi








 (3.3)

Yi<+>Yi|Rij








 (3.4)

   Yi╨Yi|Ri








 (3.5)

   Yi╨Yi|Rj








 (3.6)

  Yi<(>Yi | S







 (3.7)

Tests based on (3.3) and (3.4) are discussed by Rosenbaum (1988). As there is no requirement of a particular strong positive association between items, only evidence of negative association between items should be regarded as evidence against the Rasch model. We notice in particular that negative partial association between two items, Yi<->Yi|Rij, can be regarded as evidence of item bundles as discussed by Rosenbaum (1988).

Tests of (3.5) and (3.6) are generalizations of tests for three dichotomous items suggested by Tjur (1982) and described by Kreiner and Christensen (2002 and 2004). Figures 3.3 and 3.4 below illustrate why the two hypotheses has to apply in Rasch models.
[image: image31.png]
Figure 3.3 Rasch graph for the rest score without item F
Figure 3.3 shows the Rasch graph for the rest score without one item. The eliminated item, is kept in the model, but treated as an exogenous variable. If the Rasch model applies then F will not be a source of DIF. Figure 3.4 shows the moral Rasch graph. The rest score separates the exogenous F from the items in the rest score. F and the remaining items are therefore conditionally independent given the rest score.
[image: image32.png]
Figure 3.4 The moral Rasch graph for the rest score without F
3.3 Uniform DIF and LD
The GLLRMs permit DIF and LD, but requires that they are uniform in the sense that the strength of the DIF and LD interaction parameters do not depend on (. This, of course, can not be taken for granted.

The different tests the fit of GLLRMs described in section 10 can be regarded as one way to test that DIF and LD are uniform. The hypothesis of uniform DIF and LD can also be tested in connection with marginal analyses of relationships between items and exogenous variables described in this section. 

The marginal test that item Yi is not biased relative to Xj requires a three-way table with  summarizing responses to Yi and Xj in strata defined by S. It may be shown that this three-way table fits a two-factor loglinear model, (YiXj,YiS,XjS) if and only if DIF is uniform. During the analysis of manifest DIF we therefore routinely also fits two-factor loglinear models whenever evidence of DIF turns up.
The same result applies to the three-way tables used for analysis of local dependence. The three-way table summarizing responses to item Yi and Yj in strata defined by the rest score Ri should thus fit the two-factor model (YiYj,YiRi,YjRj)
.
3.4 Multidimensionality

There may be many different reasons for items to be locally dependent. Unrecognized DIF due to an unobserved DIF source with an effect on more than one item is and multidimensionality may be one cause of local dependence
. Local dependence due to multidimensionality or unobserved sources of DIF can be distinguished from other types of local dependence in two ways. First, by the fact that the dependence structure has to be very complex with many dependent item pairs. The dependency has to be positive for some pairs and negative for others. Second, by the fact that LD due to multidimensionality can never be uniform. If the dependence structure is fairly simple and if LD is uniform, then we will have to search for other ways to explain the dependency. We refer to Kreiner and Christensen, (2004) for additional discussion of these problems. 
4 Criterion validity, reliability and latent regression

Take a look at Figures 2.1 and 2.2 where the items have been embedded in a structural framework with a number of criterion and exogenous variables. The item analysis supported by DIGRAM is mainly concerned with the problem of whether a Rasch model of some kind fits the data. From the point of view of the complete models there are at least two other problems that deserve some kind of consideration. The first has to do with the association between the latent variable and the criterion variables and the resulting requirement of criterion validity. The second has to do with the association between the latent variable and the other variables.

4.1 Criterion validity

 We regard an analysis of the adequacy of a Rasch model as one important step in an analysis examining whether or not a set of items provide a construct valid measurement of a latent variable. Construct validation requires, however, more that a Rasch model. 

Construct validity is woven into the theoretical framework of the latent variable that the set of items is intended to provide indirect measurement of. Construct validity therefore involves two distinct steps:

1) Identification of items depending only on the latent variable. It is a basic assumption that the conditional expected item scores, E(Yi | ( = (), are strictly increasing functions of (.

2) Specification of indisputable monotonous relationships between the latent variable on one hand and other manifest variables on the other.

These assumptions are encoded in the Markov graph, Figure 2-1. The idea that ( is the only factor governing item responses is expressed by assumptions of local dependence and the assumption of no structure related DIF, correspond to the assumptions of conditional independence inherent in this figure. The fat lines in the figure are taken to imply that it is absolutely certain that these relationships are nonvanishing. The figure therefore makes the assumption that we not only know that the latent variable is behind the item responses, but also that the latent variable is associated with some specific criterion variables.

The only assumption connected to the concept of construct validity that is not apparent in Figure 2-1 is the additional assumption that items are strictly positively related to the latent variable, Yi <+> (, in the sense that 

3) E(Yi | ( = () is a strictly increasing function of (.

For a variable to function as a criterion variable we also have to assume that a strictly monotonous relationship exists between ( and the criterion variable. To simplify the discussion we assume that the association is positive, because a simple recoding of a negatively related criterion variable will satisfy the requirement. 

Criterion validity is usually discussed in terms of marginal association between variables. Putting the variables into a larger graphical framework suggests that we should more concerned with conditional rather than marginal relationships, requiring that the association between a criterion variable and ( do not vanish even when we condition with one or more exogenous variables. For C to be a criterion variable we therefor require that 

4) C <+> ( | X where X can be any vector of exogenous variables.

Figure 2-2 tells us that the score is a sufficient statistic and that there is no score related DIF. These properties are strictly speaking not a requirement of construct validity, but rather an optimal technical requirement of index scales defined as functions of item responses. Whether or not a sufficient score exists it follows however from the assumptions of monotonous relationships that the score should be conditionally monotonously related to all criterion variables. In the specific case of a graphical Rasch model the complete model collapses over the latent variable onto a graphical model with the Markov graph as illustrated in Figure 4-1.

[image: image33.png]
Figure 4.1 The Markov Graph of the marginal model without the latent variable.

The fat lines between the score and the criterion variables in Figure 4-1 refer to associations that are known to exist. Assumptions 3) and 4) imply however that we can say more that just that these relationships exist. It follows from these assumptions that 

5) Ci <+> S | Z for all criterion variables and all (sub)sets of other variables, Z, in the model.

Assumption 5) is a much stronger requirement of criterion validity than the requirement of marginal association usually found in the literature. Both types of criterion validity may however be examined by DIGRAM

4.2 Reliability
An analysis of the properties of a summated scale is not complete without evaluation of the reliability of the measurement provided by the scale. A conventional item analysis examining the fit of item responses to Rasch models addresses both validity and objectivity issues. Reliability, one of the most important problems in classical test theory (CTT), has always been be left out in the cold, because any statement concerning reliability relates as much to the population in which the test is administered as to the test itself. Remembering this reservation concerning the generalizable of reliability statements, there is of course no reason why reliability should not be assessed. In fact, evaluation of reliability becomes much easier in IRT than in CTT because we have a model describing the way the total score depends on the latent trait being measured. 
Reliability as d4efined in CTT is described in numerous references. The following is based on Bartholomew (1996).

We first need to define the “true-score” of a measurement. CTT, making no reference to a latent trait, defines this as the mean score for a person under repeated measurement. In IRT we can define this in a little more precise way as the conditional mean score given the latent trait variable.

T = E(S|(=()
Obviously, T is a function of (. If we assume that ( is the outcome of a random variable then T itself is also a random variable. This means that we have three different standard deviations to relate to

(( = The standard deviation of the latent variable

(T = The standard deviation of the true score


(S = The standard deviation of the score

CTT also introduces the measurement error, E = S-T and make the standard assumption of linear models that E and T are uncorrelated such that 
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Noticing that (S is close to (T if (E is small, CTT defines reliability as
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(4.1)
Another way to derive reliability is to consider repeated testing under the assumption that test results are conditional independent given (.

Assume then, that we can administer the test twice resulting in two scores, S1 and S2, such that measurement errors are uncorrelated. Under this condition it can be shown that the reliability defined in (4.1) is equal to 
r = corr(S1,S2)








(4.2)
providing a very simple interpretation of what is meant be reliability.
The test-retest correlation is in practice difficult to measure since retesting under the assumption that the first test has no effect on the second is usually unrealistic. Instead CTT uses Cronbach’s coefficient of consistence defined by
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(4.3)
where ( is the mean of the item correlations. If we assume that item errors are uncorrelated then it can be shown not only that ( ( r but also that ( in most realistic situations is quite close to r. ( is therefore often taken as the measure of reliability even though the interpretation of ( is somewhat different.

A recent paper on (, however, throws some light on the differences between consistency as measured by ( and reliability as defined in (4.1.). It is shown by (Lucke,2005) that ( increases and r decreases if positive local dependence is introduced in the models, and that ( in some cases becomes much larger than r. In situations where positive local dependency is a possibility
 we should therefore avoid using ( as the measure of reliability. 

Take a look, then, at reliability as seen from the point of view of IRT models. Each of the two definitions (4.1) and (4.2) still makes sense. The assumption of independent item test errors have to be replaced by the assumption that  test and retest are conditionally independent given the latent trait, S1 ╨ S2 | (. We may still partition the score as a sum of the true score and a measurement error, but the relationship between ( and S is not linear and the distribution of the error depends on (. The true score and the measurement error are consequently not independent and (4.1) and (4.2) are no longer identical. The difference is seldom large, but we do have to make a choice between either (4.1) or (4.2) as the measure of reliability. The good thing, however, is that both coefficients can be calculateed based on estimates of the item parameters and based on assumptions concerning the distribution of the latent trait (Hamon and Mesbah, 2002); calculations that can be carried out even for the complicated loglinear Rasch models where items are locally dependent and biased.
Estimates of reliability in DIGRAM use a fairly simple Monte Carlo procedure to estimate reliability. First, a large number of person parameters are randomly generated from a distribution. Second, test and retest responses to all items are sampled for each person, test and retest scores are calculated following which (4.1), (4.2) and the correlation between the latent variable and the scores are calculated.
The only remaining problem is the choice of latent distribution. Two distributions are used. The first is the non-informative distribution satisfying no restrictions, whatsoever, except that the entropy of the distribution is maximized. The second is a normal distribution with mean and variance determined in such a way that the true score has mean and variance corresponding to the observed mean and variance of the score.
4.3 Latent regression

Figure 2-1 defines a framework both for latent regression analyses where the latent variable is assumed to depend on a number of exogenous variables and for other types of analysis of latent structure (Christensen et.al.,2003). Some of the results from such an analysis may be recovered from an analysis by the marginal model shown in Figure 2-1. It is easily seen for instance that conditional independence of ( and Xi given all other exogenous variables imply that S and Xi will be conditionally independent given the same variables. 

This type of a poor man’s latent regression is supported by DIGRAM. If you want to perform a proper latent regression analysis you will have to go elsewhere, e.g. to the SAS macros by Christensen and Bjørner (2003). There is a little bit of help available, though, as you may export text files with the setup including data for these analyses. 

5 Definition of items, score groups and exogenous variables

You only need two commands to define a complete framework for item analysis by DIGRAM:


ITEMS variables


is used to select items and define the index scale


EXOGENOUS variables
is used to select exogenous variables

Each of these commands is described below.
5.1 Selecting items

We use the PADL project to show what happens when you define the frame of reference for item analysis.
ITEMS ABCDEF selects the first six items and produces the output shown in Figure 5.1. Note that items are generally taken as defined by the DIGRAM project, but recoded such that the lowest level of the variables are assigned an item score of zero, followed by scores increasing with 1 for each level of the variables. 

All items must be coded such that the mean expected item score increases with increasing values of the latent variable. If some items are inversely coded, you may flip them by setting a minus before the variable label in the list of items. ITEMS A-BCDE-F  flips items B and F before they are added to the score. The item coding is shown in Table 5.1 for a hypothetical item A with three response categories:

Table 5.1 Item coding
	Categories of variable A
	Item scores if A is selected
	Item scores if –A is selected

	First category
	0
	2

	Second category
	1
	1

	Third category
	2
	0


Figure 5.1 below shows the main form of DIGRAM when items have been selected. You should compare this with Figure 9 in the introduction to DIGRAM (Kreiner, 2003). Two things have changed. First, the set of items is shown in the third field of the status bar at the bottom of the form. Exogenous variables have not been defined yet, but will be shown in the fourth field when they are ready. Second, a “Graphical Rasch model” button has been enabled. You can use this button to invoke an analysis by graphical loglinear Rasch models as described in Sections 9 and 10. The output window shows the first part of the output produced, when items have been selected. The complete output is shown and described below. 

[image: image57.png]
Figure 5.1 DIGRAM’s main form after definition of items corresponding to the mobility subscale of the PADL instrument.

The output produced when items have been selected contains four different parts as shown in Figure 5.2:
(a) The first part presents the items together with the mean item scores. The item analysis in the current version of DIGRAM only considers persons with complete item responses. The table shows the item mean scores for all persons responding to an item together with the mean score for all persons with complete item responses. You should check that there are only minor differences between the two sets of item means and that the numbers of missing responses do not indicate specific problems with certain items.
[image: image58.png]
Figure 5.2 Items and score distribution after selection of items 

(b) The second part of Figure 5.2 shows the score distribution. If the score distribution is highly left skewed you may experience some problems with the iterative procedure for estimation of parameters in highly complex GLLRM. One thing that you can do in these cases is to flip the distribution as discussed below such that the distribution becomes right skewed.

(c) Cronbach’s ( follows next. Remember that ( defines a lower bound of the reliability if items are unbiased and locally independent. ( may, however, be considerably larger than the reliability if if items are positively locally dependent.

(d) Finally, DIGRAM defines two score groups using the median in the score distribution without extreme scores as a cut point. These score groups that are used by some of the procedures checking the model. The score groups may be redefined during the analysis as described below.

There may be both substantive and computational reasons to change the orientation of all items changing, for instance, a raw score counting numbers of correct responses in an educational test into a scale counting the number of errors. One command takes care of this little problem:


FLIPITEMS

Flips all items and recalculate the score. Score groups will have







to be redefined after items have been flipped as described in the







next section. The output following this command corresponds

exactly to the output shown in Figure 5.2. 

ITEMS ABCD followed by FLIPITEMS in this way defines the same index scale as ITEMS –A-B-C-D

5.2 Redefining score groups

DIGRAM uses score groups in two different ways during the item analysis. The first is in connection with test of item response homogeneity comparing item parameter estimates in different score groups. The second is when score groups are included in multidimensional tables, for instance as part of an analysis of criterion validity. The two score groups defined automatically during item section may be appropriate for some of these analyses, but may be inappropriate for other. To redefine the score groups you must use the CUT command in the following way:

CUT <cut points >
    

is used to define score groups

The definition of score groups and cut points is given in Section 2. Basically, CUT requires three sets of parameters to define m score groups: a minimum score, s0, m-1 cut points, s1,…,sm-1, and a maximum score, sm. Remember that the total score range is given by [smin,smax] where smin in most cases is equal to 0. The extreme cut points will in most cases be equal to smin and smax, but you may use s0 and sm to restrict some of the analyses to a subset of scores [s0,sm] ( [smin,smax] treating scores below s0 and above sm as missing scores.
CUT may be used with fewer parameters as shown in Table 5.2

Table 5.2 Definition of score groups

	Command
	Score groups

	CUT
	smin,smin+1,..,smax-1,smax

	CUT s
	[smin,s],[s+1,smax]

	CUT s0 s1
	s0,s0+1,..,s1-1,s1

	CUT s0 s1 … sm
	[s0,s1], [s1+1,s2],.., [sm-1+1,sm]


A table similar to the one shown in Figure 5.2 (d) will be shown when score groups are redefined by the CUT command.

5.3 Selecting exogenous variables

The EXOGEOUS command simply selects a set of exogenous variable as they are defined in the DIGRAM project. You can not flip them or change them in any way. Criterion variables may be included among the exogenous variables, but there is so far no way to tell the program how to distinguish between ordinary exogenous variable and the special criterion variables.

