source("http://192.38.117.59/~linearpredictors/datafiles/readFever.R") ## Intercept corresponds to mage=30 model <- glm(episodes ~ parity + I(mage - 30), family = poisson, data = fever) data <- subset(fever, !is.na(mage) & !is.na(parity) & !is.na(episodes)) ## reschi? ## qroups according to the deciles of the fitted probabilities (= expected no. of episodes) #data$episodegroup <- cut(model$fitted, # breaks =quantile(model$fitted, probs = seq(0,1,length.out=11)), # labels=1:10) ## number of women: #table(data$predictedgroup) #O <- tapply(data$episodes, data$predictedgroup, sum) #E <- tapply(model$fitted, data$predictedgroup, sum) #(O-E)/sqrt(E) (deviation <- sum(O-E)/sqrt(sum(E))) deviation^2 ## calculation of poisson probabilities for expected values expected <- predict(model, type = "response") E <- tapply(expected, data$fever, sum) tapply(expected, data$fever, length)