source("http://192.38.117.59/~linearpredictors/datafiles/readSurgery.R") model4 <- glm(complication ~ surgtype + longact + age + duration + I(tofratio - 0.7) + longact:I(tofratio - 0.7), data = surgery, family = binomial) used.data <- na.omit(subset(surgery,select= c(complication, surgtype, age, longact, duration, tofratio))) used.data$predicted <- model4$fitted ## choosing a type of quantiles which gives the same grouping as in SAS used.data$decile <- cut(used.data$predicted, breaks = quantile(used.data$predicted, seq(0,1,0.1), type = 6), include.lowest = T, labels = 1:10) cross <- xtabs(~ complication + decile, data = used.data) print(addmargins(cross)) O <- cross[2,] E <- tapply(used.data$predicted, used.data$decile, sum) cbind(colSums(cross[1:2,]), O, E, (O-E)/sqrt(E))