EXO QRS
selects the variables and produces the output show in Figure 5.3 providing information on the number of subjects lost to analysis because responses are missing to one or more of the exogenous variables. In the current example we lose 96 respondents with complete scores because of missing information on Social class (Q) and Pension Age (S). Respondents with known Pension Age have a significantly lower mobility score than person with no information on Pension Age.


Figure 5.3 Definition of exogenous variables. Information is provided on the total score for respondent with and without missing information on exogenous variables

5.4 The graphical Rasch model.

A Graphical Rasch model is defined whenever items and/or exogenous variables are selected. This GRM assumes that items are locally independent and without DIF. During the item analysis you may modify this model turning it into a graphical loglinear Rasch model by adding loglinear terms for DIF and local dependency, but you should be aware that the model will be reset as a GRM model if you change either the items or the exogenous variables of the model.

A graphical display of the current GRM or GLLRM may be shown in the GRAPH form as described in Section 6 below.

5.5 Displaying items, exogenous variables, scores and score groups
If you at any point need to recapitulate the definition of items, score groups and exogenous variables you must use the SHOW command as described below. The output produced by this command is the same as the output following definition of the variables as illustrated in Section 5.7.


SHOW I

prints a list of all items similar to the list shown in Figure 5.2. (a) 

together with list of the exogenous variables. The information in
Figure 5.3 is only shown when exogenous variables are selected.

Future versions of DIGRAM may add the information Figure 5.3 to
The output following this command.


SHOW S

prints tables with the score the score group distributions 

distributions. Similar to those shown in Figure 5.2 (b) and (d).
The two commands may be combined into one command, SHOW IS, producing complete information on the setup for the item analysis.

5.6 Disposing items and exogenous variables

If you for some reason want to get rid of the items and or exogenous variables you must use the DISPOSE command:


DISPOSE I
disposes items 


DISPOSE E
disposes exogenous variables 

The GLLRM model associated with the items and exogenous variables will be disposed when items are disposed and reinitialized if only exogenous variables are disposed.

6 Markov graphs for item response models

A graphical loglinear Rasch model is created and/or initialized when items and exogenous variables are selected. The initial model always assumes that items are locally independent and unbiased. The model may however be revised during the analysis by graphical and loglinear models as described in section 9 below.

The Markov graphs characterizing the GLLRMs may be shown in DIGRAM’s graph module. 

Click on the graph button on DIGRAM’s main window to open the graph dialog. The default graph shown here is the project graph for the graphical model of the complete set of variables. If items have been selected you will however be able to select one of the IRT graphs showing the interaction graphs of the current GLLRM, that is either the graph with or the graph without the raw score included.

Figure 6.1 shows the Graph window with the interaction graph without the score for a scale defined by the first six symptom items with sex and age included as exogenous variables.

[image: image37.png]
Figure 6.1 The initial IRT graph for a scale defined by the PADL mobility items.

Four different Markov graphs may be displayed:
1) The IRT graph containing items, the latent variable and exogenous variables.

2) The Rasch graph adding the score to the variables in the IRT graph

3) The Marginal Markov graph defined by collapse across the latent variable.

4) The moral graph derived from the marginal Markov graph. All nonparametric tests of the GLLRMs described in Section 7 are all derived by separation in the moral graph.
The graphs may be manipulated, printed and saved as described in the notes on managing graphs in DIGRAM. 

The labels used by DIGRAM for the latent variable and the score are 


¤ : The latent variable


# : The score

DIGRAM’s graph module may also be used to draw ad hoc IRT graphs illustrating different properties of this type of models. All graphs shown in Kreiner and Christensen (2002 and 2003) as well as Figures 2.1 – 2.4 were drawn by DIGRAM.

7 Analysis of global Markov properties of graphical Rasch models 
DIGRAM provides three different ways to test that there is no DIF. The first, described in this section, are test of no manifest item bias using partial gamma coefficients. The second uses conditional likelihood ratio tests to compare item parameters estimates from different groups defined by outcomes on exogenous variables. The third are tests of hypotheses concerning the parameters representing uniform DIF in graphical loglinear Rasch models. 
The different approaches to analysis of DIF also apply to analysis of local dependence. First, the Partial gamma coefficients are used to test that items are conditionally independent given rest scores excluding one, but not both items. Second, evidence concerning local dependence relating to a specific item, Yi, may be disclosed by tests comparing estimates of item parameters in rest scores, Ri = S-Yi, across the groups defined by the different responses to Yi. Finally, tests of local dependence may be performed as tests of hypotheses relating to parameters representing uniform local dependence in graphical loglinear Rasch models. 
This section only describes the first of these approaches. The other ways to analyze DIF and LD will be dealt with in subsequent sections.

The tests by partial gamma coefficients may be described as generalized Mantel-Haenszel tests because they are similar to the Mantel-Haenszel tests use to test for DIF for dichotomous items and dichotomous exogenous variables. The partial gamma coefficients are more general, however, permitting analysis for ordinal items with any number of categories and ordinal exogenous variables. The hypotheses addressed by these tests are derived from the global Markov properties of graphical Rasch models as described in Section 3 and Kreiner and Christensen (2002, 2004, 2006) and Kreiner (200?). 
Three commands are described below: BIAS is, obviously, used to invoke the analysis of item bias. ROSENBAUM is, a little less obviously perhaps, used for an analysis of local dependence. The most important command is “SCREEN I” combining most of the things in BIAS and ROSENBAUM and adding analyses that may help to distinguish between genuine and spurious evidence of DIF and LD. The end result of the item screening is a graphical loglinear Rasch model that the program uses as the starting point for a proper GLLRM analysis. 
The items and exogenous variables that were selected in Section 5 are used to illustrate how these commands work.
7.1 Analysis of item bias
The BIAS command provides you tests of conditional independence of items and exogenous variables given the total score. The tests are the same as the tests that appear elsewhere in DIGRAM. We suggest that you always use exact Monte Carlo tests
. P-values for ( coefficients for this procedure are always 2-sided because we are testing a model rather than searching for evidence supporting a hypothesis of an expected association between two variables.

The BIAS command requires parameter determining whether or not tables should be printed:


BIAS



calculate test statistics for conditional independence


BIAS T


prints all tables in addition to the test statistics


BIAS T pct

prints the table if test statistics are significant at a pct level

Results are summarized first for each item and finally for each exogenous variable.

Figures 7.1 to 7.3 present some of the results of the DIF analysis after a “BIAS T 5” command. 
The results for item A are shown in Figure 3.1. There is evidence of DIF relative to Social Class. Note, that the use of repeated Monte Carlo tests only required 21 random tables to determine that the test statistics were insignificant for two other exogenous variables. 

The table with item A and Social Class is shown in Figure 7.2. The table shows not only the observed frequencies in strata defined by the score, but also the mean item scores corresponding to the relative frequencies of a positive response when there are only two response categories.  The positive relationship reappears for scores equal 1, 2 and 3.

At the end of the analysis of DIF a summary is printed for each of the exogenous variables showing which items that appeared to be biased relative to this variable. This summary is shown in Figure 7.3. Evidence of DIF was disclosed relative to both Social Class and Pension Age. Remember, however, that multiple testing will result in falsely significant test results, and that no attempt is being made here to control the false discovery rate. It is consequently too early to conclude that the PADL mobility scale has a DIF problem.


Figure 7.1 Results of tests for item bias for item A (Indoors). Tests are performed as repeated Monte Carlo tests with a minimum of 21 and a maximum of 1000 randomly generated tables. P-values for the partial ( coefficients are 2-sided


Figure 7.2 A table showing the conditional relationship between item A and Social Class (coded from 1 = highest to 4 = lowest) given the total score.

Figure 7.3 Summary of significance of evidence suggesting item bias for each exogenous variable. A minus indicates evidence of a negative partial association between an item and an exogenous variable, while a plus indicates positive partial association. The number of symbols is an indicator of the strength of the evidence (degree of significance)

7.2 Analysis of local dependence
To invoke an analysis of local dependence you must invoke


ROSENBAUM


Calculates test statistics for conditions 3.3) to 3.6)  









described in section 3.2.

Figure 7.4 shows the results of tests of Rosenbaum and Tjur conditions for items B and C. 

Extremely strong evidence of positive local dependence is suggested for “Walking out in nice weather” (B) and “Walking out in bad weather” (C). Hardly surprising considering the contents of these two items, but nevertheless something that has been overlooked or disregarded by all analyses examining the validity of the PADL items. The result here is a clear indicator that a conventional Rasch model can never fit the responses to these items. We return later to a discussion of the consequences of this finding after the presentation of the analysis of these items by Rasch’s item analysis model.

Figure 7.4 Tests of Rosenbaum and Tjur conditions. Asymptotic p-values are always used for the test of marginal association in this procedure while repeated Monte Carlo tests were used for tests of conditional independence in this example.  p-values for the ( coefficients are 2-sided

7.3 Item screening.

The tests for differential item functioning and local dependence has been combined into a simpler procedure for screening of marginal item relationships as an initial step towards a GLLRM. The procedure starts by looking at marginal unconditional relationships, continues to test for DIF and violations of the Tjur conditions and finally generates an initial GLLRM with the smallest number of generators of DIF and LD to explain the significant test results disclosed during the screening.

The details of the screening procedure and the output will be described in a forthcoming publication, Kreiner (200?). We present the output produced by the item screening procedure here, and briefly discuss some of the ideas behind the procedure. The item screening procedure may be regarded as a convenient way to test the global Markov properties of GRMs, or it may be used as initial analysis aimed at formulation of a GLLRM. The first viewpoint is assumed in this section and the second will be in focus in Section 10. The results of the item screening may also be used for an analysis of multidimensionality. These possibilities are described in Section 11.

Item screening is a four-step procedure:

1) Analysis of marginal relationships between all manifest variables including scores and rest scores.

2) Tests of DIF and LD by partial ( coefficients.
3) Elimination of spurious evidence of DIF and LD.

4) A multivariate analysis of the relationships between the score and the exogenous variables.

To start the item screening you have to invoke the SCREEN I command. The results are presented in a series of tables followed by a summary outlining the findings. We present each of the steps of the item screening of the PADL items with a few comments on what the results tell us.

Screening of marginal relationships between manifest variables.
The results are collected in a matrix containing ( coefficients measuring association among binary and/or ordinal variables and (2 test statistics for nominal variables. P-values are asymptotic in the first step of the item screening. 

Figure 7.5 shows the result. 

The first part shows the marginal ( coefficients measuring the association between items and between items and rest scores without the item. Everything seems to be exactly as expected for items fitting a Rasch model. All items are positively related and positively related to the rest scores. 
The second part shows the marginal association between the exogenous variables and the items and the score. The marginal associations for a specific exogenous variable have to be the same for all items and for the score. Note that the relationship between an item and an exogenous variable does not have to be significant even though the relationship between the score and the exogenous variable is significant. They just have to point in the same direction. This requirement is clearly satisfied here.

Figure 7.5 Marginal relationships between PADL mobility items, scores, restscores and exogenous variables. 
Screening of partial relationships
The partial ( coefficients measuring the conditional association among items given rest scores and the conditional association among items and exogenous variables given the total score are shown in Figure 7.6. Significance is assessed by Monte Carlo estimates of exact p-values. Multiple testing is an obvious problem when we have to evaluate the significance of the test results in Figure 7.6. One way to do reduce this problem is to use the Benjamini-Hochberg (1995) procedure to control the false discovery rate (FDR) at an acceptable limit. The critical limits of the p-values controlling the FDR at 1% and 5% are shown after the test results. Using a p-value limit at 0.00521 corresponding to FDR = 5% we find only four test results indicating local dependence and one test result suggesting DIF.


Figure 7.6 Partial ( coefficients measuring conditional association. Test results that are significant when the FDR = 5 % level have been written in bold.
Eliminating spurious evidence of LD
Local dependence between two items will hopefully result in evidence pointing at theses specific items, but may also result in evidence suggesting that other items are locally dependent. 

The evidence of local dependence is summarized in Figure 7.7. Strong evidence of positive LD was found for items B and C and less strong evidence of negative local dependence for items B and D and items C and D. Note that it is only one of the two test result pertaining to BD and CD that turned out to be significant. This finding has the result that DIGRAM decides that the evidence of negative LD is probably spurious. The best way to understand this is to look at what happens to the Rasch graphs if we assume that B and C are locally dependent. 


Figure 7.7. Summary of evidence of LD and elimination of spurious evidence

Figure 7.8 shows the IRT graph for the GLLRM in which B and C are locally dependent as suggested by the item screening.
[image: image38.png]
Figure 7.8 IRT graph for model where B and C are locally dependent.

Consider next the question of whether or not B and D are locally dependent. To address this problem the item screening procedure calculates two partial ( coefficients. One where the association is estimated conditionally given RB, and another where conditioning is with respect to RD.

Consider the RD rest score first. If we subtract D from the score and treat it as an exogenous variable we get a new model with the Rasch graph shown in Figure 7.9.

[image: image39.png]
Figure 7.9 Rasch graph for the RD model with D as an exogenous variable. B and C are still assumed to be locally dependent.
The fact that B and C are locally dependent changes nothing concerning the association between B and D. The hypothesis that B and D are conditionally independent given the rest score, RD, still applies.

Figure 7.10 shows the Rasch graph for the RB model where item B is treated as an exogenous variable.

[image: image40.png]
Figure 7.10 Rasch graph for the RB model with B as an exogenous variable. B and C are still assumed to be locally dependent.
In this model B and D are not separated by the rest score, RB, because one of the paths connecting D to B goes through C. The local dependence between B and C consequently means that B and D are no longer conditionally independent given RB.
Noticing this, DIGRAM decides to disregard the one significant test result for the BD and decides that there is no genuine evidence of local dependence between these items. The same happens for the CD association, such that the conclusion at the bottom of Figure 7.7 is that there is only evidence for local dependence between B and C.

The situation might of course have been more complex, in which case DIGRAM would accept LD in a stepwise manner including first cases with the largest ( coefficients where both tests of local independence are significant. If this happens you should be careful to check the order in which LD relationships are included to understand the procedure. You should also remember that automatic stepwise procedures always have an inherent risk of making the incorrect decisions. The end result is only a suggestion that should be carefully checked before it is accepted.
Eliminating spurious evidence of DIF

There is only one significant test result suggesting item bias. The problem of spurious evidence does therefore not exist in this example. 
If the problem had existed, DIGRAM would use a stepwise procedure testing the hypotheses defined in (3.1) and (3.2) to distinguish between genuine and spurious sources of DIF and genuine and spurious item bias before the DIF summary at the bottom of  Figure 7.11 appeared.


Figure 7.11 Analysis of spurious DIF evidence followed by DIF summary

Notice again the cautious conclusion in the DIF summary. Social class is describes as a “possible” DIF source. Whether or not this conclusion still stands at the end of the item analysis is up to you to decide.
Is DIF uniform?

If DIF surfaces we assume that you will try to fit a GLLRM. For such a model to apply, it is required that DF and LD is uniform. The next part of the item screening checks that this appears to be the case. The result is shown in Figure 7.12.


Figure 7.12Analysis of uniform DIF
Effect analysis

The degree to which the exogenous variables have an effect on the total score is analyzed in the final part of the item screening by a conventional backwards variable selection procedure similar to the model selection procedure implanted in DIGRAM (Kreiner, 2003, p 66-71).
The result is shown in Figure 7.13. Note that the analysis uses the raw score, not the score groups. S, social class, appears to be the only variable with direct effect on the score.

Figure 7.13 Automatic backwards selection of variables with effect on the score.
The GLLRM suggested by the item screening
At the end of the item screening DIGRAM summarizes the results in the shape of a GLLRM (Figure 7.14.). This model is defined as DIGRAM’s current GLLRM which will be displayed by the Graph module (Figure 7.15) if you click on IRT graphs.

Figure 7.14 The final summary of the item screening

[image: image41.png]
Figure 7.15 The IRT graph of the GLLRM suggested by item screening
8 Item analysis by Rasch’s model for dichotomous items

The procedure for item analysis by the RM2 modelis in many ways obsolete in DIGRAM because most of the analysis may be performed by the more general procedures for analysis by graphical loglinear Rasch models. It may nevertheless be useful as a starting point for the analysis because you do not have to consider many of the tricky technicalities that have to be addressed during the analysis by the more complicated models. The one feature which is special to the analysis of dichotomous items is the procedures for exact conditional inference.

The analysis is invoked by the RASCH command. The command requires no parameters, but parameters may be added if you want to skip communicating with the dialog shown below:


RASCH



estimates the parameters of the model and calculates 

              




statistics assessing the fit of item responses to the models







or describing properties of the score. 
The different options available during the analysis are presented in the dialog, Figure 8.1, which appears when the RASCH command without parameters has been invoked. The program assumes as default that you will need a test of homogeneity of item parameters in groups defined by the score (referred to as “#”) and all the exogenous variables defined for the item analysis. If this is not needed, you may delete the variables from the first input line of the dialog. All other options have to be checked before you press the “Run” button.
[image: image42.png]
Figure 8.1 The dialog describing all the options available during an analysis by the Rasch model for dichotomous items

The output generated by the RASCH command is printed in the following order during the analysis and discussed below in the same order: 
1) Initial output – conditional maximum likelihood estimates of item parameters 
2) Item characteristic curves and item fit statistics (I and P)

3) Analysis of local homogeneity (L)
4) Analysis of multidimensionality (M)
5) Analysis of homogeneity of item parameters across score groups (H)
6) Test for equality of item parameters (Q)
7) Description of test-retest probabilities (T)
8) Evaluation of reliability (R)
9) Analysis of homogeneity of item parameters across groups defined by exogenous variables (D)
10) Exact conditional inference in the conditional distribution of item responses given both person and item margins. (E) 

11) Estimation of person parameters (P)

The letters in the parentheses are the arguments you need to add to the RASCH command if you want to go directly to the analysis. A “RASCH  EH” command produces a conditional likelihood ratio test comparing item parameters in different score groups and an analysis based on the conditional distribution of the item response matrix given the sufficient person score and item margins.

8.1 Estimates of item parameters
Inference in DIGRAM is always conditional. Figure 8.2 shows the item margins and Andersen (1970)’s conditional maximum likelihood (CML) estimates of the item parameters. These estimates are always shown, irrespectively of which of the options you have selected. All three types of item parameters, multiplicative, logistic or thresholds (locations) are presented.

Figure 8.2 Conditional maximum likelihood estimates of item parameters.

8.2 Item characteristic curves

DIGRAM does not produce plots with item characteristic curves. If you absolutely need to see these plots you may produce text file with the data on the ICC curves that may be read as input in standard statistical programs which will draw the curves for you. Or you may export the data to another program for Rasch analysis. RUMM2020 produces the best ICC curves known to us. 

Two types of item characteristic curves may be calculated based on the estimates of the item parameters in Figure 8.2:

· Conventional item characteristic curves (ICC) showing the probabilities of positive responses to specific items for different values of person parameters.

· Conditional item characteristic curves (CICC) show the conditional probability of positive responses to specific items given the total score on all items.

Both sets of item characteristic values are calculated and tabulated when tables with item characteristic curves are requested. CICC values are calculated for scores from 1 to k-1 while ICC values are calculated for person parameter values,(1,..., (k-1, such that E(S|(t) = t for t = 1,...,k-1. In addition to the ICC and CICC columns, the observed frequency of positive responses for each item is also reported for each score group together with standardized residuals comparing the observed counts with the ‘expected’ CICC values.

Figure 8.3 shows the results for one of the items.

The output includes information on three different item-fit statistics. Molenaar (1983)’s U, comparing the observed and expected CICC values for persons with low or high scores. Molenaar’s U is defined as 
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(8.1)

where resi is the standardized residual in score group i and  a and b are two cut points partitioning the score range into low and high scores each with approximately one third of the sample with item-informative scores. We have changed the sign of U such that a positive U indicates that the observed CICC is steeper than one would expect under the Rasch model. The results for item B in Figure 8.3 is evidence that the item discrimination is better than assumed by the Rasch model.
The p-value reported in Figure 8.3 is the one suggested by Molenaar (1983). There is some doubt about the degree to which the p-value is reliable. MCMC estimates of exact p-values are however available from the exact conditional analysis described later in this section.
The outfit reported by DIGRAM in Figure 8.3 is the conditional outfit comparing individual to expected item responses in the conditional distribution of responses given the total score (Kreiner and Christensen, 2007). Contrary to conventional outfits (Smith, 2006), conditional outfits are unbiased and asymptotic p-values may calculated in a way that does not make unrealistic assumptions concerning the distribution of residuals. 
The test-restscore ( is Goodman and Kruskal’s ( calculated on the table describing the association between the response to an item and the total score on the remaining items. The observed ( is compared to the expected test-restscore ( calculated together with the standard error under the assumption that the estimates in Figure 8.2 are the correct item parameters. 

Figure 8.3. Item characteristic values and Molenaar’s  U for the second PADL  items. Estimates of both multiplicative and logistic person  parameters are presented.


Figure 8.4 Overview of item fit statistics for the PADL items
Molenaar’s U and the item-restscore ( disclose evidence of too strong item discrimination for items B and C and too weak item discrimination for item D. The outfit coefficient only finds something wrong with item F.

Select the “Generate ICC output” (option O) from the list of possibilities in the Rasch dialog if you want the data needed to plot the ICC curves.

Three files will be produced:

1) A text file, ICC.txt, which should be readable by any statistical program. The names of the variables are included in the first record of the file.
2A text file, ICC2SPSS.txt, for SPSS. This is the same as ICC.txt, but variable names are not included.

3) A SPSS syntax file, ICC2SPSS.sps, which will read the data and produce the ICC curves. The content of the ICC2SPSS.sps file is shown in Figure 8.5.

The ICC curve of item B is shown – after some editing
 – in Figure 8.6. Notice the difference between the conventional ICC curve (ICC_B) and the conditional ICC values (CICC_B). The difference between the observed frequencies (OICC_B) suggests that the item discrimination of item B is too strong for the Rasch model. 

The final item on the Rasch agenda relates to item characteristic curves. These are not plotted, but DIGRAM will save data on a text file called ICC.txt containing data on these curves which you may use as input to your favorite statistical package where they can be plotted.

Figure 8.5 shows the some of the content of the ICC.txt file. The first part contains the ICC curves for a range of ( values while the final five records has the ICC, the CICC and the observed frequencies for the ( values corresponding to expected scores equal to 1 – 5.


Figure 8.5 data for item characteristic curves on the ICC.txt file
The ICC2SPSS.txt file contains the same information as ICC.txt except that the first record with variable names is not included.

The syntax file is shown in Figure 8.6. 


Figure8.6. SPSS Syntax which will read the data in ICC2SPSS.txt and produce ICC curves for all items. ICC_B contains the values of the ICC curve for item B. The THETA column contains values of the latent variable. C_ICC are the values of the conditional ICC curve while O_ICC are the observed frequencies for positive responses given total scores. C_ICC and O_ICC only exists for THETA values corresponding to different scores. 
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Figure 8.7. The item characteristic curve for item B.

8.3 Analysis of local homogeneity
Analysis of local homogeneity (LH) was introduced by Kreiner et.al. (1990) and further developed by Kreiner et.al. (2006) and Kreiner (2006b). The LH analysis is meant as an initial analysis by stochastically ordered mixed Rasch models. The procedure compares item parameter estimates in adjacent score groups and collapses score groups if the differences are insignificant.

The ideas behind the stochastically ordered mixed Rasch models and the details of the analysis are described in the above references. Here, we only show what happens during the LH analysis in DIGRAM. 
Figure 8.8 shows the observed score distribution excluding extreme scores at the start of the analysis. Before the analysis starts you will be asked (Figure 8.9) whether you want to collapse some score groups before the analysis starts because score groups are considered too sparse for estimation to make sense. In the current example we decide to collapse the first two score groups because the number of cases in the first is too small for estimates to make sense. We therefore tell the program to collapse these score groups when it asks (Figure 8.10) which score groups to collapse.
At the start of the analysis you are asked whether you want to an automatic or manual analysis. The results shown below are generated by automatic LH analysis.

[image: image45]
Figure 8.8 Initialization of the analysis of local homogeneity
[image: image46.png]
Figure 8.9 Should score groups be collapsed before the analysis of local homogeneity?
[image: image47.png]
Figure 8.10 Specification of the score groups you want to collapse. All score groups in between the two numbers will be collapsed into one score groups before the analysis proceeds.

The results of the analysis are shown in Figure 8.11. At each step the program estimates the parameters of the score groups currently defined, calculates conditional likelihood ratio tests comparing estimates in adjacent score groups an asks (Figure 8.9 and 8.10 again) whether score groups should be collapsed before the program proceeds to the next step. In this example we collapse score groups 1-2 & 3 in the first step and score groups 1-3 & 4 in the second, finally concluding that equality of parameters estimated in score group 1-4 are not equal to the parameters estimated in score group 5. Once again, just as in connection with the item characteristic curves we find some evidence suggesting misfit between item responses and the Rasch model. Conclusions concerning these problems will first be formulated after all the different parts of the analysis have been presented.

Figure 8.11. Analysis of local homogeneity
[image: image48.png]
Figure 8.11 Continue without the p-value based search for local homogeneity?

8.4 Per Martin-Löef’s test of multidimensionality

The test of multidimensionality is actually a confirmatory test of the unidimensionality against a specific two-dimensional alternative. The test statistic used here is a test suggested by Martin-Löf (196?) discussed and extended by Christensen et.al. (2001). The test appears in two different connections in DIGRAM. The version implemented for the RASCH procedure is a particular simple version for dichotomous items requiring that the items purported to belong to the first alternative dimension appear as the first of the selected items while the remaining items are assumed to belong to the second version. The extended version of the test for polytomous items and more than two alternative dimensions may be obtained during the analysis by graphical loglinear models described in Section ?.? below.  

Having selected this type of analysis during the setup of the Rasch analysis, you first have to specify the number of items measuring the first of  the two  alternative dimensions (Figure 8.11). To illustrate the procedure we select the first three items (A,B and C).

[image: image49.png]
Figure 8.11 Specification of the alternative for the test of unidimensionality
The results of the analysis are shown in Figure 8.12 and 8.13. Figure 8.12 shows the observed and expected association between subscales relating to each of the two dimensions together with standardized residuals comparing the two. The expected association is calculated under the unidimenisonal Rasch model using the fact that the conditional distribution of the two subscores given the total score does not depend on the person parameter of the model. The expected number of cases with subscores equal to s1 and s2 is consequently calculated as nsP(S1 = s1, S2 = s2 | S1 + S2 = s1 + s2 = s), where ns is the number of respondents with a total score equal to s. The conditional probability depends on the so-called symmetrical gamma polymia, (1 and (2, calculated for the estimated items parameters of each subset of items as shown in formula (8.2) where we assume that the first a items belong to the first subscore.
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Figure 8.12 Observed and expected association between subscores relating to two potentially different dimensions
Figure 8.13 shows the result of the formal test of unidimensionality. The estimated item parameters for each subscore is first rescaled such that the product of the parameters is equal to 1 for each subscore (the “Before columns”) and then re-estimated for each subscore separately (the “After” column). Finally, Per Martin-Löf’s test of unidimensionality comparing the two sets of item parameter estimates. The result is a highly significant test statistic, once again providing evidence against the conventional unidimensional Rasch model.

Figure 8.13. Maximum likelihood of item parameters for each subscale and Per Martin-Löfs test (Z) of unidimenisonality.

8.5 Andersen’s test of homogeneity 
Two score groups were defined during the setup for item analysis. The first combines persons with a total score of 0- 3, while the second merges respondents with a total score equal to 4-6.  Comparison of item parameter estimates in different score groups is one of the basic tests of the Rasch model. DIGRAM first compares expected and observed item margins in different score groups and then calculates Andersen (1970)´s conditional likelihood ratio test (CLR). During this analysis respondents with extreme scores are excluded because their response patterns contain no information on item difficulties. The analysis thus compares the 211 respondents with scores between (and including) 1 and 3 to the 143 respondents with scores equal to 4 or 5. The observed and expected item margins are shown in Figure 8.14. The standardized residual will be approximately distributed as standardized normal variables if the number of cases is not too small and if the probabilities of positive responses are not too extreme.

Figure 8.14 Observed and expected item margins in two score groups. Notice, that extreme scores are excluded. Observed and expected margins are therefore counted for score groups  1-3 and 4-5.
Figure 8.15 shows the CLR test together with the estimates of the logistic item parameters for the complete data set and for the different score groups. A small and rather primitive plot showing the position of the items parameters on one and the same scale follows after the table with item parameters, to aid the interpretation of the differences between the two groups. Notice that items with plus or minus infinity is not included in the plot, and that a ‘*’ indicates two or more items with roughly the same item parameter.  

Figure 8.15 Estimated item parameters and conditional likelihood ratio tests in score groups 1-3 and 4-5.
8.6 Test of equality of item parameters

In certain situations
 it may be of interest to test whether some items have the same item parameter. Andersen’s conditional likelihood ratio is easily modified to a test of this hypothesis against an alternative where all items have different parameters. The result of the test is shown in Figure 8.16.

Figure 8.16 Test of equal item parameters
Following this result you are given the option to continue with an analysis testing that some, but not all items have the same parameters. You have to tell the program which items the hypothesis of equal item parameters should refer to as in Figure 8.17, where we formulate the hypothesis that items A, E and F and items B, C and D have the same parameters. The output appears in exactly the same way as the output in Figure 8.16 except that we now get two set of item parameters and another conditional likelihood ratio test
. 
[image: image51.png]
Figure 8.17 Definition of a hypothesis of equal item parameters.

8.7  Description of test-retest association

Estimated test-retest probabilities calculated under the assumption that the two tests the value of the latent variable is the same and that the item responses obtained the second time the test is used are conditionally independent are conditionally independent given the latent variable may be useful if one wants to evaluate changes between measurements and may also provide an impression of the reliability of the test. 

Test-retest probabilities may be calculated using the same approach as in the case with two subscores in formula (8.2) because the total set of repeated item responses fit a Rasch model if the assumptions mentioned above are met. We refer to the two scores as S1 and S2 and to the total of the two scores as S = S1 + S2. The tables in Figure 8.18 describe different features of the conditional distribution of (S1, S2) given S:
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(8.3)

The set of (S1, S2) values corresponding to a specific value of S is called an orbit. Formula (8.3) thus defines the set of orbit probabilities corresponding to a specific total score.
The first table of Figure 8.18 shows the estimates of the orbit probabilities based on the CML estimates of Figure 8.18.

The diagonal of the tables in Figure 8.18 is referred to as the ridge. Cells lying close to the ridge indicate measurements with good agreement between the first and the second measurement whereas cells far from the ridge indicate mismatch. In order to evaluate whether a mismatch between the first and the second measurement, S1 and S2, should be regarded as significant we need probabilities indicating that (S1,S2) lie improbably far from the ridge. Cumulative probabilities calculated along orbits starting at the edge of the table and ending on the ridge has consequently been calculated and printed in the second table. 

The final table of Figure 8.18 shows the same cumulative probabilities as the second table except that probabilities greater than 0.10 have been suppressed, to emphasize areas where the difference between the first and the second measurement may be taken as evidence that the underlying latent variables are different. A score of 5 on the first test and 1 on the second thus implies that the value of the latent variable has significantly changed from the first to the second time the questionnaire was administered. 


Figure 8.18 Test retest tables based on CML estimates of item parameters
8.8 Reliability

As described in Section 4.2, DIGRAM calculates three different measures of reliability under two different conditions.

The three measures of reliability are

1) The ratio between the variance of the true score and the variance of the score

2) The test-retest correlation

3) The correlation between the latent trait variable and the score

The two measures under which reliability is calculated are given by assumptions concerning the latent trait distribution. They are

a) A non-informative (maximum entropy) distribution

b) A normal distribution with mean and variance selected in such a way the expected mean and variance of the score are equal to the observed mean and variance of the score.
It will probably be the reliability estimated under the normal distribution that will be of greatest interest to you. The other part should not be disregarded, however. First, because it may remind you that reliability to a non-ignorable degree depends on the population and second, because in which The reliability of the non-informative distribution provide one framework in which you may compare reliability of different index scales from different studies.

Remember (Figure 5.2) that the mean of the PADL score distribution was 4.45, that the standard deviation was 1.80 and that Cronbach’s ( was equal to 0.84.

At the top of Figure 8.19 you can see that a normal trait distribution with mean = 3.88 and s.d. = 4.92 corresponds to the observed mean and s.d. of the score.
The last part of Figure 8.19 shows the reliability under this assumption. The ratio of the true score variance to the score variance is equal to 0.894, the test-retest correlation is equal to 0.903 and the latent trait-score correlation is equal to 0.945. Under this assumption the ( coefficient appears to provide a reasonable lower bound for the reliability.

Under the non-informative latent trait distribution, the reliability is very different, reminding you how careful you have to be about statements of reliability. The conventional measures of reliability are very close to 0.61 and the latent trait-score correlation is equal to 0.77.


Figure 8.19 Evaluation of reliability
8.9 Andersen’s test of DIF
Andersen’s CLR test comparing CML estimates of item parameters in different score groups may also be used as a test of DIF comparing estimates of item parameters in subpopulations defined by different outcomes on potential DIF sources. The results of these tests are presented in exactly the same way as the output form analyses of homogeneity (Figure 8.15). If more that one CLR test of DIF and/or homogeneity is calculated DIGRAM summarizes the results shown in Figure 8.20. There is no evidence of DIF, but some evidence against homogeneity across score groups. Adjustment for multiple testing by the B-H procedure rejects this evidence, however. 

Figure 8.20 Summary of conditional likelihood ratio tests comparing item parameter estimates in different groups of respondents.
8.10 Exact conditional inference

The conditional distribution of item responses in Rasch models given item and person margins are independent of both item and person parameters. The exact conditional distribution is computationally intractable, but Holst (199?) has developed so-called Markov Chain Monte Carlo (MCMC) procedures providing estimates of p-values related to the test statistics we may want to calculate during the analysis. In addition to providing more reliable p-values in cases with small and moderate samples, this approach is particular useful in connection with test statistics where asymptotic p-values are not available. Our first attempts to capitalize on these procedures have mainly been in this direction, examining coefficients usually discussed in connection with nonparametric Mokken models from the point of view of Rasch models.

To start the analysis by MCMC you first have to decide define a number of parameters guiding the performance of the procedure. This is done in the dialogue form shown in Figure 8.22 where you also have to decide what you want the program to calculate. 
[image: image53.png]
Figure 8.22. The Setup for the MCMC procedures for exact conditional inference in Rasch models for dichotomous items. 
MCMC parameters
The MCMC procedure is described in Holst (1994), Kreiner et.al. (2006) and Christensen et.al. (2006). The parameters of the procedure are as follows:
1) The size of the MCMC sample. 5000 is the default in the current version of DIGRAM

2) The size of a burn-in sample taken when the procedure starts. The burn-in sample is discarded and not used for the analysis. It is taken in order to reduce the dependence of the observed matrix of item responses on the samples. The current default size of the burn-in sample is 100.

3) The number of Markov chain transitions between samples. The number of transitions has to be large in order to reduce the correlation between samples. The default number of transitions is 100000. In all studies where we have investigated the correlations between successive test statistics based on the MCMC samples the correlation are so close to zero that the MCMC sample in practice works as a conventional MC sample. 

4) A random seed guiding the way the MCMC sampling starts. The default is 9.

We are still developing and adding test statistics for analysis by MCMC methods. In the current version the following test statistics are available:

1) Andersen’s test of homogeneity.
2) Andersen’s test of DIF.
3) Loevinger’s H coefficients.
4) Molenaar’s U.
5) A ( coefficient (referred to as “Kreiner’s (” to distinguish it from all the other ( coefficients that DIGRAM calculates ).
6) Conventional ( coefficients measureing the degree of association between item responses and rest scores.
7) Conditional in- and outfit statistics (Kreiner et.al., 2006).
8) Wright and Panchapakesan (2 statistics. Both overall fit and item fit statistics are included. The (2 statistics compare observed to expected item responses in different score groups. (2 statistics reported by DIGRAM differ from those defined by Wright and Panchapakesan (1969) using CML estimates instead of joint estimates. Apart from that, the definition of the (2 statistics is exactly the same as the original definition.
9) Residuals comparing observed item characteristic curves to estimates of ICC and CICC curves.

Other test statistics will be added later. As you can see in Figure 8.20 we intend to include different confirmatory tests of unidimensionality and residuals based on parameter estimates from other programs.

Two other options available during the MCMC analysis are available.

1) You may save the MCMC sample of test statistics on text files if you want a more comprehensive analysis of the distribution and correlation of the MCMC sample.
2) Verbose output including additional information collected during the MCMC sampling. This has been useful during debugging of the program, but will probably be of no interest to most users of the program

The output is described in Figures 8.23-8.28

Figure 8.23 Initialization of the exact conditional Rasch analysis
Figure 8.23 presents some information on what happens at the beginning the exact conditional Rasch analysis. We are reminded about the score groups used during the analysis, about the parameters of the MCMC procedure and about what was requested.
On its way to each new item response matrix the MCMC procedure generates 99999 new tables that are not used according to a Markov Chain model. In the majority of these steps the new matrix is the same as the old one, but in some cases transitions to different matrices occur. In the current example a mean number of 1018.5 transitions were made between each of the matrices included in the MCMC sample.

Four coefficients are presented. First, the overall unconditional and conditional
 Wright-Panchapakesan (2 statistics together with asymptotic p-values. These p-values are not to be trusted. Exact p-values will be estimated by the MCMC procedure. Loevinger’s H and HT coefficients are printed at the bottom of Figure 8.23. It is shown by Christensen et.al. (2006) that H and HT are constant under the MCMC sampling. These coefficients therefore have no distribution in the exact conditional frame of inference and consequently no p-value. 

Figure 8.24 Andersen’s CLR tests of homogeneity and DIF
A summary, similar to the summary in Figure 8.19, but now with MCMC estimates of exact p-values is printed next (Figure 8.24). There is little difference between the exact and the asymptotic p-values in this case. The smaller p-value of the test for homogeneity means that this test is significant, even after adjustment to control the FDR risk at 5 %.

The tables with item fit statistics are all printed with the same format we only show two examples. Figure 8.25 shows Loevinger’s H for items. In addition to one-sided p-values the table also shows the expected H coefficients under the Rasch model. A too high H value indicates that the item discriminating power is stronger than assumed by the Rasch model. This appears to be the case for items B and C.

H coefficients may also be calculated for person. A too large number of persons with negative H coefficients is evidence that item characteristic curves a crossing which might suggest that a two-parameter IRT model might be appropriate. This number is not significant in this example.

Figure 8.25 Loevinger’s H for items
Figure 8.25 shows the item fit statistics of Wright and Panchapakesan including the overall fit statistic. Compare the p-values reported here with the asymptotic p-value of in Figure 8.22. Notice also the expected (2 statistics under the model. According to conventional wisdom these statistics should be asymptotically (2 distributed. The expected fit statistics are all smaller than 1 suggesting that the claims on behalf of the (2 distribution are incorrect. This is no problem as long as significance is assessed within the exact conditional frame of inference. Asymptotic p-values should, however, be very cautiously used.

Figure 8.26 The conditional W-P fit statistics
Figure 8.27 finally shows a table with values on the item characteristic curves for Item C and the standardized individual residuals comparing the observed frequencies of positive responses to the values on the ICC and CICC curves. Conditional residuals are virtually unbiased whereas the unconditional residuals are biased. We refer to Kreiner et.al. (2006) for further discussion of individual residuals in Rasch models. 


Figure 8.27 Item characteristic curves

8.11 Person parameter estimates
Three different person parameter estimates are currently implemented in DIGRAM:

1) The restricted pairwise conditional estimate (PW).

2) The conditional maximum likelihood estimate (CML)

3) The maximum likelihood estimate in the score distribution using symmetrical polynomial of item parameter estimates (ML).

The estimates are discussed in Kreiner (2007).

The CML estimate is to be preferred for principal reasons. Evidence from Monte Carlo studies, suggest that the ML estimates are less biased and have smaller standard errors. Even better estimates are available, however, and will eventually be implemented here.

Figure 8.28 shows the person estimates corresponding to different PADL scores. Referenced estimates are person estimates fixed by the assumption that the person parameter is equal to zero for persons with a midscore (here equal to 3). The calibrated estimates are calibrated to the latent score with an origin such that the sum of item parameters is equal to zero. The ML estimates are automatically calibrated. 

Figure 8.28 Person estimates
The current version of DIGRAM produces a lot of test output after the table with the estimates in order to assess the quality of the estimates. This output will eventually disappear when we have decided which of the estimates that deserve to survive.
9 Item analysis by Rasch models for polytomous items

DIGRAM does not distinguish between analysis by Rasch models for ordinal items and analysis by the more general family of graphical and log linear Rasch models. A Rasch model for ordinal items is simply a GLLRM with an empty set of DIF and LD generators. To estimate and fit generalized Rasch models you therefore have to use the same procedure for fitting and testing graphical and loglinear Rasch models. This procedure and the dialog needed for setting up the PRM and GLLRM analysis is described in Section 10 below.

10 Item analysis by graphical and loglinear Rasch models

We will use the last nine SF-36 items to illustrate the analysis by GLLRMs
. Item screening of these items ends with the following summary: 

To invoke the analysis you must either use the GRM commando or click on the “Graphical Rasch model” button. This will open the dialog box shown in Figure 10.1. Two models are shown in this dialog. The current model is the GLLRM model known by DIGRAM when the GRM command is invoked. In this case the model defined by item screening. The new model, BC DE GH HI BL CN CK JK HO, defined by the user, is the next model to be fitted. If the fit of the new model is satisfactory you can replace the current model with the new model by clicking on the “Change model” button. Or you may return to the current model by clicking on the “Use current model”.

If you want to start the analysis with another model than the one the program currently regards as the current model you have to use the GRM command with model generators:


GRM <model generators>
 
Redefines the current model and displays the










GLLRM dialogue window, Figure a.

“GRM BC DE GH HI BL CN CK JK HO” would consequently start the analysis with both the current and the new model defined in the same ways as the new model in Figure 10.1
The new model in Figure 10.1 is actually a model providing a fair fit to the SF-36 items (Kreiner and Christensen, 2006). We illustrate analysis by GLLRMs with results relating to this model. 
10.1 The GLLRM dialog
Before we describe the GLLRM analysis we have to say something about the different fields of the GLLRM dialog box.


Figure 10.1. The GLLRM dialog box. The current model is defined by item screening. The new model is a more parsimonious model providing an acceptable fit to the data.
Information on variables and cases included in the analysis.

The upper left corner provide information on items, exogenous variables, score groups. The only part you can change
 is the filter field where you may define conditions that the persons to be included in the analysis have to meet. By default, the program excludes cases with extreme scores. You may enter additional restrictions given by a variable label and the range of values permitted during the analysis. The filter restricting the analysis to cases with a score between 1 and 10 and self reported health (SRH) between 1 and 3 should look like this


Information on models
Two models – the current model and the new model - are defined below the information on items. The current model is supposed to be the model you currently believe in. The IRT and Rasch graphs displayed by the graph model relates to this model. The new model is the model that you can work with in this dialog box. It may be the current model or it may be a new model you want to consider. 
The field containing the current model can not be edited. You may replace the current model by clicking on the “Change model” button, but that is the only way you can change the model in the GLLRM dialog
. When you do this, the IRT and Rasch graphs are modified to fit the new model.
The field containing the new model may be edited in any way you want it. If you change the model and want to return to the current model, you can always do so by clicking on the “Use current model” button.

Analysis options
Three fields contain information on the analysis to be performed. The large checklist box at the lower left of the GLLRM dialog box contains a number of different options that will be discussed in connection with the presentation of the analyses. In the smaller checklist box to the right of the option checklist, you may determine how you want parameter estimates to be presented. Above this there is a small field where you may specify that you want test statistics relating to a subset of model terms. 
Output
Output will be displayed in the large field at the right side of the GLLRM dialog box. You can at any point decide to either erase output and/or copy it to the DIGRAM module.

10.2 Parameter estimates
Click on “Start”. If no analysis options have been selected, the program will do nothing but calculate and print estimates of all item, DIF and LD parameters. Figure 10.2 to 10.4 show some of the results:

Figure 10.2: Information on the model and estimates of the multiplicative item parameters are printed first.

Figure 10.3: The estimates of the LD parameters follow next. These parameters are also multiplicative.

Figure 10.4:  Finally, estimates of multiplicative DIF parameters are printed. 
LD and DIF parameters are best interpreted as odd-ratios comparing item responses in different groups relative to item responses in reference groups. The first category of exogenous variables and items is selected as reference except in cases where reference cells of the tables are empty.
Item, LD and DIF parameters are sometimes difficult to interpret. The strong positive association among related SF-36 items is easy to see in Figure 10.3. The DIF parameter of item C relative to Sex implies evidence that women, everything else being equal, have greater health related limitations when it comes to carrying groceries than men; a result which is not too difficult to understand. The DIF effect of age on walking (H) is less straightforward.

Many people find it easier to understand the parameters when they are converted to partial credit thresholds. To obtain these you must select thresholds in the “Estimates” checklist. The results are shown in Figure 10.5. Four different types of thresholds are displayed:

1) Conventional partial credit thresholds are shown for items that are neither locally dependent nor biased. Item F (Bending) is the only uncontaminated item (Figure 10.5).

2) For items that are biased, but not locally dependent, thresholds are presented for virtual items defined by subpopulations with different values of the DIF source. Item J (Bathing) is the only example of this kind being biased relative to Self reported health (SRH). The thresholds of the virtual items for different levels of SRH are shown in Figure 10.6
3) If items are locally dependent, but not biased, thresholds for composite items defined as the sum of locally dependent items are calculated and printed. Figure 10.7 shows the thresholds for D+E = the total score on items relating to stair walking.

4) Finally, thresholds for virtual items that are both dependent and biased are shown. There are two examples of this kind in the analysis displayed here. Figure 10.8 shows the simpler of these two cases. Note, that thresholds are disordered.

We refer to Kreiner and Christensen (2006) for further discussion of the way these parameters should be interpreted.

Convergence problems during model fitting
Calculation of parameter estimates requires iterative procedures that may be time-consuming and in some pathological cases never converges. The time needed for convergence depends first of all on the size of the item components containing locally dependent items, and may be prohibitive if the components are very large. 

Convergence stops when the largest difference between the observed and fitted sufficient statistics of the model is smaller than the number shown in the convergence field at the bottom of the dialog box, Figure 10.1
. If you think the calculations take too long you may try to increase this number. The estimates will, of course, be less precise if you do this. 

If convergence has not been obtained after a large number of iterative steps you will be asked whether you want to proceed or stop.

What to do when the estimation procedure does not converge.
Non-convergence typically occurs with sparse data sets and very complicated models. The only thing you can do at the moment is to try to flip items such that the score distribution becomes right-skewed with a low mean score. If non-convergence happens during global testing (described below) where item parameters are estimated in score groups or in groups defined by the values of exogenous variables, you should try to redefine score groups or exogenous variables to avoid attempting to estimate parameters in very small groups. We will eventually develop better estimation procedures. 

Additional output during estimation 

The checklist box includes the following options producing additional output during estimation and testing, including tables with sufficient margins and/or tables with item parameters for all models being considered. The program by itself also prints additional information when the estimation procedure does not converge. In addition to this you may choose to have additional verbose output produced that may be of help pinpointing the reason for non-convergence.

The output options described in this subsection are of very limited use and will therefore not be described in more detail here. 


Figure 10.2 Estimates of the parameters of a GLLRM


Figure 10.3 Estimates of LD parameters for locally dependent items


Figure 10.4 Estimates of DIF parameters


Figure 10.5 The partial credit thresholds for “Bending”. Two thresholds are required for three response categories. The thresholds are ordered.

Figure 10.6 Thresholds of virtual Bathing items in subpopulations defined by SRH (K). K=1 means very good health. No persons in this group have strong health related limitations relating to bathing. The second threshold is therefore equal to infinity.

Figure 10.7 Threshold for the composite D+E item. Thresholds have also been calculated for the composite item under the assumption of local independence. Five different outcomes on the composite item require four thresholds.
Figure 10.8 Thresholds for the virtual composite item G+H+I in different age groups.

10.3 Global tests-of-fit
A global test-of-fit is an overall test of the model. DIGRAM offers two related but different tests, global tests of homogeneity of item parameters in different score groups and global tests of DIF comparing parameters estimated in different subgroups. Both choices are available in the option checklist box.

Figures 10.9 and 10.10 shows the results of the global tests for the model estimated in the previous section. Figure 10.9 shows the results reported during the analysis comparing item parameters estimated in the two score groups. Similar results are printed during the analysis comparing item parameters in groups defined by outcomes on the exogenous variables. Figure 10.10 summarizes all the results obtained during this analysis.

Figure 10.9 Analysis of homogeneity of item responses in different score groups.

Two types of results are presented in Figure 10.10. The overall test that item parameters are the same in the two score groups appear at the bottom. The model is clearly accepted by this test. The tables above the test statistic compare the observed and expected item mean scores in the two score groups. The expected mean item scores are in both groups calculated under the assumption that the estimates of the item, DIF and LD parameters calculated for all persons applies in both score groups. The standardized residuals in the column to the far right of these tables agree with the overall test; there is no evidence to be seen against the model. 

Figure 10.11 The summary of global test results

The summary of all the global tests is shown in Figure 10.11. There is marginally significant evidence against the hypothesis that item parameters should be the same in the three different groups characterized by different smoking behavior. If we take account of the probability of spurious significance due to multiple testing
, we nevertheless conclude that the fit of the model is satisfactory. 
Figure 10.11 shows that convergence problems occurred during the calculation of some of the test statistics. The delta referred to in Figure 10.11 is the largest difference between observed and fitted sufficient statistics. When delta values are not larger than this we can be sure that the estimation procedure was actually converging, but hadn’t reached the goal when the program decided to stop. The effect of this is usually that the reported p-values are marginally smaller than they would be, had the program been permitted to continue. There is therefore no evidence in Figure 10.1 suggesting that the model does not fit.

10.4 Local homogeneity and DIF
Analysis of local homogeneity in GLLRMs works in basically the same way as for conventional RM2s (Section 8.3) and will not be described here. The starting point for the analysis is always the score groups that you have defined when the GRM analysis is invoked. In addition to analysis of local homogeneity relative to score groups, the GRM module also permits analysis of local DIF analysis comparing and – if possible – collapsing groups defined by exogenous variables.

10.5 Model simplification

The model fit is satisfactory according to the tests-of-fit in Figure 10.11. To see whether some of the interaction terms are unnecessary we have to calculate test statistics for hypotheses of vanishing interaction parameters. Conditional likelihood ratio tests of these hypotheses will be reported if you select the “Reduce model” option on the checklist. The results is a list of test results as shown in Figure 10.12, showing highly significant evidence of all terms included in the model.

Figure 10.12 Conditional likelihood ratio tests of vanishing interaction parameters
10.6 Testing assumptions of no DIF and local independence

Even though the model is appear to be acceptable there may be problems that are overlooked by the global test statistics. To examine this possibility you can calculate conditional likelihood ratio tests for all LD and DIF terms that are not included in the model. 
To obtain these tests you must select the “Check local dependence” and “Check missing item-bias” on the checklist. The result is two tables of test statistics, part of which are shown in Figures 10-13 and 10-14.


Figure 10.13. The first part of the list of CLR tests of local independence. Partial ( coefficients are shown for significant test results if item screening has been performed before the check of local independence is performed analysis is executed


Figure 10.14. The last part of the list of CLR tests of no DIF. Partial ( coefficients are shown for significant test results if item screening has been performed before the check of no DIF is performed analysis. The significance of all tests of local independence of and no DIF combined are adjusted according to the Benjamini-Hochberg procedure.

The large number of tests performed during checks of local independence and no DIF requires some kind of adjustment of evaluation of the significance of test results. DIGRAM uses the Benjamini-Hocberg procedure controlling the FDR rate at 5 % as shown in Figure 10.14. After this adjustment we see, that there is significant evidence of local dependence. Some of these test result are shown in Figure 10.13. The ( coefficients are negative suggesting that two latent dimensions lie behind the responses to the SF-36 items.   
10.7 Testing specific interaction terms
If you do not need a complete list of test results as in Figures 10.13 and 10.14 you should enter these in the “test model terms” field rather than selecting the complete lists of tests of local independence and no DIF. You may enter either separate terms or terms with wild cards. The list of significant terms at the bottom of Figure 10.14 include four terms that were excluded from Figure 10.14, three of which relates to item G. To obtain these test results you should enter either “DG EF EG GI” or “EF G*” in the test model term field. The first will give you the missing four test results as shown in Figure 10.15. The second will calculate test results for all terms relating to G including those already in the model.

Figure 10.15. Test results presented after “DG EF EG GI” was entered into the “test model term” field. Note, that the estimation procedure had not converged, when test results were calculated. The Delta value is so small that this is probably not a problem.

10.8 ICC tables

Select “Calculate ICC tables” if you want to compare observed mean item scores in different score groups to CICC curves, 
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Figure 10.16. Observed and expected conditional item characteristic curves for one item.
When the model includes exogenous sources of DIF, X, DIGRAM calculates item characteristics curves, E(Yi|S,X) conditionally given scores and dif sources. The curves presented in Figure 10.16 are marginal curves 
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 where nsx is the number of persons with S=s and X=x and ns is the total number of persons with S = s.
According to the residuals in Figure 10.16 there are no problems with item B relative to the GLLRM. Several different item-fit statistics summarizing the information in all the residuals are of course conceivable. The current version of DIGRAM calculates Molenaar’s U based both on the mean item scores and on the expected frequencies of item scores above different points on the item score range. These statistics are collected in one table after presentation of the results for each of the items. Figure 10.17 shows all these results.


Figure 10.17 Molenaar’s U comparing residuals in score groups 1 and 7-17
10.9 Person estimates and reliability
The person estimate in DIGRAM is a maximum likelihood estimate of ( in the power series distribution (2.20) of the score where the (-parameters are functions of (estimates of) item, DIF and LD parameters. 
The (-parameters of (2.20) vary between groups when items are biased. The estimate of ( corresponding to a specific person score therefore also differs between groups. Person estimates are consequently presented separately for different groups defined by combination of values of the sources of DIF.
Output presenting person parameter estimates will necessarily be quite extensive if items are biased relative to many different variables. To illustrate how person parameters and reliability is presented, Figures 10.18 and 10.19 show person parameter estimates for men and women under a model where differential item functioning relative to other variables have been disregarded. Note that reliability depends both on the group specific item parameters and on the distribution of the latent trait variable in the groups.

Comments on the output follows after Figures 10.18 and 10.19.


Figure 10.18 Person parameter estimates and reliability for men under a model where Sex is the only DIF source


Figure 10.19 Person parameter estimates and reliability for women under a model where Sex is the only DIF source

The output in Figure 10.18 contains six parts: 
(A) The information that the first group is selected as reference group for DIF equation is described below in connection with Figure 10.19
(B) The first group contains 1171 cases. The mean score is equal to 1.31 and the standard deviation of the score distribution in this group is equal to 3.28.

(C) Next follows logarithms of the person parameter estimates. Estimates of the (-parameters are presented first followed by the maximum likelihood estimates and Höglund’s (1977) exact interval estimate. The PCM thresholds in the final column corresponds to the PCM parameterization of the power series distribution (2.20).

(D) The pseudo estimates for extreme scores are ( values for which E(S|() is equal to 0.25 and maximum score – 0.25 respectively. If one absolutely needs a finite person parameter estimate for extreme scores then these estimates may be used.

(E) Estimates of a normal trait distribution for which the expected mean and s.d. of the score distribution are equal to the observed values are presented next. The fitted values of the score mean and s.d. are not exactly equal to the observed values so the fit is not perfect in this case.
(F) Finally estimates of reliability similar to the estimates presented for the conventional RM2 model (Section 8.8) based on the normal latent trait distribution above are presented.

The output for women is similar to the output for men with one exception. The table with person parameters contains one extra column, (G), with DIF equated scores.
11 Analysis of multidimensionality in graphical loglinear Rasch models

12 Testing global Markov properties of graphical loglinear Rasch

      models

13 Criterion validity
14 Export to other IRT programs

DIGRAM was never meant to take care of all the problems that have to be addressed during item analysis. When you encounter such problems you therefore have to go to some other program to get the solutions.
To make this easier we have included export procedures that will format data and create other input files required by several other IRT programs. To invoke these procedures you have to open the Data menu as illustrated in Figure 14.1 and select the program you want to use.

Table 14.1 below shows all the programs. We assume that you know what these programs require if you select one of these options and therefore do not give any details concerning the export files. 
[image: image56.png]
Figure 14.1 The data menu with export options to other programs
Table 14.1 IRT programs that may receive data and input files from DIGRAM 

	Program
	Reference
	Comments

	MSP
	
	

	WinMIRA
	
	

	LOGIMO
	
	

	Conquest
	
	

	DIMtest
	
	

	Mplus
	
	

	Rumm
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DIF equated scores

score        1      2

---------------------

    1     1.00   0.89

    2     2.00   1.76

    3     3.00   2.68

    4     4.00   3.65

    5     5.00   4.63

    6     6.00   5.62

    7     7.00   6.60

    8     8.00   7.58

    9     9.00   8.56

   10    10.00   9.55

   11    11.00  10.54

   12    12.00  11.56

   13    13.00  12.60

   14    14.00  13.67

   15    15.00  14.76

   16    16.00  15.85

   17    17.00  16.94

  +-----------------------------------------------+

  |                                               |

  | Test results for separate exogenous variables |

  |                                               |

  +-----------------------------------------------+



Analysis of item bias relative to Q: SocClass

Scale : # - RawScore



     Item   X²   df asymp exact  gamma asymp exact nsim

-------------------------------------------------------

A: Indoors  14.2 12 0.287 0.289   0.48 0.021 0.013 1000      +  

B:NiceWeat   2.7  6 0.843 1.000   0.02 0.915 0.857   21         

C:PoorWeat  11.2  6 0.083 0.077   0.13 0.746 0.684 1000         

D:  Stairs   6.3  9 0.708 0.571  -0.09 0.639 0.667   21         

E:  GetOut  23.3  6 0.001 0.000  -0.36 0.096 0.097 1000  ***    

F:   GetUp  17.3  9 0.044 0.027  -0.51 0.107 0.078 1000  *      



Analysis of item bias relative to R: Sex

Scale : # - RawScore



     Item   X²   df asymp exact  gamma asymp exact nsim

-------------------------------------------------------

A: Indoors   3.4  4 0.486 0.524  -0.15 0.603 0.667   21         

B:NiceWeat   1.1  2 0.576 0.619   0.21 0.432 0.429   21         

C:PoorWeat   2.4  2 0.303 0.364  -0.61 0.169 0.242   33         

D:  Stairs   1.7  3 0.642 0.667   0.13 0.601 0.571   21         

E:  GetOut   0.7  2 0.712 0.905  -0.14 0.627 0.714   21         

F:   GetUp   0.4  3 0.945 1.000   0.07 0.852 0.952   21         





Analysis of item bias relative to S: PensAge

Scale : # - RawScore



     Item   X²   df asymp exact  gamma asymp exact nsim

-------------------------------------------------------

A: Indoors   7.5  8 0.479 0.429  -0.08 0.729 0.810   21         

B:NiceWeat   2.1  4 0.713 0.762  -0.06 0.775 0.714   21         

C:PoorWeat  11.9  4 0.018 0.016   0.39 0.323 0.307 1000  *      

D:  Stairs   9.7  6 0.138 0.098  -0.27 0.230 0.194  501         

E:  GetOut   8.3  4 0.080 0.061   0.52 0.007 0.017 1000      +  

F:   GetUp   4.0  6 0.682 0.667   0.01 0.963 1.000   21         



Variables:



   A:  Indoors  -  2 ordinal categories

   Q: SocClass  -  4 ordinal categories

   #: RawScore  -  5 ordinal categories



               A

  #  Q  |   0    1   Total  Mean score

--------------------------------------

  1  1  |100.0          2     0.00

  1  2  |100.0          7     0.00

  1  3  | 66.7 33.3     3     0.33

  1  4  | 80.0 20.0     5     0.20

--------------------------------------

  1 tot | 88.2 11.8    17     0.12

--------------------------------------

  2  1  | 62.5 37.5     8     0.38

  2  2  | 66.7 33.3    12     0.33

  2  3  | 75.0 25.0    12     0.25

  2  4  | 26.7 73.3    15     0.73

--------------------------------------

  2 tot | 55.3 44.7    47     0.45

--------------------------------------

  3  1  |  3.7 96.3    27     0.96

  3  2  |  2.4 97.6    42     0.98

  3  3  |     100.0    23     1.00

  3  4  |     100.0    45     1.00

--------------------------------------

  3 tot |  1.5 98.5   137     0.99

--------------------------------------

  4  1  |     100.0    15     1.00

  4  2  |     100.0    21     1.00

  4  3  |     100.0    17     1.00

  4  4  |     100.0    15     1.00

--------------------------------------

  4 tot |     100.0    68     1.00

--------------------------------------

  5  1  |     100.0     9     1.00

  5  2  |     100.0    16     1.00

  5  3  |  3.3 96.7    30     0.97

  5  4  |     100.0    19     1.00

--------------------------------------

  5 tot |  1.4 98.6    74     0.99

--------------------------------------





Analysis of item bias for A: Indoors

Scale : # - RawScore



Exogenous   X²   df asymp exact  gamma asymp exact nsim

-------------------------------------------------------

Q:SocClass  14.2 12 0.287 0.289   0.48 0.021 0.013 1000 +

R:     Sex   3.4  4 0.486 0.524  -0.15 0.603 0.667   21 

S: PensAge   7.5  8 0.479 0.429  -0.08 0.729 0.810   21 













   731 cases with complete item responses

   635 cases with complete item and exo responses



Frequency of missing values among cases with complete item responses



                    mean score  mean score

Variable    count   if missing   if known     t    p

-------------------------------------------------------

Q: SocClass    20        3.5        4.5     -1.84 0.066

R:      Sex     0

S:  PensAge    76        5.1        4.4      2.78 0.005















  +--------------------------+

  |                          |

  | Summary of Tjur problems |

  |                          |

  +--------------------------+





  Beware of Type II errors. p-values are evaluated at a 5 % FDR level.



  ***: FDR <= 0.001, **: FDR <= 0.01,  *: FDR <= 0.05





Two significant positive partial correlations:



   B: NiceWeat  & C: PoorWeat  gamma =   1.000***  1.000***



Only one significant positive partial correlation:





Only one significant negative partial correlation:



   B: NiceWeat  & D: Stairs    gamma =  -1.000*** -1.000   

   C: PoorWeat  & D: Stairs    gamma =  -0.991***  0.455   



Two significant negative partial correlations:





Stepwise inclusion of local dependence:



   B: NiceWeat  & C: PoorWeat   Mean Gamma =   1.000    odds.rat. = infinite









  +--------------------------------------+

  |                                      |

  | Variables selected for item analysis |

  |                                      |

  +--------------------------------------+



6 Items:

---------

A:  Indoors - 2 ordinal categories.

B: NiceWeat - 2 ordinal categories.

C: PoorWeat - 2 ordinal categories.

D:   Stairs - 2 ordinal categories.

E:   GetOut - 2 ordinal categories.

F:    GetUp - 2 ordinal categories.



*****     Mean item scores     *****

                          731 cases with

                          complete items

  items       n      mean      mean

----------------------------------------

F:   GetUp  734      0.94      0.94

E:  GetOut  734      0.91      0.91

A: Indoors  734      0.89      0.89           (a)

B:NiceWeat  734      0.60      0.60

C:PoorWeat  734      0.57      0.57

D:  Stairs  731      0.55      0.55



Score distribution: 731 Cases

---------------------------------

Score  Count Percent  Cumulated

-------------------------------

   0      33     4.5        4.5

   1      19     2.6        7.1

   2      49     6.7       13.8

   3     143    19.6       33.4               (b)

   4      69     9.4       42.8

   5      74    10.1       52.9

   6     344    47.1      100.0

-------------------------------

Total    731   100.0



Mean     =   4.45

Variance =   3.20

s.d.     =   1.79

Missing =      3



Chronbach´s Alpha = 0.84 (Alpha is a lower bound of the reliability in this specific population)

                                                   (c)

ScoreGrp:   731 Cases

------------------------------

Score  Count Percent Cumulative

-------------------------------               (d)

 0- 3    244    33.4       33.4

 4- 6    487    66.6      100.0

-------------------------------

Total    731   100.0







  +---------------------------------------------------------+

  |                                                         |

  | Item analysis by Rasch models for dichotomous variables |

  |                                                         |

  +---------------------------------------------------------+





CML estimates of item parameters



                              estimated parameters

  Item         observed multiplicative  logistic    location

------------------------------------------------------------

A:  Indoors       307        9.836        2.286      -2.286

B: NiceWeat        93        0.071       -2.646       2.646

C: PoorWeat        73        0.047       -3.065       3.065

D:   Stairs        56        0.033       -3.420       3.420

E:   GetOut       320       16.055        2.776      -2.776

F:    GetUp       343       58.433        4.068      -4.068







    Item B  Parameter =   0.071 (logistic =  -2.646)



   THETA  LNTHETA SCORE    ICC   CICC    OBS   N    RES

-------------------------------------------------------

   0.022 -3.82499     1 0.0015 0.0008 0.0000  19  -0.13

   0.103 -2.27202     2 0.0073 0.0036 0.0000  49  -0.42

   1.091  0.08682     3 0.0718 0.0126 0.0070 143  -0.60

  10.587  2.35963     4 0.4290 0.4747 0.2609  69  -3.56

  42.938  3.75976     5 0.7529 0.7873 1.0000  74   4.47

-------------------------------------------------------



Molenaar´s U =  -1.785  cut points: 2 & 5   p(2-sided) =  0.0742

Outfit       =   2.428   se =   0.755       p(2-sided) =  0.0587



Item-restscore gamma:  Observed =   0.943  Expected =   0.952   

                           se =   0.014  p(2-sided) =  0.5229









  

  +----------------------------------------------------+

  |                                                    |

  | Monte Carlo estimate of latent normal distribution |

  |                                                    |

  +----------------------------------------------------+



Latent trait:   Mean =   3.88    s.d. =   4.92

Score fitted:   Mean =    4.4    s.d. =   1.80



Item target index =  -0.79





  +--------------------------------------------------------------------------+

  |                                                                          |

  | Monte Carlo estimates of Reliability - noninformative trait distribution |

  |                                                                          |

  +--------------------------------------------------------------------------+





    Expected True Score =    3.0   Variance =     0.70

         Expected Score =    3.0   Variance =     1.14



                                   Ratio =      0.608



                 Test-retest correlation     =  0.614

                 Test-true score correlation =  0.773







  +------------------------------------------------------------------+

  |                                                                  |

  | Monte Carlo estimates of Reliability - normal trait distribution |

  |                                                                  |

  +------------------------------------------------------------------+



    Trait mean =  3.88  s.d. =  4.92



    Expected True Score =    4.4   Variance =     2.94

         Expected Score =    4.4   Variance =     3.29



                                   Ratio =      0.894



                 Test-retest correlation     =  0.903

                 Test-true score correlation =  0.945









We are currently developing and implementing facilities for exact conditional inference in Rasch models for dichotomous items. We have included a description of the current status of these procedures to give you a chance to try these procedures. There are, as far as we know, currently no errors, but we have to warn you both that the procedure and the way results are presented may change as the work proceeds, and that errors may turn up.



  +----------------------------------+

  |                                  |

  | Summary of Rasch´s item analysis |

  |                                  |

  +----------------------------------+





                 clr    df     p

  ---------------------------------

  Score groups   14.0    5    0.016

  Q:  SocClass   24.3   15    0.060

  R:       Sex    0.5    5    0.991

  S:   PensAge    8.9   10    0.546



Critical levels adjusted by the Benjamini-Hochberg procedure:



 FDR = 0.05         reject if p<=  0.0125

 FDR = 0.01         reject if p<=  0.0025

 FDR = 0.001        reject if p<=  0.0003







  +-------------------------------+

  |                               |

  | Comparison of item parameters |

  |                               |

  +-------------------------------+





All item parameters are assumed to be equal

Parameter estimates assuming that item parameters are equal



Item   observed parameter

-------------------------

  A       307     1.000

  B        93     1.000

  C        73     1.000

  D        56     1.000

  E       320     1.000

  F       343     1.001





  +-----------------------------------------+

  |                                         |

  | EBA`s conditional likelihood ratio test |

  |                                         |

  +-----------------------------------------+





   CLR  = 1341.3

   DF   =    5

   P    =  0.000









        Test-retest probabilities



Second test

  6 | 0.000 0.000 0.001 0.046 0.195 0.500 1.000

  5 | 0.000 0.000 0.004 0.195 0.454 0.611 0.500

  4 | 0.000 0.004 0.025 0.496 0.609 0.454 0.195

  3 | 0.031 0.180 0.496 0.950 0.496 0.195 0.046

  2 | 0.160 0.469 0.639 0.496 0.025 0.004 0.001

  1 | 0.500 0.679 0.469 0.180 0.004 0.000 0.000

  0 | 1.000 0.500 0.160 0.031 0.000 0.000 0.000

    ------------------------------------------- First test

        0     1     2     3     4     5     6  



 Cumulative Test-retest probabilities



Second test

  6 | 0.000 0.000 0.001 0.046 0.195 0.500 1.000

  5 | 0.000 0.000 0.004 0.196 0.954 0.805 0.500

  4 | 0.000 0.004 0.025 0.996 0.804 0.954 0.195

  3 | 0.031 0.181 0.996 0.975 0.996 0.196 0.046

  2 | 0.160 0.969 0.819 0.996 0.025 0.004 0.001

  1 | 0.500 0.840 0.969 0.181 0.004 0.000 0.000

  0 | 1.000 0.500 0.160 0.031 0.000 0.000 0.000

    ------------------------------------------- First test

        0     1     2     3     4     5     6  



 Extreme test-retest probabilities



Second test

  6 | 0.000 0.000 0.001 0.046                  

  5 | 0.000 0.000 0.004                        

  4 | 0.000 0.004 0.025                        

  3 | 0.031                               0.046

  2 |                         0.025 0.004 0.001

  1 |                         0.004 0.000 0.000

  0 |                   0.031 0.000 0.000 0.000

    ------------------------------------------- First test

        0     1     2     3     4     5     6  







  +-----------------------------------------+

  |                                         |

  | EBA`s conditional likelihood ratio test |

  |                                         |

  +-----------------------------------------+





   CLR  =   14.0

   DF   =    5

   P    =  0.016





Logistic parameters



                #

    Item      Total      1        2  

-------------------------------------

A: Indoors     2.29     1.75     2.82

B:NiceWeat    -2.65    -3.86    -1.25

C:PoorWeat    -3.06     -inf    -1.67

D:  Stairs    -3.42    -3.86    -2.05

E:  GetOut     2.78     2.23     +inf

F:   GetUp     4.07     3.74     2.16



  #:2           D C B                F  A      

  #:1  *                           A E       F 

  -3.86----------------------------------------   4.07

 Total   D C B                        A E     F







  +-----------------------+

  |                       |

  | Scoregroup no. 1: 0-3 |

  |                       |

  +-----------------------+



Item residuals



  OBS   EXP  RESIDUAL

---------------------

A 165 164.4     0.138

B   1   2.0    -0.704

C   0   1.3    -1.148

D   1   0.9     0.086

E 177 177.3    -0.070

F 202 200.1     0.655



  +-----------------------+

  |                       |

  | Scoregroup no. 2: 4-6 |

  |                       |

  +-----------------------+



Item residuals



  OBS   EXP  RESIDUAL

---------------------

A 142 142.6    -0.833

B  92  91.0     0.181

C  73  71.7     0.234

D  55  55.1    -0.015

E 143 142.7     0.523

F 141 142.9    -7.031



Subscale 1 parameters



Item Before  After

------------------

   A  30.80  64.67

   B   0.22   0.57

   C   0.15   0.03





LogLike =     30.880





Subscale 2 parameters



Item Before  After

------------------

   D   0.00   0.00

   E   0.52   0.51

   F   1.91   1.97





LogLike =     39.580



Unadjusted DF = 8



Test for homogeneous subscales



Z  =  198.7

DF =    6

P  =  0.000









      Analysis of the BC association



HYPOTHESIS    X²    df asymp exact  gamma asymp exact

-----------------------------------------------------

B&C|         653.1   1 0.000         1.00 0.000      

B&C|Score\BC 574.6   3 0.000 0.000   1.00 0.000 0.000 1000

B&C|Score\B  129.2   2 0.000 0.000   1.00 0.000 0.000 1000

B&C|Score\C  181.7   2 0.000 0.000   1.00 0.000 0.000 1000







J -  Bathing

     K=1                     0.93    +++++

     K=2                     0.92 >   0.80

     K=3                     0.82     4.26

     K=4                    -0.21     1.92

     K=5                    -0.27     2.48







F -  Bending            

    -1.83     0.11





DIF:    item: Liftgroc(C)      DIF source: Sex(N)



                      C

N                0        1        2



1      Male    1.000    1.000    1.000

2    Female    1.000    1.839    5.521





DIF:    item: Walk 2+b(H)      DIF source: Age(O)



                      H

O                0        1        2



1   18 - 29    1.000    1.000    1.000

2   30 - 39    1.000    3.631    1.837

3   40 - 49    1.000    1.371    1.470

4   50 - 59    1.000    3.276    0.200

5   60 - 69    1.000    3.832    0.144

6  70 - 100    1.000    4.103    0.653





LD: Mod.act(B) & Liftgroc(C)



                 B

 C           0        1        2   



 0          1.000    1.000    1.000

 1          1.000    7.725    5.031

 2          1.000    2.966   17.089





LD: Stair2+(D) & Stair1(E)



                 D

 E           0        1        2   



 0          1.000    1.000    1.000

 1          0.021    0.282    1.000

 2          0.000    0.059    1.000





LD: Walk 1m(G) & Walk 2+b(H)



                 G

 H           0        1        2   



 0          1.000    1.000    1.000

 1          1.000    4.160   20.355

 2          1.000    0.913   10.116







  +----------------------------------------------+

  |                                              |

  | Analysis by graphical loglinear Rasch models |

  |                                              |

  +----------------------------------------------+





The model is estimated under the following assumptions:



   1 <= raw score <= 17

   1 <= K <= 5

   1 <= L <= 6

   1 <= M <= 3

   1 <= N <= 2

   1 <= O <= 6



The assumed model:



The following items are assumed to be locally dependent:



B & C

D & E

G & H

H & I





Connected item components: BC DE F GHI J 

The following items are assumed to be biased:



B biased relative to L

C biased relative to K

C biased relative to N

H biased relative to O

J biased relative to K





759 valid cases included



  +---------------------------+

  |                           |

  | Estimated item parameters |

  |                           |

  +---------------------------+



       item          0         1         2  

--------------------------------------------

B:  Mod.act        1.000     4.206     4.435

C: Liftgroc        1.000     2.721     0.426

D:  Stair2+        1.000     5.628     2.063

E:   Stair1        1.000     5.386     1.397

F:  Bending        1.000     6.216     5.594

G:  Walk 1m        1.000     2.193     1.107

H: Walk 2+b        1.000     0.038     0.012

I: Walk 1bl        1.000    24.757    13.507

J:  Bathing        1.000     0.399     0.179





 # 1 10

 K 1 3





Item screening has defined the following GLLRM: BC DE DJ EF GH HI BL BN CK CL EK FM JN



The score is associated to the following exogenous variables: K L M N O





Local dependent items. 3 item components: BC DEFJ GHI







Automatic search for local homogeneity.

Extreme scoregroups will be collapsed first.



5 scoregroups will be compared. Group frequencies include cases with extreme scores



 1:  1-  1      19 cases  0.071

 2:  2-  2      49 cases  0.067

 3:  3-  3     143 cases  0.196

 4:  4-  4      69 cases  0.094

 5:  5-  5      74 cases  0.572







Automatic search for local homogeneity.

Extreme scoregroups will be collapsed first.



4 scoregroups will be compared. Group frequencies include cases with extreme scores



 1:  1-  2      68 cases  0.138

 2:  3-  3     143 cases  0.196

 3:  4-  4      69 cases  0.094

 4:  5-  5      74 cases  0.572





Benjamini-Hochberg evaluation of significance at FDR = 0.05

for the total number of p-values calculated after each step



3 testresults   *: p <  0.033



Scoregroups  1 & 2    2.7  4  0.606

Scoregroups  2 & 3   10.6  4  0.031 *

Scoregroups  3 & 4  185.1  4  0.000 *



Scoregroups 1 - 2 will be collapsed



Automatic search for local homogeneity.

Extreme scoregroups will be collapsed first.



3 scoregroups will be compared. Group frequencies include cases with extreme scores



 1:  1-  3     211 cases  0.334

 2:  4-  4      69 cases  0.094

 3:  5-  5      74 cases  0.572



4 testresults   *: p <  0.038



Scoregroups  1 & 2   15.2  5  0.010 *

Scoregroups  2 & 3  185.1  4  0.000 *









Score1 : ABC

Score2 : DEF



Observed



Score2

    ^ 

  3 |   1  51   4    

    |

  2 |  28 142  16  70

    |

  1 |  16  21       2

    |

  0 |       3        

    |

    -----------------> Score1

        0   1   2   3





Expected



Score2

    ^ 

  3 |  0.46 15.07 39.79      

    |

  2 | 27.38141.23 53.81 34.21

    |

  1 | 16.76 21.59  1.30  0.12

    |

  0 |        2.24  0.03  0.00

    |

    -------------------------> Score1

        0     1     2     3  





Standardized residuals



Score2

    ^ 

  3 |  0.79 10.47 -8.34      

    |

  2 |  0.18  0.58-10.99  8.34

    |

  1 | -0.54 -0.17 -1.15  5.44

    |

  0 |        0.54 -0.18 -0.02

    |

    -------------------------> Score1

        0     1     2     3  





  +------------------------------------------+

  |                                          |

  | Screening of marginal item relationships |

  |                                          |

  +------------------------------------------+





p-values are two-sided and exact(Nsim = 400)



                                                               rest

                     A      B      C      D      E      F     score

-------------------------------------------------------------------

A  Indoors Gamma           0.975  0.986  0.968  0.956  0.965  0.943

             p             0.000  0.000  0.000  0.000  0.000  0.000



B NiceWeat Gamma    0.975         1.000  0.896  1.000  0.946  0.982

             p      0.000         0.000  0.000  0.000  0.000  0.000



C PoorWeat Gamma    0.986  1.000         0.915  1.000  0.939  0.994

             p      0.000  0.000         0.000  0.000  0.000  0.000



D   Stairs Gamma    0.968  0.896  0.915         1.000  1.000  0.901

             p      0.000  0.000  0.000         0.000  0.000  0.000



E   GetOut Gamma    0.956  1.000  1.000  1.000         0.979  0.970

             p      0.000  0.000  0.000  0.000         0.000  0.000



F    GetUp Gamma    0.965  0.946  0.939  1.000  0.979         0.941

             p      0.000  0.000  0.000  0.000  0.000         0.000





Exogeneous variables



                     A      B      C      D      E      F     score

-------------------------------------------------------------------

Q SocClass Gamma   -0.008 -0.077 -0.070 -0.158 -0.210 -0.178 -0.098

             p      0.463  0.089  0.107  0.002  0.017  0.072  0.011



R      Sex Gamma    0.031 -0.007 -0.040 -0.053  0.052  0.051 -0.031

             p      0.396  0.464  0.297  0.237  0.342  0.371  0.293



S  PensAge Gamma    0.251  0.206  0.223  0.126  0.403  0.341  0.170

             p      0.007  0.001  0.000  0.027  0.000  0.005  0.000







  +-----------------------------------------+

  |                                         |

  | Screening of partial item relationships |

  |                                         |

  +-----------------------------------------+





p-values are two-sided and exact(Nsim = 400)



 Generalized Tjur conditions - the row item has been subtracted from the score



                     A      B      C      D      E      F   

------------------------------------------------------------

A  Indoors Gamma          -0.478  1.000  0.478  0.244 -0.277

             p             1.000  0.945  1.000  0.762  0.762



B NiceWeat Gamma   -0.600         1.000 -1.000  1.000 -0.972

             p      0.810         0.000  0.000  1.000  0.740



C PoorWeat Gamma   -0.887  1.000        -0.991  0.000 -1.000

             p      0.952  0.000         0.000  1.000  0.983



D   Stairs Gamma    0.133 -1.000  0.455         1.000  1.000

             p      1.000  1.000  1.000         1.000  0.667



E   GetOut Gamma   -0.356  1.000  0.000  1.000         0.200

             p      0.571  1.000  1.000  1.000         0.762



F    GetUp Gamma   -0.469  1.000 -1.000  1.000  0.424       

             p      0.381  1.000  0.905  0.908  0.667       





        Test for item bias



                     A      B      C      D      E      F   

------------------------------------------------------------

Q SocClass Gamma    0.479  0.020  0.133 -0.092 -0.363 -0.514

             p      0.005  0.857  0.683  0.667  0.105  0.065



R      Sex Gamma   -0.145  0.214 -0.607  0.126 -0.140  0.069

             p      0.667  0.429  0.242  0.571  0.714  0.952



S  PensAge Gamma   -0.076 -0.058  0.390 -0.269  0.523  0.014

             p      0.810  0.714  0.330  0.198  0.013  1.000



Benjamini & Hochberg rejects at 0.00521 to control the FDR at 0.05

Benjamini & Hochberg rejects at 0.00083 to control the FDR at 0.01





D-Stair2+ & E-Stair1



   Component scores from 0 to 4

   Thressholds:     -1.75    -0.61    -0.09     1.39



   Thressholds if local dependence is disregarded

   Thressholds:     -2.40    -1.12     0.58     1.88







G-Walk 1m & H-Walk 2+b & I-Walk 1bl



   Component scores from 0 to 6

   Sources of DIF:    O - Age



   O =  1    -0.83     0.32 >  -0.17 >  -0.31 >  -0.33     0.70

   O =  2    -0.87    -0.16 >  -0.83    -0.24     0.17     0.70

   O =  3    -0.83     0.23 >  -0.39    -0.33 >  -0.37     0.70

   O =  4    -0.86    -0.10 >  -0.70    -0.13     2.08 >   0.70

   O =  5    -0.87    -0.18 >  -0.77    -0.12     2.56 >   0.70

   O =  6    -0.88    -0.22 >  -0.82    -0.16     1.17 >   0.70







****  Score = 1 - 2  ****



Observed and expected item mean scores



                       mean

    item         n   obs   exp    res

-------------------------------------

B -  Mod.act   358 0.240 0.221   0.88 

C - Liftgroc   358 0.223 0.191   1.62 

D -  Stair2+   358 0.363 0.355   0.32 

E -   Stair1   358 0.011 0.023  -1.52 

F -  Bending   358 0.366 0.381  -0.57 

G -  Walk 1m   358 0.128 0.149  -1.10 

H - Walk 2+b   358 0.011 0.009   0.52 

I - Walk 1bl   358 0.003 0.004  -0.41 

J -  Bathing   358 0.017 0.030  -1.44 





****  Score = 3 - 17  ****



Observed and expected item mean scores



                       mean

    item         n   obs   exp    res

-------------------------------------

B -  Mod.act   401 1.087 1.104  -0.61 

C - Liftgroc   401 0.993 1.022  -1.09 

D -  Stair2+   401 1.127 1.135  -0.28 

E -   Stair1   401 0.559 0.548   0.45 

F -  Bending   401 1.097 1.084   0.45 

G -  Walk 1m   401 1.007 0.989   0.66 

H - Walk 2+b   401 0.546 0.548  -0.11 

I - Walk 1bl   401 0.379 0.378   0.07 

J -  Bathing   401 0.299 0.288   0.54 





Test of homogeneity of 2 score groups.    67 parameters



         CLR =   69.95  df =  67  p = 0.3788





Summary of global test results. Delta will

be reported if estimation did not converge.



             CLR   df   p        delta

--------------------------------------

scoregroups   70.0  67 0.379

K:      srh  212.4 208 0.402     0.016

L:      BMI  309.3 285 0.154     0.002

M:  Smoking  168.6 134 0.023     0.028

N:      Sex   70.3  65 0.304     0.003

O:      Age  311.0 285 0.139





Tests of local dependence



B & C:   lr =  168.16  df =   4  p = 0.0000

D & E:   lr =  116.47  df =   4  p = 0.0000

G & H:   lr =   77.80  df =   4  p = 0.0000

H & I:   lr =  203.53  df =   4  p = 0.0000



               ---               



Tests of DIF



B & L:   lr =   34.89  df =  10  p = 0.0001

C & K:   lr =   22.36  df =   8  p = 0.0043

C & N:   lr =   20.06  df =   2  p = 0.0000

H & O:   lr =   27.55  df =  10  p = 0.0021

J & K:   lr =   23.65  df =   8  p = 0.0026





B & D:   lr =   23.13  df =   4  p = 0.0001  -0.46 -0.31

B & E:   lr =    4.16  df =   4  p = 0.3852

B & F:   lr =    6.32  df =   4  p = 0.1765

B & G:   lr =    9.61  df =   4  p = 0.0475  -0.21 -0.13

B & H:   lr =    6.71  df =   4  p = 0.1520

B & I:   lr =   14.93  df =   4  p = 0.0049  -0.52 -0.63

B & J:   lr =    3.60  df =   4  p = 0.4634

C & D:   lr =   18.63  df =   4  p = 0.0009  -0.42 -0.28

C & E:   lr =    7.08  df =   4  p = 0.1316

C & F:   lr =    4.53  df =   4  p = 0.3392

C & G:   lr =    5.35  df =   4  p = 0.2529

C & H:   lr =   11.98  df =   4  p = 0.0175  -0.34 -0.46

C & I:   lr =   18.75  df =   4  p = 0.0009  -0.28 -0.42

C & J:   lr =    9.84  df =   4  p = 0.0433   0.21  0.16







B & N:   lr =    5.81  df =   2  p = 0.0548

D & N:   lr =    2.94  df =   2  p = 0.2294

E & N:   lr =    1.82  df =   2  p = 0.4031

F & N:   lr =    5.27  df =   2  p = 0.0718

G & N:   lr =    1.11  df =   2  p = 0.5729

H & N:   lr =    0.93  df =   2  p = 0.6267

I & N:   lr =    5.09  df =   2  p = 0.0783

J & N:   lr =    7.39  df =   2  p = 0.0248 gamma =  -0.55

B & O:   lr =   13.03  df =  10  p = 0.2218

C & O:   lr =   23.05  df =  10  p = 0.0106 gamma =   0.16

D & O:   lr =   16.13  df =  10  p = 0.0961

E & O:   lr =   18.79  df =  10  p = 0.0430 gamma =   0.24

F & O:   lr =   14.63  df =  10  p = 0.1460

G & O:   lr =    7.80  df =  10  p = 0.6484

I & O:   lr =    4.61  df =  10  p = 0.9158

J & O:   lr =   11.90  df =  10  p = 0.2916



Benjamini & Hochberg rejects at 0.00556



Suggested additions to the model: BD BI CD CI DG EF EG GI





4 model terms will be tested



Term 1: DG included   lr =   25.20  df =   4  p = 0.0000



Term 2: EF included   lr =   20.09  df =   4  p = 0.0005



Term 3: EG included   lr =   20.19  df =   4  p = 0.0005



Term 4: GI included   lr =   16.39  df =   4  p = 0.0025 

                             *** No convergence. Delta =   0.2959





Mean conditional item characteristic curves



                              mean

    item     score      n   obs   exp   res

-------------------------------------------



B -  Mod.act     1    228 0.118 0.125 -0.29 

                 2    130 0.454 0.391  1.40 

                 3     85 0.612 0.599  0.21 

                 4     60 0.883 0.824  0.83 

                 5     38 0.842 0.909 -0.72 

                 6     25 0.920 1.075 -1.34 

                 7     32 1.188 1.190 -0.03 

                 8     29 1.207 1.208 -0.01 

                 9     33 1.242 1.327 -0.81 

                10     19 1.421 1.363  0.44 

                11     21 1.476 1.502 -0.21 

                12     13 1.538 1.617 -0.54 

                13     12 1.750 1.745  0.04 

                14     10 1.700 1.805 -0.81 

                15      9 1.889 1.878  0.09 

                16      6 1.833 1.968 -1.88 

                17      9 2.000 1.983  0.39 







Molenaar´s U for cumulated item responses, P(Item>item score)



Limits:   1  and   7

Number of residuals included = 12

p-values are 2 sided



            item scores



           0             1           mean

Item    u      p      u      p      u      p  

  B    0.98  0.327  -1.32  0.185  -0.88  0.380

  C   -0.27  0.784  -0.65  0.515  -0.69  0.487

  D   -0.39  0.699   0.80  0.424   0.42  0.674

  E    1.49  0.136   0.19  0.848   1.35  0.176

  F   -0.08  0.939   0.23  0.820   0.23  0.817

  G    1.22  0.221   0.30  0.765   1.08  0.279

  H   -0.30  0.765   0.02  0.985  -0.11  0.911

  I   -0.24  0.814   1.33  0.182  -1.12  0.264

  J    1.26  0.207   0.56  0.576   1.06  0.289





Reference group for DIF equating:                               (A)



                 Sex(N) = Male



1171 cases.   Mean score =  1.31  s.d. of score =  3.28         (B)



                         ML      Hõglunds Exact

Score  Gamma values   estimate  interval estimate PCM-thresholds

---------------------------------------------------------------

    0          1.00      -inf.   -inf. -   -3.056

    1         21.24     -3.028  -3.056 -   -2.335        -3.056

    2        219.41     -2.293  -2.335 -   -1.913        -2.335

    3       1485.49     -1.832  -1.913 -   -1.562        -1.913

    4       7085.56     -1.481  -1.562 -   -1.245        -1.562

    5      24604.53     -1.193  -1.245 -   -0.981        -1.245

    6      65652.70     -0.946  -0.981 -   -0.773        -0.981

    7     142224.87     -0.724  -0.773 -   -0.600        -0.773

    8     259194.74     -0.516  -0.600 -   -0.434        -0.600   (C)

    9     400177.77     -0.310  -0.434 -   -0.247        -0.434

   10     512282.16     -0.098  -0.247 -   -0.028        -0.247

   11     526918.26      0.126  -0.028 -    0.208        -0.028

   12     427855.86      0.369   0.208 -    0.454         0.208

   13     271785.13      0.637   0.454 -    0.720         0.454

   14     132233.80      0.944   0.720 -    1.013         0.720

   15      48019.45      1.314   1.013 -    1.366         1.013

   16      12251.56      1.809   1.366 -    1.879         1.366

   17       1872.01      2.615   1.879 -    2.771         1.879

   18        117.17      +inf.   2.771 -    +inf.         2.771



Pseudo ML estimates for extreme scores:

   Score =   0    theta =      -4.436                             (D)

   Score =  18    theta =       4.114





  +---------------------------------------------------+

  |                                                   |

  | Monte Carlo estimate of normal trait distribution |

  |                                                   |

  +---------------------------------------------------+



Latent trait:                Mean = -5.367    s.d. =  3.009      (E) 

Fitted score distribution:   Mean =   1.32    s.d. =   3.23



------------------------------------------------------------------



  +--------------------------------------+

  |                                      |

  | Monte Carlo estimates of Reliability |

  |                                      |

  +--------------------------------------+



Normal trait distribution with mean = -5.37  s.d.(trait) =  3.01





Expected True Score =   1.33   Variance =     9.71              (F)

Observed mean Score =   1.33   Variance =    10.41



                                  Ratio =     0.93



               Test-retest correlation     =  0.93

               Test-true score correlation =  0.97



------------------------------------------------------------------







  +--------------------------+

  |                          |

  | Analysis of spurious DIF |

  |                          |

  +--------------------------+





  p-values are two-sided. Significance is evaluated at a 5 % level.





  +----------------------------------+

  |                                  |

  | Analysis of multiple DIF sources |

  |                                  |

  +----------------------------------+





  p-values are two-sided. Significance is evaluated at a 5 % level.



  No evidence of multiple DIF sources





  +-------------+

  |             |

  | DIF summary |

  |             |

  +-------------+







A Indoors

    Q SocClass  Gamma =   0.48   possible DIF source









  +---------------------------------------------------------+

  |                                                         |

  | Analysis of non-uniform DIF: A-Indoors  and  Q-SocClass |

  |                                                         |

  +---------------------------------------------------------+





  +----------------------------------------------+

  |                                              |

  | Analysis of fitted Gamma coefficients for AQ |

  |                                              |

  +----------------------------------------------+



Fitted partial Gamma:



Observed =   0.521

Expected =   0.516

    s.e. =   0.167

       Z =   0.030

       p =   0.976



Local values



Strata defined by #



                                                        cumulated

                                                   down           up

 # observed expected   s.e.      z      p       z      p      z      p

-------------------------------------------   ---------------------------

 2    0.667    0.604  0.463   0.136  0.892    0.136  0.892  0.059  0.953

 3    0.407    0.542  0.173  -0.786  0.432   -0.459  0.646 -0.024  0.981

 4    0.744    0.451  0.390   0.752  0.452    0.059  0.953  0.752  0.452



Chi square =    1.2  df = 3  p =  0.7525



Fit of 2-factor model:    Dev =     5.9 df =    6 p =  0.4304







--------------------------------------------------------------------------------------

                         p-values                 p-values (2-sided)

Hypothesis       X²  df asymp exact               Gamma asymp exact               nsim

--------------------------------------------------------------------------------------

 1:#&Q|RS     117.1 108 0.258 0.270 (0.217-0.331) -0.08 0.114 0.117 (0.082-0.165)  400       

 2:#&R|QS      77.3  69 0.230 0.243 (0.110-0.454)  0.03 0.681 0.703 (0.491-0.853)   37       

 3:#&S|QR     115.6  96 0.084 0.085 (0.056-0.128)  0.15 0.003 0.000 (0.000-0.016)  400    

--------------------------------------------------------------------------------------

Benjamini Hochberg rejects if p <  0.008 for FDR = 0.05

                          and p <  0.002 for FDR = 0.01

Significance of 

X²        xx : FDR = 0.01    x : FDR = 0.05

Gamma  ++/-- : FDR = 0.01  +/- : FDR = 0.05

--------------------------------------------------------------------------------------



R has no direct effect on the score



The table was already allocated



--------------------------------------------------------------------------------------

                         p-values                 p-values (2-sided)

Hypothesis       X²  df asymp exact               Gamma asymp exact               nsim

--------------------------------------------------------------------------------------

 1:#&Q|S       60.0  54 0.267 0.255 (0.203-0.315) -0.08 0.092 0.078 (0.050-0.119)  400       

 2:#&S|Q       55.7  48 0.207 0.210 (0.162-0.267)  0.15 0.004 0.010 (0.003-0.033)  400     

--------------------------------------------------------------------------------------

Benjamini Hochberg rejects if p <  0.013 for FDR = 0.05

                          and p <  0.000 for FDR = 0.01

Significance of 

X²        xx : FDR = 0.01    x : FDR = 0.05

Gamma  ++/-- : FDR = 0.01  +/- : FDR = 0.05

--------------------------------------------------------------------------------------



Q has no direct effect on the score



The table was already allocated



--------------------------------------------------------------------------------------

                         p-values                 p-values (2-sided)

Hypothesis       X²  df asymp exact               Gamma asymp exact               nsim

--------------------------------------------------------------------------------------

 1:#&S         21.3  12 0.046 0.050 (0.029-0.086)  0.17 0.000 0.000 (0.000-0.016)  400    

--------------------------------------------------------------------------------------

Benjamini Hochberg rejects if p <  0.025 for FDR = 0.05

                          and p <  0.005 for FDR = 0.01

Significance of 

X²        xx : FDR = 0.01    x : FDR = 0.05

Gamma  ++/-- : FDR = 0.01  +/- : FDR = 0.05

--------------------------------------------------------------------------------------









  +----------------+

  |                |

  | GLLRM modeling |

  |                |

  +----------------+





  Warnings:



No apparent risk that LD and DIF evidence could be spurious





------------------------------------------------------



Item screening has defined the following GLLRM: BC AQ



The score is associated to the following exogenous variables : S





Local dependent items. 5 item components: A BC D E F





  +---------------------------------------------------------------------+

  |                                                                     |

  | Exact conditional analysis by the Rasch model for dichotomous items |

  |                                                                     |

  +---------------------------------------------------------------------+



Score groups for CLR test and Wright-Panchapakesan chi squares



score group  scores

-------------------

     1        0 - 3

     2        4 - 6

-------------------



Molenaar´s U uses residuals from the following score groups:



score group  frequency

----------------------

   1-2         0.192

     5         0.209

----------------------



Exact conditional item analysis

Number of simulations = 5000

Burn in =               100

Between tests =         100000

Random seed =           9



Total W-P Chi squared statistics. 6 degrees of freedom



Unconditional W-P Chi square =  56.974  p =  0.000

 Conditional W-P Chi square  =  52.764  p =  0.000





The following test statistics were requested:

CLR test for score groups

CLR test of DIF

Loevingers H

Molenaar´´s U and gamma coefficients

In- and Outfit coefficients based on CML estimates

Wright-Panchakesan fit statistics

Estimate of ICC curves and residuals



Mean number of random switches between samples =  1018.5



Loevinger´s H =  0.842

           HT =  0.909







      Conditional likelihood ratio tests



                        CLR

     Group       observed expected      p

-------------------------------------------------

 2 score groups   14.008    4.820    0.005

  SocClass        24.330   16.174    0.081

       Sex         0.540    5.211    0.992

   PensAge         8.852   10.576    0.609

-------------------------------------------------









             Loevinger´s H for items - 1-sided pvalues

Item          observed expected      p

-----------------------------------------------

A - Indoors     0.856    0.867     0.156

B - NiceWeat    0.874    0.835     0.000  high ***

C - PoorWeat    0.871    0.821     0.000  high ***

D - Stairs      0.751    0.833     0.000   low ***

E - GetOut      0.870    0.853     0.065

F - GetUp       0.864    0.892     0.025   low *

-----------------------------------------------



Critical levels adjusted by the Benjamini-Hochberg procedure:



 FDR = 0.05         reject if p<=  0.0333

 FDR = 0.01         reject if p<=  0.0050

 FDR = 0.001        reject if p<=  0.0005

Subjects with negative HT values



Observed =  0.137 %

Expected =  0.065 %

       p =   0.396







             Conditional W-P chi squares

Item          observed expected      p

-----------------------------------------------

A - Indoors     0.713    0.941     0.375

B - NiceWeat    0.528    0.644     0.655

C - PoorWeat    1.372    0.755     0.334

D - Stairs      0.008    0.849     1.000

E - GetOut      0.278    0.956     1.000

F - GetUp      49.864    0.996     0.001  high **



Total          52.764    5.141     0.001  high **

-----------------------------------------------



Critical levels adjusted by the Benjamini-Hochberg procedure:



 FDR = 0.05         reject if p<=  0.0143

 FDR = 0.01         reject if p<=  0.0029

 FDR = 0.001        reject if p<=  0.0001





C - PoorWeat



                                                     Bias of

        Person                               standardized residuals

Score parameter     ICC    CICC   Exact     Unconditional conditional 

----------------------------------------------------------------------

    1    -3.825  0.0010  0.0006  0.0004            -0.021      -0.008

    2    -2.272  0.0048  0.0023  0.0024            -0.034       0.002

    3     0.087  0.0484  0.0083  0.0081            -0.188      -0.002

    4     2.360  0.3307  0.3135  0.3140            -0.035       0.001

    5     3.760  0.6671  0.6766  0.6764             0.020      -0.000

----------------------------------------------------------------------







    THETA  ICC_A CICC_A OICC_A  ICC_B CICC_B OICC_B  ICC_C CICC_C OICC_C  ICC_D CICC_D OICC_D  ICC_E CICC_E OICC_E  ICC_F CICC_F OICC_F

-4,99000 0,0627      .      . 0,0005      .      . 0,0003      .      . 0,0002      .      . 0,0985      .      . 0,2845      .      .

-4,98000 0,0633      .      . 0,0005      .      . 0,0003      .      . 0,0002      .      . 0,0994      .      . 0,2866      .      .

-4,97000 0,0639      .      . 0,0005      .      . 0,0003      .      . 0,0002      .      . 0,1003      .      . 0,2886      

                                                                                                   Etc. etc.

4,98000 0,9993      .      . 0,9117      .      . 0,8716      .      . 0,8264      .      . 0,9996      .      . 0,9999      .      .

 4,99000 0,9993      .      . 0,9125      .      . 0,8727      .      . 0,8278      .      . 0,9996      .      . 0,9999      .      .

 5,00000 0,9993      .      . 0,9133      .      . 0,8738      .      . 0,8293      .      . 0,9996      .      . 0,9999      .      .

-3,82499 0,1767 0,1164 0,1579 0,0015 0,0008 0,0000 0,0010 0,0006 0,0000 0,0007 0,0004 0,0000 0,2594 0,1901 0,1053 0,5604 0,6917 0,7368

-2,27202 0,5035 0,4361 0,4286 0,0073 0,0036 0,0000 0,0048 0,0023 0,0000 0,0034 0,0016 0,0000 0,6234 0,6525 0,6531 0,8576 0,9039 0,9184

 0,08682 0,9147 0,9851 0,9860 0,0718 0,0126 0,0070 0,0484 0,0083 0,0000 0,0345 0,0058 0,0070 0,9460 0,9908 1,0000 0,9846 0,9975 1,0000

 2,35963 0,9905 0,9952 1,0000 0,4290 0,4747 0,2609 0,3307 0,3135 0,0290 0,2573 0,2204 0,7391 0,9942 0,9971 1,0000 0,9984 0,9992 0,9710

 3,75976 0,9976 0,9985 0,9865 0,7529 0,7873 1,0000 0,6671 0,6766 0,9595 0,5842 0,5389 0,0541 0,9986 0,9991 1,0000 0,9996 0,9997 1,0000



                 Sex(N) = Female



1352 cases.   Mean score =  1.91  s.d. of score =  3.56



                         ML      Hõglunds Exact

Score  Gamma values   estimate  interval estimate equated score PCM-thresholds

-----------------------------------------------------------------------------

    0          1.00      -inf.   -inf. -   -3.124          

    1         22.73     -3.152  -3.124 -   -2.493      0.89        -3.124

    2        275.03     -2.431  -2.493 -   -2.085      1.76        -2.493

    3       2211.81     -1.963  -2.085 -   -1.695      2.68        -2.085

    4      12042.58     -1.596  -1.695 -   -1.344      3.65        -1.695

    5      46178.18     -1.293  -1.344 -   -1.066      4.63        -1.344

    6     134054.48     -1.036  -1.066 -   -0.849      5.62        -1.066

    7     313300.74     -0.810  -0.849 -   -0.670      6.60        -0.849

    8     612360.03     -0.601  -0.670 -   -0.505      7.58 (G)  -0.670

    9    1015001.09     -0.400  -0.505 -   -0.331      8.56        -0.505

   10    1413031.38     -0.195  -0.331 -   -0.136      9.55        -0.331

   11    1618779.65      0.021  -0.136 -    0.080     10.54        -0.136

   12    1494640.35      0.258   0.080 -    0.326     11.56         0.080

   13    1079264.03      0.525   0.326 -    0.606     12.60         0.326

   14     588553.70      0.836   0.606 -    0.908     13.67         0.606

   15     237363.95      1.215   0.908 -    1.273     14.76         0.908

   16      66482.47      1.725   1.273 -    1.809     15.85         1.273

   17      10892.99      2.550   1.809 -    2.729     16.94         1.809

   18        710.99      +inf.   2.729 -    +inf.                   2.729



Pseudo ML estimates for extreme scores:                

   Score =   0    theta =      -4.524

   Score =  18    theta =       4.066





  +---------------------------------------------------+

  |                                                   |

  | Monte Carlo estimate of normal trait distribution |

  |                                                   |

  +---------------------------------------------------+



Latent trait:                Mean = -4.219    s.d. =  2.519

Fitted score distribution:   Mean =   1.90    s.d. =   3.58



------------------------------------------------------------------



  +--------------------------------------+

  |                                      |

  | Monte Carlo estimates of Reliability |

  |                                      |

  +--------------------------------------+



Normal trait distribution with mean = -4.22  s.d.(trait) =  2.52





Expected True Score =   1.88   Variance =    11.43

Observed mean Score =   1.88   Variance =    12.56



                                  Ratio =     0.91



               Test-retest correlation     =  0.91

               Test-true score correlation =  0.95



------------------------------------------------------------------















             Molenaar´s   Conditional      Item-restscore gamma coefficients

   item       u      p    outfit   p         observed  expected     se      p

--------------------------------------------------------------------------------

A- Indoors   1.79  0.074   2.43  0.059         0.943     0.952    0.014   0.5229

B-NiceWeat  -2.90  0.004   0.47  0.389         0.982     0.948    0.010   0.0009

C-PoorWeat  -3.26  0.001   0.22  0.302         0.994     0.948    0.010   0.0000

D-  Stairs   4.62  0.000   1.25  0.781         0.901     0.950    0.010   0.0000

E-  GetOut  -0.69  0.489   0.18  0.395         0.970     0.953    0.014   0.2269

F-   GetUp   0.36  0.716   7.15  0.001         0.941     0.969    0.013   0.0353

--------------------------------------------------------------------------------

2-sided p-values





DATA LIST FILE = "ICC2SPSS.TXT" FREE

/1 THETA

ICC_A CICC_A OICC_A

ICC_B CICC_B OICC_B

ICC_C CICC_C OICC_C

ICC_D CICC_D OICC_D

ICC_E CICC_E OICC_E

ICC_F CICC_F OICC_F

.

EXECUTE.

GRAPH

 /SCATTERPLOT(OVERLAY)=THETA THETA THETA WITH ICC_A CICC_A OICC_A (PAIR)

 /MISSING=VARIABLEWISE.

GRAPH

 /SCATTERPLOT(OVERLAY)=THETA THETA THETA WITH ICC_B CICC_B OICC_B (PAIR)

 /MISSING=VARIABLEWISE.

GRAPH

 /SCATTERPLOT(OVERLAY)=THETA THETA THETA WITH ICC_C CICC_C OICC_C (PAIR)

 /MISSING=VARIABLEWISE.

GRAPH

 /SCATTERPLOT(OVERLAY)=THETA THETA THETA WITH ICC_D CICC_D OICC_D (PAIR)

 /MISSING=VARIABLEWISE.

GRAPH

 /SCATTERPLOT(OVERLAY)=THETA THETA THETA WITH ICC_E CICC_E OICC_E (PAIR)

 /MISSING=VARIABLEWISE.

GRAPH

 /SCATTERPLOT(OVERLAY)=THETA THETA THETA WITH ICC_F CICC_F OICC_F (PAIR)

 /MISSING=VARIABLEWISE.







  +------------------+

  |                  |

  | Person estimates |

  |                  |

  +------------------+



  reference score = 3



                  referenced                   calibrated

score            PW        CML           PW        CML         ML

--------------------------------------------------------------------

  0     0       ----      ----            ----    -5.686    -5.686

  1    19     -5.535     -5.718         -5.543    -6.089    -3.825

  2    49     -3.781     -3.971         -3.789    -4.342    -2.272

  3   143      0.000      0.000         -0.008    -0.370     0.087

  4    69      3.292      3.827          3.284     3.456     2.360

  5    74      4.202      5.274          4.194     4.904     3.760

  6     0       ----      ----            ----     5.486     5.486

---------------------------------------------------------------------

Nsteps = 736   Delta =    0.00001

Calibrated CML estimates = ML estimates when CML estimates are not available

ML estimates for extreme scores are pseudo ML estimates with expected scores = 0.25 and  5.75









� Note that we refer to the latent variable by the capital Greek theta, (, in order to emphasize that we are talking about a latent variable rather than an unknown parameter. We will however often – as in formula (2.1) – refer to the condition that ( = ( by simply writing (, trusting that the reader knows what we mean.

� It is possible to get around this inconvenient restriction. To do this you should define all the DIGRAM variables that you are going to use as items with the same number of categories as the item with the largest number of response categories. DIGRAM will take it that some of the response categories have not been observed and will take care of this during estimating and fitting the models.  

� Moral graphs are defined by Lauritzen (1996). The role of the moral rasch graphs are discussed by Kreiner (200?)

� If a wider range of models is required you will have to use the program LOGIMO by Kelderman and Steen  (1988).



� Strictly speaking, the link between F and R has to be added as an arrow in the IRT graph. This arrow reappears as arrows in the Rasch and Marginal graphs and as an undirected edge in the moral graph.

� Adding an edge or an arrow to the GRM graphs defines a GLLRM assuming that the item bias is uniform. Non-uniform bias would require an extra arrow from the latent variable to A in both the IRT and Rasch graphs. The resulting moral graph would, however, be the same. The arguments in this section therefore still apply.

� This test is not implemented in the current version of DIGRAM.

� From a practical point of view you may argue that there is no difference between multidimensionality as it is usually discussed and DIF due to an unrecognized DIF source. Conceptually there are large differences, however. The term “multidimensionality” is reserved for latent unobservable variables whereas DIF sources are variables that we may have forgotten to include in our study, but which in principle could be observed.

� If you take a look at the items in the SF36 PF scale and the PADL scale you will see that positive local dependence is to be expected due to the way the items have been phrased.

� Use either the EXA or REP command to select Monte Carlo tests instead of tests relying on asymptotic p-values 

� 1-sided p-values would actually have been more appropriate for the Rosenbaum conditions. We trust however that the user will, nevertheless, be able to evaluate the extent to which Rosenbaum conditions have been violated.

� If you use SPSS, you should be aware that they sometimes change the way the procedures work and introduces errors as they do so. SPSS 13 had problems with the DATA LIST FILE command (it could not recognize the file) and the read text file procedure insisted on treating some of the variables as text files. It was possible, however, to help SPSS get things right. Patience!

� E.g. during an analysis of rater agreement by Rasch models

� The CLR test also rejects this hypothesis, by the way 

� The difference between unconditional and conditional (2 statistics has to do with the definition of expected responses. The definition is the same as for unconditional and conditional residuals as defined in Kreiner et.al. (2006)

� Remember that the PF items in this example was coded  such that 0 = “no limitations”, 1 = “limited a little” and  2 = “limited a lot”

� If you are not satisfied with the score groups you have to exit the GLLRM dialog and use the CUT command to redefine the score groups.

� Remember, that there are two other ways to change the model. You can do it by invoking the GRM command with a new model or by adding edges to the IRT graph.

� The current value of the largest difference between an observed and fitted sufficient statistic is shown in one of the status panels at the bottom of the DIGRAM window during estimation.

� Benjamini-Hochberg adjustment of p-values will eventually be added to this summary. In this example BH requires that p<0.0083 if the test results should be deemed significant.
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